Collective Dynamic Choice: The Necessity of Time Inconsistency

Matthew O. Jackson and Leeat Yariv

Priorat, June 8, 2012

Introduction

- Groups often make intertemporal decisions collectively:
 - Political committees
 - Firms
 - Households
 - Multiple motives within an agent

Background - Impossibility

Impossibility of aggregating individual preferences with a rational representative agent

- Arrow (1951, 63): full domain
- Plott (1967), McKelvey (1976,79): Majority voting over multi-dimensional alternatives with diverse enough preferences results in cycles.
- Mongin (1995): Cannot aggregate subjective preferences/ nonatomic probabilities

Main Question

What if the alternatives are time sequences of consumption and agents discount sums of utilities of consumption?

Can a society aggregate preferences in a "rational" manner

– time consistent and transitive?

Two Desiderata on Group Decision-Making

Time Consistency: ensures that decisions stand up over time without (costly) commitment devices

Transitivity: ensures that the process is well-defined and will not cycle endlessly, or be subject to agenda manipulations

Households – Heterogeneity of Time Preferences

Life expectancy (children born 2010-2015, UN stats):

US: 82 female, 78 male

France: 85 female, 79 male

China: 76 female, 72 male

Brazil: 77 female, 70 male...

Households – Heterogeneity of Time Preferences

Life expectancy:

US: 82 female, 78 male

France: 85 female, 79 male

China: 76 female, 72 male

Brazil: 77 female, 70 male...

Marriage: male 2.3 years older than bride (US, Drefahl 2010)

Households – Heterogeneity of Time Preferences

Life expectancy:

US: 82 female, 78 male

France: 85 female, 79 male

China: 76 female, 72 male

Brazil: 77 female, 70 male...

Marriage: male 2.3 years older than bride (US, Drefahl 2010)

Combining these: Typical female married to male of 65 years expects to live 50% longer. (Browning, 2000)

Different time preferences for consumption/savings plans within the same household (e.g., Schaner, 2010)

Another Perspective

View an individual as comprised of multiple personalities/motives.

Can such an individual act "rationally"?

Other Background Literature

- Time inconsistencies
 - Evidence: Hernstein (1961), Thaler (1981), Benzion, Rapoport, Yagil, (1989), Green, Myerson, McFadden (1997), Rubinstein (2003), della Vigna, Malmendier (2006), Benhabib, Bisin, Schotter (2009), Andreoni, Sprenger (2010), ...
 - **Theory:** Strotz (1956), Laibson (1997), O'Donoghue, Rabin (1999), Ok, Masatlioglu (2003),...

Typical Time Inconsistency

Ainslie and Haslam (1992):

Majority prefer 100\$ certified check today to 200\$ check cashable in two years; but prefer 200\$ check cashable in eight years to 100\$ check cashable in six years

Typical Time Inconsistency

Ainslie and Haslam (1992):

Majority prefer 100\$ certified check today to 200\$ check cashable in two years; but prefer 200\$ check cashable in eight years to 100\$ check cashable in six years

Inconsistency: $u(100) > \delta^2 u(200)$ implies $\delta^6 u(100) > \delta^8 u(200)$

Other Background Literature

• Time inconsistencies

- Evidence: Hernstein (1961), Thaler (1981), Benzion, Rapoport, Yagil, (1989), Green, Myerson, McFadden (1997), Rubinstein (2003), della Vigna, Malmendier (2006), Benhabib, Bisin, Schotter (2009), Andreoni, Sprenger (2010), ...
- **Theory:** Strotz (1956), Laibson (1997), O'Donoghue, Rabin (1999), Ok, Masatlioglu (2003),...

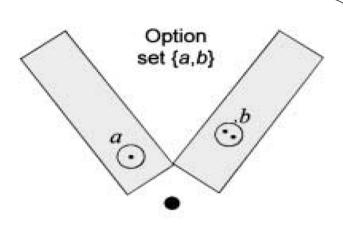
Intransitivities

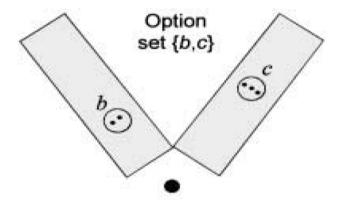
- Evidence: Tversky (1969) humans, Shafir (1994) bees, Waite (2001) jays,...
- Theory: Kahneman, Tversky (1974, 79), Fishburn (1991), van Zandt (1996),...

