What Makes Voters Turn Out: The Effects of Polls and Beliefs

Marina Agranov (Caltech), Jacob Goeree (U of Zurich), Julian Romero (Purdue U), Leeat Yariv (Caltech)

June, 2012

Introduction

Common features of elections:

- Uncertainty over majority-preferred alternative
- Much communication prior to elections (polls, media,...)
- Toss-up elections rare
 - Mulligan and Hunter (2000) One of 100,000 (15,000) votes cast in U.S. elections (state elections) "mattered"

Observed behavior:

- Many vote (over 50% in U.S. elections)
- Many vote for perceived landslide winner
 - ANES 2008 70% of those predicting a large of win of their favored candidate reported voting
 - Target Group Index (TGI) Brazil 2003 13% agree with the statement "I always vote for the probable winner in an election"

Introduction

Common features of elections:

- Uncertainty over majority-preferred alternative
- Much communication prior to elections (polls, media,...)
- Toss-up elections rare
 - Mulligan and Hunter (2000) One of 100,000 (15,000) votes cast in U.S. elections (state elections) "mattered"

Observed behavior:

- Many vote (over 50% in U.S. elections)
- Many vote for perceived landslide winner
 - ANES 2008 70% of those predicting a large of win of their favored candidate reported voting
 - Target Group Index (TGI) Brazil 2003 13% agree with the statement "I always vote for the probable winner in an election"

Use an array of laboratory experiments to

- Gain Insights on the Cost-Benefit analysis voters consider
 - response to polls, polling information, and beliefs
- Understand the welfare effects of polls
- (Bonus) Observe how individuals respond to polls

- Allow for a wide range of preference distributions
- Allow tracking individual behavior (votes cast, response to polls) as a function of preferences
- Allow elicitation of beliefs regarding outcomes
- Fairly inexpensive way to test for the effects of information

Related Literature

Pivotal Model with Costly Participation

- Theory Palfrey-Rosenthal (83) and Borgers (04)
- Experiments
 - Association between closeness and turnout Yes: Duffy-Tavits (08), Levine-Palfrey (07)
 - Minority turnout higher than majority turnout No: Duffy-Tavits (08), Grosser-Schram (10), Kartal (11) Yes: Levine-Palfrey (07)
 - Increasing participation costs reduces participation Yes: Cason-Mui (05), Kartal (11), Levine-Palfrey (07)

Polls

- Theory Goeree-Grosser (07), Taylor-Yildrim (10)
- Experiments Guarnaschelli-McKelvey-Palfrey (00), Grosser-Schram (10)

- 1 Elicit subjects' beliefs
 - direct test of the pivotal voter model
 - hard to get from field data
- 2 Inspect behavior in polls and response to its results
 - field data: polls affect preferences or participation rates?
- 3 Uncertainty over majority-preferred alternative
 - elections are particularly useful

Outline

- Theoretical Setup
- Experimental Design
- Results
- Conclusions

- N agents collectively choose red or blue
- Preferences
 - Two equally likely states: 0 (Blue jar) and 1 (Red jar)
 - In state 0: Pr[B|0] = p and Pr[R|0] = 1 p
 - In state 1: Pr[B|1] = 1 p and Pr[R|1] = p
 - If chosen color = own color then get V, o/w get 0
- Information
 - No Polls agents know their preferences (B or R)
 - Perfect Polls agents know their preferences and the state
- Voting
 - Fixed participation cost of c > 0
 - Agents can vote for red, vote for blue or abstain (free)
 - Simple majority

• N agents collectively choose red or blue

Preferences

- Two equally likely states: 0 (Blue jar) and 1 (Red jar)
- In state 0: Pr[B|0] = p and Pr[R|0] = 1 p
- In state 1: Pr[B|1] = 1 p and Pr[R|1] = p
- If chosen color = own color then get V, o/w get 0
- Information
 - No Polls agents know their preferences (B or R)
 - Perfect Polls agents know their preferences and the state
- Voting
 - Fixed participation cost of c > 0
 - Agents can vote for red, vote for blue or abstain (free)
 - Simple majority

