Experimentation in Federal Systems

Steven Callander Bård Harstad

Stanford

 $\mathsf{Kellogg}/\mathsf{Oslo}$

June 2012

Callander	&	Harstad	(Stanford
-----------	---	---------	-----------

• "It is one of the happy incidents of the federal system that a single courageous state may, if its citizens choose, serve as a laboratory; and try novel social and economic experiments without risk to the rest of the country."

Justice Brandeis, 1932.

 "It is one of the happy incidents of the federal system that a single courageous state may, if its citizens choose, serve as a laboratory; and try novel social and economic experiments without risk to the rest of the country." Justice Brandeis, 1932.

Justice Brandels, 1932

- Two presumptions:
 - free-riding doesn't undermine experimentation
 - experiments are useful to all states preferences are similar

 "It is one of the happy incidents of the federal system that a single courageous state may, if its citizens choose, serve as a laboratory; and try novel social and economic experiments without risk to the rest of the country."

Justice Brandeis, 1932.

- Two presumptions:
 - free-riding doesn't undermine experimentation
 - experiments are useful to all states preferences are similar
- E.g., California with environmental standards, Alabama with school vouchers.

 "It is one of the happy incidents of the federal system that a single courageous state may, if its citizens choose, serve as a laboratory; and try novel social and economic experiments without risk to the rest of the country." Justice Brandeis, 1932.

Sustice Diandels, 1992

- Two presumptions:
 - free-riding doesn't undermine experimentation
 - experiments are useful to all states preferences are similar
- E.g., California with environmental standards, Alabama with school vouchers.

Questions: Will states choose the right quantity of experiments? Will they choose the right type of experiments?

- **1** The choice whether to experiment (free-riding).
- O The policy to experiment with (preference heterogeneity).

- **1** The choice whether to experiment (free-riding).
- **②** The policy to experiment with (preference heterogeneity).

Good News: Preference differences mitigate free-riding.

- **1** The choice whether to experiment (free-riding).
- **②** The policy to experiment with (preference heterogeneity).

Good News: Preference differences mitigate free-riding.

• California experiments with liberal policies because no one else will.

- **1** The choice whether to experiment (free-riding).
- **②** The policy to experiment with (preference heterogeneity).

Good News: Preference differences mitigate free-riding.

• California experiments with liberal policies because no one else will.

Bad News: Policy experiments are less socially beneficial.

- **1** The choice whether to experiment (free-riding).
- **②** The policy to experiment with (preference heterogeneity).

Good News: Preference differences mitigate free-riding.

• California experiments with liberal policies because no one else will.

Bad News: Policy experiments are less socially beneficial.

Really Bad News: Threat of free-riding induces *Pareto dominated* policy choices.

Our Contribution – Part II

Question: Can a better federalist system be designed?

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Federalism is the sharing of power across levels of government.
- Brandeis' view \approx fully decentralized (= no federalism).
- Can power be shared in a more effective way?

- Federalism is the sharing of power across levels of government.
- Brandeis' view \approx fully decentralized (= no federalism).
- Can power be shared in a more effective way?

Our Answer: Progressive federalism.

• Dynamic power sharing: Begin decentralized and become centralized.

- Federalism is the sharing of power across levels of government.
- Brandeis' view \approx fully decentralized (= no federalism).
- Can power be shared in a more effective way?

Our Answer: Progressive federalism.

- Dynamic power sharing: Begin decentralized and become centralized.
 - centralization implies policy harmonization.

- Federalism is the sharing of power across levels of government.
- Brandeis' view \approx fully decentralized (= no federalism).
- Can power be shared in a more effective way?

Our Answer: Progressive federalism.

- Dynamic power sharing: Begin decentralized and become centralized.
 - centralization implies policy harmonization.
 - states compete for their policy to be implemented nationally.

- 4 同 6 4 日 6 4 日 6

- Federalism is the sharing of power across levels of government.
- Brandeis' view \approx fully decentralized (= no federalism).
- Can power be shared in a more effective way?

