The Free Rider Problem:
a Dynamic Analysis

Marco Battaglini
Princeton University

Salvatore Nunnari Thomas Palfrey
Caltech Caltech



I. Introduction

Most free riders problems have an important dynamic
component.

Still, there 1s only a limited understanding of dynamic free
rider problems:

-  Research has been focused on economics with
reversibility, under special assumptions;

- There 1s no analysis of the classic free rider problem

with irreversibility.

e In this paper we provide a comparative analysis of
Markov equilibria, with and without reversibility.



e At the core of the paper there 1s a new approach to
characterize the Markov equilibria of a stochastic game:

- We characterize weakly concave equilibria;

- We show it 1s without loss of generality.

e With reversibity, a continuum of equilibria: the lowest
decreasing 1n n; the highest increasing in n. The highest
steady state — efficiency as 0 —1.

e With irreversability, the set of steady states converges to
the highest steady state with reversibility as d->0.

 We may have monotonic or spiraling convergence; or
persistent cycles.
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. The model

II. 1 The economy

. Consider an economy with n agents. There are two
goods: private good X and a public good g.

. We assume that U! can be written as:

Ui(2)) =35 x +u(gy].

. The rate of transformation between X and ¢ is 1.
. Private consumption good 1s nondurable, the public
good 1s durable:

0, :(l_d)gt—l + It'



In a Reversible Economy (RIE):

ij +|y-(1-d)g|<w

where =0, ; and y=¢, and W 1s the per period endowment.

In a Irreversible Economy (I1E), the second constraints is
substituted with:
y>(1-d)g

In a RIE the public investment can be scaled back. In a IIE
Investment can not be undone.



In period t, each agent I is endowed with \W/n units of X.

In each period | independently chooses how to allocate its
endowment between ¢ and X.

In a RIE, X'<W/n+(1-d)g/n. In a IIE, X'I<W/n.

The economy-wide investment 1s the sum of the
Investments.

The level of the state variable g, therefore, creates a
dynamic linkage across policy making periods.

We focus on symmetric Markov equilibria with
continuous strategies: X(Q), y(9), with associated value
function v(Q).



I1.2 The planner’s solution

The planner's problem has a recursive representation as:

V,(g) = max
Yy, X

.

>x! +nu(y) + v, (y)
st Y x'+y—(1-d)g<W,
X' >0 Vi, y>0

J

- (%)

By standard methods, we can show that a continuous,
concave and differentiable v, (g) that satisfies (*) exists

and 1s unique.

The optimal policies have an intuitive characterization.

We start from the case of RIE.



y<(1-d)g+W v (d.n) y y (d,n)—-W g
’ 1-d

So the equilibrium investment function 1s:
Yo (9) =min{W +(1-d)g, y;(d,n)}.

where (it can be shown):

y;(d,n):[u,]1(1—5(l—d)j

N




e We can have two cases:

y(@) 1 y(@)]
e
0 y@n-w y*(d,n)—‘W _= o
Ye * 14 a7 (d,n)=y;
y (d,n)
Case L W /d <[u']" (1-n5(1-d) Case 22 W /d >[u']" (1-ns(1-d)

* We focus on the second case: regular economies.
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e The case of IIE 1s almost the same.

y(9)-

v

“(d,n)-W * o
YEDZE ydm=y;

e The irreversibility constraint is irrelevant because it affects
the economy only out of equilibrium.
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1. Equilibria in a RIE

e The optimization problem for agent ] in state g is:

X+U(Y)+06Ve(Y)
st X+y—(1-d)g=W —(n—-1)X,(9)
max < (
yx | W—=(n-D)Xx(g)+(1-d)g-y=0
nx<(1-d)g+W

Agent | can not choose Yy directly. Given the other agents'
investments, J’s ultimately determines V.

e Ina symmetric equilibrium, all agents consume the same
fraction of resources:

xR<g>=%[vv+<1—d>g—yR<g>].
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« Agent’s ] problem is then equivalent to:

- U(Y) = ¥ + Ve (¥) X
v |y s ey (g), y 2Ly (Q) (*)

 Given the agent’s choice Y,(g), the expected value must be:

v (g) = +(l_dr)]g —Ye(9) U(YR(9))+0Ve(YR(9))  (*%)

Definition. An equilibrium in a RIE is a pair of functions
Yr(g) and a vi(g) such that for all g, yr(g) solves (*) given
Vr(g); and for all g, vL(g) solves (**) given y(g).
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e Contrary to the planner’s case, we know little a prior1 on

v(g) and y(9).

e Indeed, now, there 1s a loss of generality in focusing only on
strictly concave objective functions.