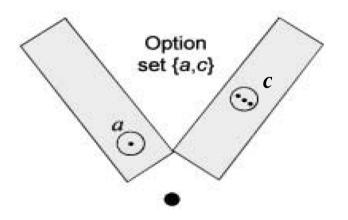
Typical Intransitivities

Intransitivity among grey jays, Waite (2001):

- 1, 2 or 3 raisins placed at various distances in a tube: effort/danger
- Some 'prefer' a to b to c but not a to c





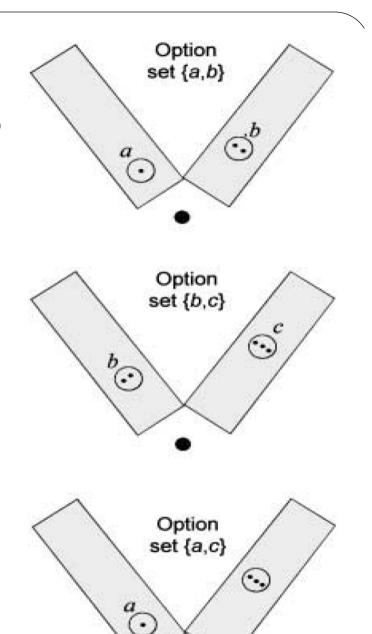


Typical Intransitivities

Intransitivity among grey jays, Waite (2001):

- 1, 2 or 3 raisins placed at various distances in a tube: effort/danger
- Some 'prefer' a to b to c but not a to c

But U(a)>U(b)>U(c) implies U(a)>U(c)



Other Background Literature

• Time inconsistencies

- Evidence: Hernstein (1961), Thaler (1981), Benzion, Rapoport, Yagil, (1989), Green, Myerson, McFadden (1997), Rubinstein (2003), della Vigna, Malmendier (2006), Benhabib, Bisin, Schotter (2009), Andreoni, Sprenger (2010), ...
- **Theory:** Strotz (1956), Laibson (1997), O'Donoghue, Rabin (1999), Ok, Masatlioglu (2003),...

Intransitivities

- Evidence: Tversky (1969) humans, Shafir (1994) bees, Waite (2001) jays,...
- **Theory:** Kahneman, Tversky (1974, 79), Fishburn (1991), van Zandt (1996),...

Models of multiple selves / aggregation of time preferences

- Hot/cold/addiction: Bernheim and Rangel (2004), Fudenberg, Levine (2006),...
- **Planners:** Marglin (1963), Feldstein (1964), Green, Hojman (2009), Zuber (2010),...
- **Current and future selves:** Thaler, Shefrin (1981), Gul, Pesendorfer (2001), Benabou, Tirole (2005), Ambrus, Rozen (2009),...

Setting

- Agents $\{1,\ldots,n\}$
- $C=(c_1,c_2,...)$ time stream of consumption, c_t in [0,M]
- Agent *i* evaluates consumption as $U_i(C) = \sum_t \delta_i^{t-1} u_i(c_t)$
- u_i is twice continuously differentiable, strictly increasing
- Agents evaluate a common stream of consumption

Setting

• $C=(c_1, c_2,....)$ common stream of consumption

$$U_1(C) = \sum_t \delta_1^{t-1} u_1(c_t)$$

$$\vdots$$

$$U_n(C) = \sum_t \delta_n^{t-1} u_n(c_t)$$

• How to aggregate these?