Our Answer: Progressive federalism.

- Dynamic power sharing: Begin decentralized and become centralized.
 - centralization implies policy harmonization.
 - states compete for their policy to be implemented nationally.
 - Appropriate metaphor for federalism is a *tournament*, rather than a *laboratory*.

イロト イポト イヨト イヨト 二日

Experimentation in federal systems – surprisingly little.

Experimentation in federal systems – surprisingly little.

- Free-riding: Rose-Ackerman '80, Cai and Treisman '09, Strumpf '02.
- Preference heterogeneity: Volden, Ting & Carpenter '09.

(日) (同) (三) (三)

Experimentation in federal systems – surprisingly little.

- Free-riding: Rose-Ackerman '80, Cai and Treisman '09, Strumpf '02.
- Preference heterogeneity: Volden, Ting & Carpenter '09.
- Empirical work on policy diffusion.
 - Learning through *similar* states.

.

Experimentation in federal systems – surprisingly little.

- Free-riding: Rose-Ackerman '80, Cai and Treisman '09, Strumpf '02.
- Preference heterogeneity: Volden, Ting & Carpenter '09.
- Empirical work on policy diffusion.
 - Learning through *similar* states.
 - Volden '06, Buera, Monge-Naranjo & Primiceri '11

Experimentation in federal systems – surprisingly little.

- Free-riding: Rose-Ackerman '80, Cai and Treisman '09, Strumpf '02.
- Preference heterogeneity: Volden, Ting & Carpenter '09.
- Empirical work on policy diffusion.
 - Learning through *similar* states.
 - Volden '06, Buera, Monge-Naranjo & Primiceri '11

Economic theory: Experimentation and bandit-problems

- Heavy on free-riding, not on preference heterogeneity.
- Bolton and Harris '99, Keller, Rady & Cripps '05, Keller and Rady '10, Rosenberg, Solan and Vieille '07

(日) (同) (三) (三)

- Policy has two components:
 - Ideology.
 - Quality (public good)

(日) (同) (三) (三)

- Policy has two components:
 - Ideology.
 - Quality (public good)
- We assume ideology is perfectly controlled & quality is unknown.
 - Volden, Ting & Carpenter '09.

★ 3 > < 3</p>

- Policy has two components:
 - Ideology.
 - Quality (public good)
- We assume ideology is perfectly controlled & quality is unknown.
 - Volden, Ting & Carpenter '09.
- Experiment is binary: succeeds with probability p, at cost k.

(3)

- Policy has two components:
 - Ideology.
 - Quality (public good)
- We assume ideology is perfectly controlled & quality is unknown.
 - Volden, Ting & Carpenter '09.
- Experiment is binary: succeeds with probability p, at cost k.
- Two districts (/states) with ideal points $t_i \in \mathbb{R}$, $i \in \{A, B\}$
 - Heterogeneity $h = t_B t_A$.

・ロン ・四 ・ ・ ヨン ・ ヨン

Timing – Decentralized System

• Choose policy to explore: $x_i \in \mathbb{R}, i \in \{A, B\}$.

- **2** Play safe or experiment $e_i \in \{0, 1\}$.
 - outcomes observed $s_{x_i} \in \{0, 1\}$
- Similar Final policy chosen: $y_i \in \{x_A, x_B\}, i \in \{A, B\}.$

• payoffs:
$$u_i = s_{y_i} - c(t_i - y_i) - k \cdot e_i$$
.

•
$$c(.)$$
 is concave, $c'(0) = 0$.