- N agents collectively choose red or blue
- Preferences
 - Two equally likely states: 0 (Blue jar) and 1 (Red jar)
 - In state 0: Pr[B|0] = p and Pr[R|0] = 1 p
 - In state 1: PrB|1] = 1 p and Pr[R|1] = p
 - If chosen color = own color then get V, o/w get 0

Information

- No Polls agents know their preferences (B or R)
- Perfect Polls agents know their preferences and the state
- Voting
 - Fixed participation cost of c > 0
 - Agents can vote for red, vote for blue or abstain (free)
 - Simple majority

- N agents collectively choose red or blue
- Preferences
 - Two equally likely states: 0 (Blue jar) and 1 (Red jar)
 - In state 0: Pr[B|0] = p and Pr[R|0] = 1 p
 - In state 1: Pr[B|1] = 1 p and Pr[R|1] = p
 - If chosen color = own color then get V, o/w get 0
- Information
 - No Polls agents know their preferences (B or R)
 - Perfect Polls agents know their preferences and the state

Voting

- Fixed participation cost of c > 0
- Agents can vote for red, vote for blue or abstain (free)
- Simple majority

No Polls

- Focus on symmetric Bayesian Nash Equilibria
- If an agent participates \Rightarrow he votes for preferred color

• Unique symmetric Bayesian Nash Equilibrium

- if $c > \overline{c}$ then nobody participates
- if $c < \underline{c}$ then everybody participates
- if $c \in (\underline{c}, \overline{c})$ then all agents participate with prob $\gamma^{\star} > 0$

$$\frac{V}{2} \cdot \sum_{k=0}^{N-1} \begin{pmatrix} N-1 \\ k \end{pmatrix} (\gamma^{\star})^{k} (1-\gamma^{\star})^{N-1-k} \cdot P_{\mathsf{piv}}(k) = c$$

 γ^{\star} is decreasing in c, p and N

- Focus on quasi-symmetric Bayesian Nash Equilibria
- Suppose realized state is 0 (Blue jar)
- Need to specify the probability of voting for each type
- Unique quasi-symmetric Bayesian Nash Equilibrium
 - Majority voters participate with lower prob than minority
 - Elections are likely to be "toss-up" elections
 - Polls reduce total welfare
 - Stimulate minority to participate
 - More participation and majority less likely to win

Real Polls

- Individuals are free to report their intentions to vote
- Aggregate statistics are dispelled prior to voting decisions
- Quasi-symmetric pure strategies at the polling stage
- Babbling always part of an equilibrium
 - participation rates are as in No Polls
- Fully revealing
 - participation phase equivalent to Palfrey-Rosenthal (83)
 - may entail multiple equilibria
 - for our parameters, no selection is consistent with equilibrium
 - intuition: in Palfrey-Rosenthal, the larger the # of supporters of one alternative, the lower the participation rates ⇒ incentive to misreport

Pivotal Voter Model:

• Voters respond to the likelihood their vote would matter

Implications:

- Turnout is higher when prob of a close election is higher
- Info regarding distribution of preferences in the population (polls) induces minority to participate more
- Polls decrease welfare

 - Majority-preferred alternative wins less often

	Number of	Groups	Group Size	Known Jar	Polls Run	Probablity of	Maximal Prize
	Subjects	Groups	Group Size			Belonging to Majority	
No Polls	63	7	9	No	No	2/3	\$2
Perfect Polls	72	8	9	Yes	No	2/3	\$2
Lab Polls	63	7	9	No	Yes	2/3	\$2

- We asked subjects to predict group composition.
- We asked subjects to predict vote outcomes.
- Experiments run at CASSEL with 198 subjects.

Experimental Design...

- The experiment consists of 20 periods.
- All subjects are divided into groups of 9 subjects (fixed).
- In each period, the computer picks one of two jars (both being equally likely) for your group:
 - the red jar contains two red balls and one blue ball
 - the blue jar contains two blue balls and one red ball
- Each subjects draws a ball from the selected jar (with replacement): draw's color is subject's **type**.
- Subjects do not know the types of other members but know that others types are drawn from the same jar as theirs.

