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I. Introduction
• Most free riders problems have an important dynamic 

component.

• Still, there is only a limited understanding of dynamic free 
rider problems:

- Research has been focused on economics with 
reversibility, under special assumptions;

- There is no analysis of the classic free rider problem 
with irreversibility.

• In this paper we provide a comparative analysis of 
Markov equilibria, with and without reversibility.
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• At the core of the paper there is a new approach to 
characterize the Markov equilibria of a stochastic game: 
- We characterize weakly concave equilibria; 

- We show it is without loss of generality.

• With reversibity, a continuum of equilibria: the lowest 
decreasing in n; the highest increasing in n. The highest 
steady state → efficiency as δ→1.

• With irreversability, the set of steady states converges to 
the highest steady state with reversibility as d->0.

• We may have monotonic or spiraling convergence; or 
persistent cycles.
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I.3  Plan for today

I. The model
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III. Equilibria in a irreversible economy
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I. The model
II. 1 The economy
• Consider an economy with n agents. There are two 

goods: private good x and a public good g.  

• We assume that Uj can be written as:

• The rate of transformation between x and g is 1.

• Private consumption good is nondurable, the public 
good is durable: 
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• In a Reversible Economy (RIE):

where g=gt-1 and y=gt and W is the per period endowment.

• In a Irreversible Economy (IIE), the second constraints is 
substituted with:

• In a RIE the public investment can be scaled back. In a IIE
investment can not be undone.  

 1 g y d 
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x j  0     j
y  0     

j1

n

x j  y (1 d)g  W  



• In period t, each agent i is endowed with W/n units of x.

• In each period i independently chooses how to allocate its 
endowment between g and x.

• In a RIE, xi<W/n+(1-d)g/n. In a IIE, xi<W/n.

• The economy-wide investment is the sum of the 
investments. 

• The level of the state variable g, therefore, creates a 
dynamic linkage across policy making periods. 

• We focus on symmetric Markov equilibria with 
continuous strategies: x(g), y(g), with associated value 
function v(g).
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II.2 The planner’s solution

• The planner's problem has a recursive representation as:

• By standard methods, we can show that a continuous, 
concave and differentiable vP (g) that satisfies (*) exists
and is unique.

• The optimal policies have an intuitive characterization.

• We start from the case of RIE.
8
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So the equilibrium investment function is:

where (it can be shown):
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• We can have two cases:

• We focus on the second case: regular economies.
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• The case of IIE is almost the same.

• The irreversibility constraint is irrelevant because it affects 
the economy only out of equilibrium.
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II. Equilibria in a RIE
• The optimization problem for agent j in state g is:

Agent j can not choose y directly. Given the other agents' 
investments, j’s ultimately determines y.

• In a  symmetric equilibrium, all agents consume the same 
fraction of resources: 
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• Agent’s j problem is then equivalent to:

• Given the agent’s choice yR(g), the expected value must be:

Definition. An equilibrium in a RIE is a pair of functions 
yR(g) and a vR(g) such that for all g, yR(g) solves (*) given 
vR(g); and for all g, vR(g) solves (**) given yR(g).

 ( )(1 )( ) ( )( ) ( )R
R R RR

W d g u
n

y g yv g vg y g  
  

(*)

(**)

(1 ) 1 1( )
( )

max
) 

(
,

)
(W d g

R R
n ny

n n

R

n

v y
y g y g

u y y
y y


   

  
    



• Contrary to the planner’s case, we know little a priori on 
v(g) and y(g).

• Indeed, now, there is a loss of generality in focusing only on 
strictly concave objective functions.

• In the following:

‒ I will first illustrate a class of equilibria with weakly 
concave functions. 

‒ I will then show that there is no loss of generality in 
using this class.
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So now the investment function is:



When is this reaction function an equilibrium?

• First, agents must be indifferent between investing and 
consuming for all states in [g²,g³]:

• Since:

• We have:

• That leads to the necessary condition:

v (g)  1 d  y (g)
n

 u (y(g)) y (g) v (y(g)) y (g)
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Note: 
•For g in [g2,g3], y(g) is in 
[g2,g3].
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• Substituting, we get:

• This uniquely defines a function y(g), up to a constant.
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• For our example, the terminal condition
y(y0

R)=y0
R

uniquely determines the investment function in [g2,g3];

• Questions:

− What steady states can we achieve?

− Do the equilibria constructed in this way span the set of 
well behaved equilibria?

• For simplicity, we focus here on monotonic equilibria.  

• An equilibrium is monotonic if yR(g) is monotonic non 
decreasing in g.
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Proposition. An investment level yo
R is stable steady 

state of a monotonic equilibrium if and only if:

Each yo
R is supported by a concave equilibrium with 

investment function as described as above.
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Properties:

•All equilibria are inefficient.

•The autarky steady state is in the interior.

•In the best equilibrium, investment is increasing in n; in the 
worst equilibrium is decreasing in n.

•We have multiplicity even as n→∞:

•Multiplicity disappears in the “static version:” δ=0

•As δ →1, highest steady state → efficient level.
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III. Equilibria in a IIE
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• Assume d=0.

• At yo agent j does not have 
to fear his investment will 
be “stolen”.

• Irreversibility is a 
commitment device.

• “Eq.” is not concave at yo.

• This has a ripple effect on 
states g<yo.



• The equilibrium should merge smoothly with the constraint.
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Proposition. In a IIE there is a unique concave and 
monotonic eq. with investment function like this:
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• In general when d is high, we may have other non-concave 
equilibria (out of the equilibrium path).

• The extreme case is when d=1, in which case  RIE and IIE
are almost the same.

• Proposition. As d→0, the set of equilibrium steady states in 
a IIE converges to the upperbound of the steady states of a 
RIE:

while the set of feasible steady states in a RIE is:
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IV. Non-monotonic strategies and cycles

• Non monotonic equilibria always exist: the lowest steady 
state is lower; the highest is the same.

• Non-monotonic equilibria are interesting because:

- Steady states with damped obscillations always exist;

- We can have equilibria with no stable steady state, only 
persistent cycles.
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V. Conclusion
• We have studied a model in which n infinitely lived agents 

choose between consumption and a durable public good.  

• Two possible cases: reversible and irreversible economies:

− In reversible economies there is a continuum of 
equilibria: in the best equilibrium the SS increases in n; 
in the worst equilibrium, it decreases in n.

− In irreversible economies the set of SS converges to the 
best SS with reversibility as d→0.  

− There are non-monotonic equilibria in which g   
converges with damped oscillations; and in which there 
are limit cycles.