E SQA

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > ○ < ○

The First-Best

cananaci a maibraa (brannoid

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > ○ < ○

The First-Best

Callander & Harstad (Stai	nford	
---------------------------	-------	--

E 996

・ロト ・四ト ・ヨト ・ヨト

The First-Best

Callander	& Harstad	(Stanford
		(

E 990

<ロ> (日) (日) (日) (日) (日)

- Convergence from ideal points, t_A < x_A < 0 < x_B < t_B, is efficient iff h ∈ [h', h''].
- Each district should accomodate, $a_i = |x_i t_i|$, satisfying

$$rac{c'\left(a_{i}
ight)}{c'\left(h-a_{i}
ight)+c'\left(a_{i}
ight)}=p\left(1-p
ight)$$
 , $i\in\left\{A,B
ight\}$

< 3 > < 3 >

Decentralization

Callander	& Н	arstad	(Stanford
-----------	-----	--------	-----------

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

	Cal	land	er &	٤H	larsta	d (S	Stai	nford
--	-----	------	------	----	--------	------	------	-------

イロト イポト イヨト イヨ

• If locations are identical, *i* experiments even when *j* does if:

$$p(1-p)-k \geq 0.$$

$$0 \geq k-p(1-p).$$

< □ > < 同 > < 回 > < Ξ > < Ξ

• If locations are identical, *i* experiments even when *j* does if:

$$p(1-p)-k \geq 0.$$

 $0 \geq k-p(1-p).$

• Given different locations, $h - a_j > a_i$, *i* experiments if:

$$\left[c\left(h-a_{j}\right)-c\left(a_{i}\right)\right]p^{2}\geq k-p\left(1-p\right)$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回

• If locations are identical, *i* experiments even when *j* does if:

$$p(1-p)-k \geq 0.$$

 $0 \geq k-p(1-p).$

• Given different locations, $h - a_j > a_i$, *i* experiments if:

$$\left[c\left(h-a_{j}\right)-c\left(a_{i}\right)\right]p^{2}\geq k-p\left(1-p\right)$$

• If $a_i = a_j = a$, then c(h-a) - c(a) increases in h, decreases in a, and is 0 if h = 0 or a = h/2

(日) (同) (三) (三)

• If locations are identical, *i* experiments even when *j* does if:

$$p(1-p)-k \geq 0.$$

 $0 \geq k-p(1-p).$

• Given different locations, $h - a_j > a_i$, *i* experiments if:

$$\left[c\left(h-a_{j}\right)-c\left(a_{i}\right)\right]p^{2}\geq k-p\left(1-p\right)$$

- If $a_i = a_j = a$, then c(h-a) c(a) increases in h, decreases in a, and is 0 if h = 0 or a = h/2
- If k p(1 p) > 0, inducing both districts to experiment requires:

イロト 不得下 イヨト イヨト 二日

• If locations are identical, *i* experiments even when *j* does if:

$$p(1-p)-k \geq 0.$$

 $0 \geq k-p(1-p).$

• Given different locations, $h - a_j > a_i$, *i* experiments if:

$$\left[c\left(h-a_{j}\right)-c\left(a_{i}\right)\right]p^{2}\geq k-p\left(1-p\right)$$

- If $a_i = a_j = a$, then c(h-a) c(a) increases in h, decreases in a, and is 0 if h = 0 or a = h/2
- If k p (1 p) > 0, inducing both districts to experiment requires:
 Heterogeneity h > 0

イロト 不得下 イヨト イヨト 二日

• If locations are identical, *i* experiments even when *j* does if:

$$p(1-p)-k \geq 0.$$

 $0 \geq k-p(1-p).$

• Given different locations, $h - a_j > a_i$, *i* experiments if:

$$\left[c\left(h-a_{j}\right)-c\left(a_{i}\right)\right]p^{2}\geq k-p\left(1-p\right)$$

- If $a_i = a_j = a$, then c(h-a) c(a) increases in h, decreases in a, and is 0 if h = 0 or a = h/2
- If k p(1 p) > 0, inducing both districts to experiment requires:
 - Heterogeneity h > 0
 - Sufficiently different policies $x_A \neq x_B \Leftrightarrow a < h/2$

イロト 不得 トイヨト イヨト 二日

Decentralization - given (symmetric) locations

• No convergence.