Experimental Design...

- Each person in the group chooses between:
 - Abstain
 - Vote blue
 - Vote red
- Cost of voting (same for all group members):
 - In 10 periods the cost of voting is 25 cents
 - In 10 periods the cost of voting is 50 cents
- The color receiving the majority of votes is the group's choice (ties are broken randomly).
- Payoff is 200 points if subject's type coincides with the groups choice (o/w zero points) minus voting cost if participated.

- Prior to voting decision, we ask two questions:
 - Prior to making your choice, you will be asked to guess (number of reds, number of blues summing up to 9)
 - 2 The number of red and blue votes in your group (including your own, possibly summing up to <9)</p>
- We randomly pick one of the guesses for each subject. If it is correct, subject gets a \$10 bonus.

Screenshot 1: Information

Period 3 out of 20
YourType is Blue Your guess for the group composition: Red: Blue:
(These should add up to the group size.) Your guess for the final vote: Red: Blue: (These do not have to add up to the group size.)

Screenshot 2: Decision

Period								
3 out of 20								
Your Type Is Blue								
	If The Group Decision Is:	And Your Type Is:	Your Payoff Will Be:					
	Red	Red	200					
	Red	Blue	0					
	Blue	Red	0					
	Blue	Blue	200					
		Your Cost of Voting is 40 What would you like to do? C Vote Red C Vote Blue C Abstain	СК					

Screenshot 3: Feedback

Period		
3 out of 20		
Your Type is Blue		
Your vote was Blue		
Your group had no Reducted and	1 Dive vete	
Your group had to Red votes and	1 Blue vote	
This means the Group Decision	n ie Bluo	
This means the Group Decision	in is blue	
Your Payoff	200	
	200	
Your Voting Cost (0 if you did not vote)	40	
· · · · · · · · · · · · · · · · · · ·		
Your Net Payoff	160	
Your Cumulative Payoff	320	

Treatments

- Three information treatments:
 - No Polls subjects know only their own type (B or R)
 - Perfect Polls subjects know their type and the state (jar)
 - Lab Polls
 - subjects learn their type
 - subjects declare intended actions (the poll)
 - resulting overall statistics displayed (# of blue and red)
 - subjects choose whether to vote (and how) or abstain
- Two cost treatments:
 - 10 periods with **low** voting cost of 25 cents
 - 10 periods with high voting cost of 50 cents

Results - Roadmap

- Aggregate outcomes of elections
 - prevalence of close elections
 - welfare
- Voting behavior
 - turnout
 - response to polls and beliefs
 - individual analysis
- Poll reports

- No order effects results aggregated across sessions
- · Little learning results from all periods

The Emergence of Toss-up Elections

- Polls generate less toss-up elections, more landslide elections
- Perfect Polls and Lab Polls generate similar distributions

Two measures:

- Likelihood of selecting the majority-preferred alternative
- Overall utilitarian welfare of the group

Results - Welfare and Information

Composition of Types							
	Type Difference of		Type Diff	erence of	Overall		
	1 or 3		5, 7	or 9			
	cost = 25	cost = 50	cost = 25	cost = 50	cost = 25	cost = 50	
Majority Favored*							
No Polls	70% [43]	69% [42]	96% [27]	96% [28]	80% [70]	80% [70]	
Perfect Polls	85% [46]	76% [46]	97% [34]	97% [34]	90% [80]	85% [80]	
Lab Polls	88% [43]	82% [49]	100% [27]	90% [21]	93% [70]	84% [70]	
Overall Costs**							
No Polls	128 (6)	215 (16)	117 (6)	163 (15)	123 (4)	194 (11)	
Perfect Polls	119 (6)	180 (10)	130 (7)	219 (13)	124 (4)	197 (8)	
Lab Polls	120 (7)	207 (10)	118 (8)	171 (15)	119 (5)	196 (8)	
Net Welfare**							
No Polls	869 (31)	775 (34)	1306 (43)	1245 (41)	1037 (36)	963 (38)	
Perfect Polls	928 (22)	841 (31)	1311 (38)	1210 (37)	1091 (29)	998 (31)	
Lab Polls	978 (26)	842 (29)	1319 (18)	1133 (64)	1110 (27)	929 (32)	

* Square parentheses contain the number of relevant observations.

