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Motivation

◮ Our goal is a model of dynamic elections in the presence of a
state variable that evolves endogenously over time.

◮ It should be:

◮ General: it should be amenable to a range of structure on
preferences, policies, states, etc.

◮ Viable: equilibria should exist widely to allow
non-constructive characterizations.

◮ Useful: it should be possible to solve special cases of the
model to generate novel insights.



Motivation (cont.)

◮ More precisely, we model:

◮ Sequence of elections
over an infinite horizon.

◮ State variable evolves
over time.

◮ Incumbent chooses
policy.

◮ Challenger is drawn.
◮ An election is held.
◮ Repeat.
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Electoral accountability (cont.)
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Commitment

◮ To generate equilibria with a partitional form we assume
state-by-state commitment.

◮ Each period begins with some state s.

◮ If the office holder chooses x , she is “bound” to x if s is
realized again next period.

◮ This commitment lasts until the state changes to s ′ 6= s,
at which time she is “free.”

◮ Could be supported by history-dependent punishments for
breaking commitments (penalizing flip-floppers).



Outline

Introduction

Model

Equilibria

Results

Conclusion



Components

N voters finite
M politicians countably infinite
T types finite
S states countable
Y policy space general



Timing

State s and incumbent’s type t are publicly observed.

Office holder chooses policy x in feasible set Yt(s).

Office holder receives stage utility wt(s, x), and voter
and out of office politicians receive ut(s, x).

Challenger with unobserved type t ′ drawn from
untried politicians with probability qt(t

′|s, x).



Timing (cont.)

If the office holder does not seek reelection, the
challenger takes office (e = 0).

Otherwise, an election takes place, and if a decisive
coalition C ∈ D(s) of voters vote to reelect, the
incumbent wins (e = 1); otherwise, the challenger
wins (e = 0).

State s ′ is drawn from pt(s
′|s, x , e).

Move to next period (discounting by δt) and
repeat.



Assumptions

◮ Finite T and countable S .
◮ Types can represent preferences or ability, states can represent

economic variables, distributions of preferences, etc.

◮ Sets Yt(s) are closed subsets of compact metric space Y .

◮ Can be finite, or convex subset of Euclidean space, or
space of tax functions.

◮ Collection D(s) is monotonic.

◮ Captures majority rule, quota rules, electoral college,
non-democratic systems



Assumptions (cont.)

◮ Stage utilities ut(s, x) and wt(s, x) are bounded and
continuous.

◮ Policy motivation: wt(s, x) = ut(s, x).
◮ Mixed motivation: wt(s, x) = ut(s, x) + b.

◮ State transition pt(s
′|s, x , e) and challenger distribution

qt(t
′|s, x) are continuous.

◮ Policy can influence evolution of future economic states.

◮ No convexity conditions are imposed.



Strategies

◮ Policy strategies: πt(·|s)

◮ Type symmetry, stationarity wrt s

◮ Commitment:

◮ Mixing only occurs when transitioning from another state.
◮ Once x is chosen in s, the office holder is bound to x for

successive realizations of s.
◮ When the state leaves s, the office holder is free.



Strategies (cont.)

◮ Voting strategy: ρ(s, t, x) ∈ [0, 1]

◮ Stationarity wrt s, t, x
◮ Mixing occurs when the office holder is initially bound to

x in s, then electoral decision carries over for successive
realizations of s — but no commitment.

◮ Reduced form of more detailed voting game, where
mixing is generated by indifferent voters.

◮ Let σ = (π, ρ) be a simple Markov strategy profile.



Remarks

◮ The model subsumes the single-state model with adverse
selection or with complete information, substituting
state-by-state commitment for private information about
types or history-dependent punishments.

◮ We also capture competition between two infinitely-lived
parties that alternate in power; they may be purely policy
motivated or receive office benefit.

◮ As a special case, we can parameterize commitment: assume
a fixed γ ≤ 1 such that given policy choice x in state s, if s
is subsequently realized, the office holder is bound to x with
probability γ.