Callander	&	Harstad	(Stanford
-----------	---	---------	-----------

< ∃ > <

Decentralization - given (symmetric) locations

- No convergence.
- Possible *divergence*.

Callander	·& Н	larstad	(Stanfo	rc
-----------	------	---------	---------	----

.∃ >

Decentralization - equilibrium locations

Callander	& Harstad	(Stanford
-----------	-----------	-----------

イロト イポト イヨト イヨ

Decentralization - equilibrium locations

The local optimum
$$h^*$$
 is global if $k \leq 2prac{1-p}{2-p}$

Callander & Harstad (Stanford

Experimentation

June 2012 19 / 28

• If $h \in [h'_d, h^*_d)$, experiments diverge: $x_A < t_A < t_B < x_B \Leftrightarrow a_i = a > 0$:

$$c(h-a)-c(a) = \frac{k-p(1-p)}{p^2}$$

- Divergence increases in k but decreases in p
- The smaller is h, the larger is divergence:

$$\frac{\partial |x_B - x_A|}{\partial h} < 0.$$

Callander	& Harstad ((Stanford
-----------	-------------	-----------

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

Centralization - Model

Callander	& Harstad	(Stanford
-----------	-----------	-----------

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

• Stage 3: A median voter decides on $y_A = y_B \in \{x_A, x_B\}$, implying:

< ロ > < 同 > < 三 > < 三

- Stage 3: A median voter decides on $y_A = y_B \in \{x_A, x_B\}$, implying:
 - If both fail/succeed, the smallest $|x_i|$ is chosen

• • • • • • • • • • • •

• Stage 3: A median voter decides on $y_A = y_B \in \{x_A, x_B\}$, implying:

- If both fail/succeed, the smallest $|x_i|$ is chosen
- If both equally close: fair draw

Image: Image:

- Stage 3: A median voter decides on $y_A = y_B \in \{x_A, x_B\}$, implying:
 - If both fail/succeed, the smallest $|x_i|$ is chosen
 - If both equally close: fair draw
- Ex post, the uniform policy is inefficient

- Stage 3: A median voter decides on $y_A = y_B \in \{x_A, x_B\}$, implying:
 - If both fail/succeed, the smallest $|x_i|$ is chosen
 - If both equally close: fair draw
- Ex post, the uniform policy is inefficient
- Otherwise, the game is as before

Centralization - Given Locations

Callander	& Harstad	(Stanford
-----------	-----------	-----------

・ロト ・聞 ト ・ ヨト ・ ヨト

• If j experiments, i does too iff

$$c(h-a_j)-c(a_i) \geq rac{k-p(1-p)}{p/2}$$

Callander a	& Harstad	(Stanford
-------------	-----------	-----------

(日) (同) (三) (三)

• If j experiments, i does too iff

$$c(h-a_j)-c(a_i) \geq \frac{k-p(1-p)}{p/2}$$

• Compared to decentralization: Larger incentives if p < 1/2

(4) 医(1) (4) 医

• If j experiments, i does too iff

$$c(h-a_j)-c(a_i) \geq rac{k-p(1-p)}{p/2}$$

- Compared to decentralization: Larger incentives if p < 1/2
- When choosing locations, inequality will bind

• If j experiments, i does too iff

$$c(h-a_j)-c(a_i) \geq rac{k-p(1-p)}{p/2}$$

- Compared to decentralization: Larger incentives if p < 1/2
- When choosing locations, inequality will bind
- Convergence is possible: accomodate median voter \Rightarrow a > 0

Centralization - Equilibrium Locations

The optimal heterogeneity is $h_{c}^{*} > 0$

Callander & Harstad (Stanford

Experimentation

June 2012 25 / 28

Centralization or Decentralization?