** Round parentheses contain the corresponding standard errors.

- Information leads to better outcomes (particularly for close elections)
- Information does not raise costs (contrary to theory)
- Information does not reduce welfare (contrary to theory)
- Follow theoretical comparative statics with respect to costs

Statistical Note on Welfare 'Equality'

- Simulate 1,000,000 experiments with our number of observations and subjects using equilibrium strategies
- Look at CDF of welfare difference. For c = 50 (mean = 112):

 $W_{NP} - W_{PP}$

	No Polls			Perfe	ect Polls		Lab Polls	
	Theory	Observed	Theory Majority	Theory Minority	Observed Majority	Observed Minority	Observed Majority*	Observed Minority*
Cost = 25	0.61	0.55	0.70	1.00	0.63	0.38	0.58	0.40
Cost = 50	0.21	0.43	0.19	0.39	0.52	0.27	0.50	0.31

- Minority participate less than majority
- Polls increase majority participation, reduce minority participation
- Perfect Polls and Lab Polls yield similar results
- Follow theoretical comparative statics with respect to costs

Understanding Voting Behavior

- Use elicited beliefs to understand participation rates
- Perceived close elections generate more participation than others (consistent with pivotal voter model)
 - Perfect Polls 0.59 and 0.49 (significantly diff at 10%)
 - Lab Polls 0.62 and 0.43 (significantly diff at 5%)
- Two types of elections that are not close:
 - Preferred alternative winning by a large margin
 - Preferred alternative losingg by a large margin

Response to Beliefs

Guess Lead of Preferred Alternative

Guess Lead of Preferred Alternative

Pivotal Voter Model?

• Increasing curves, inconsistent with the pivotal voter model

	Election Expectation					
	Big Loss	Close Election	Big Win			
No Polls	0.29	0.46	0.52			
Perfect Polls	0.26	0.59	0.57			
Lab Polls (beliefs)	0.22	0.62	0.51			
Lab Polls (polls)	0.29	0.60	0.49			

- Participation rates significantly lower when big loss expected
- Participation rates not significantly different across close elections and those with an expected landslide victory

Results - Belief Accuracy

Individual Regression Analysis

- Probit Regression clustering by individuals
- No group-specific effects in any treatment
- No time effects (no learning)
- Individuals are more likely to participate when
 - costs are low
 - · for minority voters, when majority lead is smaller
 - for majority voters, when majority lead is larger
 - composition lead of preferred alternative is smaller (in polls treatments)
 - if participated in previous election and won (reinforcement learning)

Poll Reports

- How do subjects behave in polls?
 - truthful? or mis-report their intentions?
- Polls overestimate voter turnout
 - 82% report they will vote (overall turnouts are <50%)
 - of those reporting they will vote 42% do vote
 - known result in self-reporting surveys (ANES)
- Subjects rarely vote for an alternative different from the one declared (not much strategic polling)
- Polls reflect the ultimate election outcomes
 - polls predicted correctly 84% of election results (not-tied)

How do Polls Affect Outcomes?

Predicted Winner Lead by Lab Polls

Bandwagon Effect

- predicted winner gains additional support after poll publications
- observed when poll victories are small

Underdog Effect

- predicted loser gains additional support after poll publications
- observed when poll victories are large

Conclusions

• Array of experiments inspecting voters turnout response to beliefs and information transmitted by polls

Outcomes

- Polls have weak effects on welfare
- Polls yield more landslide elections
- Bandwagon effects for small victory margins, underdog effects for large victory margins

• Behavior - Rational Voter Paradigm?

- Propensities to vote increase with vote lead
- Higher participation when closeness predicted

Behavior - Polls

- Polls overestimate turnout
- Polls accurately predict election outcomes