Continuation values

◮ We consider expected discounted utilities for type τ voter
conditional on three kinds of events:

V B
τ (s, t, x) electing a type t incumbent committed

to x in s (and continuing to do so)
before next state is realized

V C
τ (s, t, x) electing a challenger after a type t

incumbent has chosen x in s



Continuation values (cont.)

◮ We consider expected discounted utilities for type t office
holders conditional on two events:

W B
t (s, x) choosing x in state s and being reelected

(and continuing to choose x in s and being
reelected in s)

W C
t (s, x) choosing x in state s and being replaced

by a challenger

Recursive conditions
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Reelection sets

◮ Given strategy profile σ, define for all s, all t, and all τ ,

Pτ (s, t) = {x ∈ Yt(s) : V B
τ (s, t, x) > V C

τ (s, t, x)}

Rτ (s, t) = {x ∈ Yt(s) : V B
τ (s, t, x) ≥ V C

τ (s, t, x)}.

◮ And for all coalitions C of types,

PC (s, t) =
⋂

τ∈C

Pτ (s, t) and RC (s, t) =
⋂

τ∈C

Rτ (s, t).



Reelection sets (cont.)

◮ Finally, define the strict and weak reelection sets as

P(s, t) =
⋃

C∈D(s)

PC (s, t)

R(s, t) =
⋃

C∈D(s)

RC (s, t),

respectively.



Equilibrium concept

◮ Strategy profile σ is a simple Markov electoral equilibrium

if two conditions hold:

◮ Optimal policies: πt(·|s) puts probability one on solutions to

max
x∈Yt(s)

ρ(s, t, x)W B
t (s, x) + (1 − ρ(s, t, x))W C

t (s, x).

◮ Optimal voting:

ρ(s, t, x) =

{

1 if x ∈ P(s, t)
0 if x /∈ R(s, t).
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Overview of results

◮ Existence and continuity

◮ Representative voters

◮ Dynamic core convergence



Existence. . .

Theorem
There exists a simple Markov electoral equilibrium.

◮ Existence does not follow from results in extant literature.

◮ Requires precise selection of reelection probabilities following
different policy choices.

◮ Proof is built on existence proof for general bargaining
environments.

Idea of proof



. . . and continuity

◮ Parameterize utilities and transitions by the elements γ of a
metric space Γ,

ut(s, x , γ), wt(s, x , γ), pt(s
′|s, x , e, γ), qt(t

′|s, x , γ),

and assume joint continuity.

◮ Define E(γ) to consist of policy strategy vectors π = (πt(·|s))
corresponding to simple Markov electoral equilibria.

Theorem
The correspondence E : Γ ⇉ ∆(X )S×T has closed graph.



Representative voters

◮ Elections are simplified if there is one voter type whose
preferences determine the outcome.

◮ Given a simple Markov electoral equilibrium σ, a type κ
is representative at s if for all t,

P(s, t) = Pκ(s, t) and R(s, t) = Rκ(s, t).



Representative voters (cont.)

◮ We can show representativeness of the median voter under
additional assumptions.

D1 Y ⊆ ℜ,
D2 uτ is quadratic in x and independent of state for all τ , i.e.,

uτ (x) = −|x − x̂τ |
2,

D3 δτ = δ for all τ .

◮ The electoral rule D(s) is strong if C /∈ D(s) implies
N \ C ∈ D(s)

◮ Then let κ(s) be the median voter at s.



Representative voter (cont.)

Theorem
Let σ be a simple Markov electoral equilibrium. And assume
(D1)–(D3), fix s, and assume D(s) is strong. Then the median
voter κ(s) is representative at s.

◮ The result extends to multiple dimensions under (D1)–(D3)
if the core at s is nonempty,



Representative voters (cont.)

◮ For each s, t, and x , there are probability measures µ(·|s, t, x)
and ν(·|s, t, x) on X such that

V B
τ (s, t, x) =

1

1 − δ

∫

x ′

uτ (x
′)µ(dx ′|s, t, x)

V C
τ (s, t, x) =

1

1 − δ

∫

x ′

uτ (x
′)ν(dx ′|s, t, x).