 In the following:

— I will first 1llustrate a class of equilibria with weakly
concave functions.

— I will then show that there 1s no loss of generality in
using this class.
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y(9) W+(1-d)g .- |

U(y)+Vg () -y

I
I
I
i
I
I
1
I
1

y<(-d)g+W

So now the investment function i1s:

rmax{W +(1—d)g,y(g2)} g<g’
Ya(9) =1 y(9) gelg’.9’|
y(9’) g>g’
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When 1s this reaction function an equilibrium?

 First, agents must be indifferent between investing and
consuming for all states in [g2,g%]:

@4— SV'(g)-1=0) Vg e [gz,g3]

W{—dgg—y(g) +Uu(y(9))+ov(y(g))

e Since:

v(9) =

e We have:
1-d-y'(9)

+U(Y(9))y'(9)+oV(¥Y(9)y'(9)

e That leads to the necessary condition:

I-u'(g) _1-d-y'(9)
5

+U'(y(9))y'(9)+oV'(y(9))y'(9)
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y( g) W-I-(l—d)/g/ P

| s
\ / Note:
- ’ *For g in [0,,05], y(9) is in
i [92,93]-

; U'(y(@)+6v(y(g)-1=0)
:1 :2< .0 )L See, - _

g g Yr 93 _____

e Substituting, we get: \

1-u(g) _1-d — 94 uw(y(@)y'(@)+[1-v(v(9)]y'(9)

o

e This uniquely defines a function y(Q), up to a constant.
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For our example, the terminal condition
Y(YR)=YR

uniquely determines the investment function in [g,,2;];

Questions:

— What steady states can we achieve?

— Do the equilibria constructed 1n this way span the set of
well behaved equilibria?

For simplicity, we focus here on monotonic equilibria.

An equilibrium is monotonic if y,(g) is monotonic non
decreasing in g.

18



Proposition. An investment level y° is stable steady
state of a monotonic equilibrium if and only if:

vl [1_5(1;d)j£ el (1_5(1_%)

Each y°, Is supported by a concave equilibrium with
Investment function as described as above.
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Properties:

*All equilibria are inefficient.

*The autarky steady state 1s in the interior.

[n the best equilibrium, investment 1s increasing in n; in the
worst equilibrium 1s decreasing in n.

*We have multiplicity even as n—oo;

*Multiplicity disappears in the “static version:” 0 =0

*As 0 —1, highest steady state — efficient level.
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[11. Equilibriaina llE

e Assume d=0.

o Aty°agent | does not have
to fear his investment will
be “stolen”.

* Irreversibility 1s a

commitment device.

e “Eq.” 1s not concave at Y°.

e This has a ripple effect on

g Y g’ states g<y°.
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e The equilibrium should merge smoothly with the constraint.

W+(l—d)g
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Proposition. In a II1E there is a unique concave and
monotonic eq. with investment function like this:

~ W +(1-d)g
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* In general when d is high, we may have other non-concave
equilibria (out of the equilibrium path).

* The extreme case 1s when d=1, in which case RIE and I1E
are almost the same.

* Proposition. As d—0, the set of equilibrium steady states in
a l1E converges to the upperbound of the steady states of a

RIE: .
Vi =[] (1-9)
while the set of feasible steady states in a RIE is:

W] ()< <[w]'(-9)
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V. Non-monotonic strategies and cycles

* Non monotonic equilibria always exist: the lowest steady
state 1s lower; the highest 1s the same.

* Non-monotonic equilibria are interesting because:
- Steady states with damped obscillations always exist;

- We can have equilibria with no stable steady state, only
persistent cycles.
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V. Conclusion

* We have studied a model in which n infinitely lived agents
choose between consumption and a durable public good.

« Two possible cases: reversible and irreversible economies:

In reversible economies there 1s a continuum of
equilibria: in the best equilibrium the SS increases 1n n;
in the worst equilibrium, 1t decreases in n.

In 1rreversible economies the set of SS converges to the
best SS with reversibility as d —0.

There are non-monotonic equilibria in which g
converges with damped oscillations; and in which there
are limit cycles.
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