• Centralization is always inefficient ex post

Proposition

Callander (ջ⊦	larstad	(Stanford
-------------	----	---------	-----------

< ロ > < 同 > < 三 > < 三

Centralization or Decentralization?

• Centralization is always inefficient ex post

Proposition

• If p > 1/2, incentives to experiment is lower, so centralization worse

Callander a	& Harstad	(Stanford
		1

• = • •

Centralization or Decentralization?

• Centralization is always inefficient ex post

Proposition

- If p > 1/2, incentives to experiment is lower, so centralization worse
- If p < 1/2 is small, centralization can be **better**

• Centralization is always inefficient ex post

Proposition

- If p > 1/2, incentives to experiment is lower, so centralization worse
- If p < 1/2 is small, centralization can be better
- If $c(a) = qa^2$, centralization is better for small h, q, p and large k:

$$qh^{2} < [k - p(1 - p)] \frac{1/4p^{2} - 1}{1/2 - p(1 - p)}$$

Alternative Applications

• Political parties developing new ideas

- Each tries to prevent the other from copying a success
- An explanation for polarization (or gay-marriage support)

Alternative Applications

• Political parties developing new ideas

- Each tries to prevent the other from copying a success
- An explanation for polarization (or gay-marriage support)
- Firms investing in R&D
 - Firm-specific tech to reduce free-riding, or accomodate to sell?
 - Less firm-specific general technology with intellectual property rights.

Alternative Applications

• Political parties developing new ideas

- Each tries to prevent the other from copying a success
- An explanation for polarization (or gay-marriage support)
- Firms investing in R&D
 - Firm-specific tech to reduce free-riding, or accomodate to sell?
 - Less firm-specific general technology with intellectual property rights.

• Coffee-brewing

- Riker (1964).
 - Centralized vs. Peripheralized federalism.
 - Describes dynanics in *all* federal systems since founding of U.S.

- Riker (1964).
 - Centralized vs. Peripheralized federalism.
 - Describes dynanics in *all* federal systems since founding of U.S.
 - Conclusion: Increasingly centralized systems succeed, increasingly peripheralized systems fail.

- Riker (1964).
 - Centralized vs. Peripheralized federalism.
 - Describes dynanics in *all* federal systems since founding of U.S.
 - Conclusion: Increasingly centralized systems succeed, increasingly peripheralized systems fail.
- Increasing size of US and EU governments.

- Riker (1964).
 - Centralized vs. Peripheralized federalism.
 - Describes dynanics in *all* federal systems since founding of U.S.
 - Conclusion: Increasingly centralized systems succeed, increasingly peripheralized systems fail.
- Increasing size of US and EU governments.
- Extensive policy harmonization in EU.

- Riker (1964).
 - Centralized vs. Peripheralized federalism.
 - Describes dynanics in *all* federal systems since founding of U.S.
 - Conclusion: Increasingly centralized systems succeed, increasingly peripheralized systems fail.
- Increasing size of US and EU governments.
- Extensive policy harmonization in EU.
- Federal government learns from states, e.g., Rabe (2004).

- Riker (1964).
 - Centralized vs. Peripheralized federalism.
 - Describes dynanics in *all* federal systems since founding of U.S.
 - Conclusion: Increasingly centralized systems succeed, increasingly peripheralized systems fail.
- Increasing size of US and EU governments.
- Extensive policy harmonization in EU.
- Federal government learns from states, e.g., Rabe (2004).
- Welfare policy in U.S.: Authority devolved to the states.

- Riker (1964).
 - Centralized vs. Peripheralized federalism.
 - Describes dynanics in *all* federal systems since founding of U.S.
 - Conclusion: Increasingly centralized systems succeed, increasingly peripheralized systems fail.
- Increasing size of US and EU governments.
- Extensive policy harmonization in EU.
- Federal government learns from states, e.g., Rabe (2004).
- Welfare policy in U.S.: Authority devolved to the states.
- Prescriptive theory: Constitutions should do it!