◮ An election presents voters with the choice, effectively,
between two lotteries.



Dynamic core convergence

◮ In the standard Downsian model, candidates take policy
positions at the ideal point of the median voter in equilibrium.

◮ That is, the candidates offer the policy that the median voter
would choose herself.

◮ To formulate this question, we abstract away from politicians:
assume a representative voter κ(s) for each state, feasible
policies Y (s), and state transition p(s ′|s, x).

◮ Complications: there may be different medians in different
states, and a median voter’s optimal policy choice is
endogenous.



Dynamic core convergence (cont.)

◮ Define an associated dynamic representative voting game:
in state s,

◮ voter κ(s) chooses x from Y (s)
◮ a new state is drawn from p(·|s, x)
◮ period payoffs are u

κ(s)(s
′, x)

◮ discount factors are δ
κ(s).

◮ If the representative voter is κ (fixed), this is a dynamic
programming problem with optimal value function V ∗

κ .



Dynamic core convergence (cont.)

◮ We provide core convergence results under the following
assumptions:

E1 Yt(s) is independent of t,
E2 pt(s

′|s, x , e) is independent of t and e,
E3 mixed motives, i.e., wt(s, x) = ut(s, x) + b,
E4 for all t, δt > 0,
E5 for all s, there is a representative voter type κ(s),
E5′ there is a representative voter κ fixed across states.



Weak core convergence

Theorem
Assume (E1)–(E5) with b large. Let π̃ = (π̃s) be a stationary
Markov perfect equilibrium (possibly in mixed strategies) of the
dynamic representative voting game. Then there is a simple
Markov electoral equilibrium σ = (π, ρ) such that for all s and
all t, πt(·|s) = π̃s , i.e., politicians implement the equilibrium
policy strategies π̃.

◮ Adding (E5′), we can use pure policy strategies.



Weak convergence (cont.)

◮ Given such policy strategies, the representative voter in s is
indifferent between every incumbent and every challenger.

◮ Using high office benefit, specify mixed electoral outcomes to
make a type t 6= κ(s) office holder indifferent between all
policies in the support of π̃s .

◮ Furthermore, the probability of reelection is zero for policies
outside the support of π̃s , so no deviations are profitable.



Strong core convergence

Theorem
In addition to (E1)–(E5 ′), assume:

• b = 0, i.e., policy motivation,

• for all s,
∑

∞

m=1 pm(s|s, x) = 1,

• for all s, mint,x qt(κ|s, x) > 0.

As δ → 1, let σδ be a simple Markov electoral equilibrium, and
let V F ,δ

κ (s, t) be the value of a free type t office holder in state
s. Then for all s and all t,

V F ,δ
κ (s, t)

V ∗,δ
κ (s)

→ 1.



Strong core convergence (cont.)

◮ When b = 0, the type κ voter and politician are perfectly
aligned.

◮ The equilibrium strategies of the type κ voter and politician
solve the Bellman equation for the unified player (so we can
solve their optimization problem jointly).

◮ The type κ voter can always draw challengers until a type κ
politician is elected, keeping her in office thereafter.

◮ When δ is close to one, the cost of this strategy becomes
negligible.
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Strong core convergence (cont.)

Theorem
Let σ be a simple Markov electoral equilibrium such that for all
s and all t, policy strategies are pure and voting strategies are
deferential, i.e.,

R(s, t) 6= ∅, and for all x ∈ R(s, t), ρ(s, t, x) = 1.

In addition to (E1)–(E5 ′), assume:

• b large,

• p(s ′|s, x) is independent of x,

• for all s, mint,x qt(κ|s, x) > 0.

Then for all s and all t, V F
κ (s, t) = V ∗

κ (s).
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Conclusion

◮ We analyze dynamic elections with an endogenously evolving
state variable.

◮ The framework appears general, viable, and useful.

◮ Some topics that may be accessible with the model: growth
and development, political transitions and instability,
dynamics of income inequality. . .

◮ More to do!
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