Collective Decisions

- Society $U = (U_1, U_2, ..., U_n) = (\delta_1, u_1; ...; \delta_n, u_n)$
- Collective utility function (e.g., utilitarian): V[U](C)
- Collective preferences (e.g., majority vote):
 C R/U/C'

Examples

• (Weighted) Utilitarian

$$V[U](C) = \sum_{i} w_{i} \sum_{t} \delta_{i}^{t-1} u_{i}(c_{t})$$

Maximin

$$V[U](C) = Min_i \left(\sum_t \delta_i^{t-1} u_i(c_t) \right)$$

Outline

- Utilitarian aggregation
 - must be present-biased
- General aggregation of utilities
 - must be time inconsistent

- Voting over time streams
 - must be intransitive

Utilitarian Aggregation

Utilitarian planner choosing efficient streams

$$V(C) = \sum w_i U_i(C)$$

Utilitarian Aggregation

Utilitarian planner choosing efficient streams

$$V(C) = \sum w_i U_i(C)$$

- What do we know? Marglin '63, Feldstein '64, Gollier, Zeckhauser '05, Zuber '10,...
 - Representative agent has time varying discount factor so will be time inconsistent

• Can we draw more general conclusions?

- Constantine has $\delta_1 = .5$
- Patience has $\delta_2 = .8$

$$C = (10,0,0,0,...)$$
 vs $C' = (0,15,0,0...)$

- Constantine has $\delta_1 = .5$
- Patience has $\delta_2 = .8$

$$C = (10,0,0,0,...)$$
 vs $C' = (0,15,0,0...)$

$$V(C) = 10/2 + 10/2 = 10$$

$$V(C') = .5*15/2 + .8*15/2 = 9.75$$

- Constantine has $\delta_1 = .5$
- Patience has $\delta_2 = .8$

$$C = (10,0,0,0,0...)$$
 vs $C' = (0,15,0,0...)$
 $V(C) = 10/2 + 10/2 = 10$
 $V(C') = .5*15/2 + .8*15/2 = 9.75$

- Constantine has $\delta_1 = .5$
- Patience has $\delta_2 = .8$

$$C = (0, 10, 0, 0, 0, ...)$$
 vs $C' = (0, 0, 15, 0, 0, ...)$

- Constantine has $\delta_1 = .5$
- Patience has $\delta_2 = .8$

$$C = (0, 10, 0, 0, 0, ...)$$
 vs $C' = (0, 0, 15, 0, 0, ...)$

$$V(C) = .5*10/2 + .8*10/2 = 6.5$$

$$V(C') = .5^2 * 15/2 + .8^2 * 15/2 = 6.675$$

- Constantine has $\delta_1 = .5$
- Patience has $\delta_2 = .8$

$$C = (0, 10, 0, 0, 0, 0...)$$
 vs $C' = (0, 0, 15, 0, 0...)$
 $V(C) = .5*10/2 + .8*10/2 = 6.5$

$$V(C') = .5^2 *15/2 + .8^2 *15/2 = 6.675$$

- A population with a uniform distribution of δ_i in [0,1]
- Utilitarian planner maximizes

$$\sum_{t} \int \delta^{t-1} u(c_{t}) d\delta = \sum_{t} u(c_{t}) / t$$

Hyperbolic discounting!

(cf Sozou (1998): uncertainty with exponential weights...)

Present-Bias, Preference Reversal

• There are c, c' such that

$$V(c_1, 0...) > V(0, ..., c'_{k+1}, 0...)$$
 while $V(0, ..., 0, c_t, 0...) < V(0, ..., 0, c'_{t+k}, 0...)$ for all $t > 1$

There are some cases where one becomes more patient as decisions are moved towards the future

Present-Bias, Preference Reversal

• There are c, c' such that

$$V(c_1, 0...) > V(0, ..., c'_{k+1}, 0...)$$
 while $V(0, ..., 0, c_t, 0...) < V(0, ..., 0, c'_{t+k}, 0...)$ for all $t > 1$

There are some cases where one becomes more patient as decisions are moved towards the future

• But
$$V(0,...,0,c_t,0...) \le V(0,...,0,c'_{t+k},0...)$$
 implies
$$V(0,...,0,c_{t+1},0...) \le V(0,...0,c'_{t+k+1},0...)$$

But never the reverse: always become more patient, never more impatient, in the future

Utilitarian Aggregation

Proposition: If V is utilitarian with positive weights on some agents who have different discount factors, then V is present-biased.

Utilitarian Aggregation

Proposition: If V is utilitarian with positive weights on some agents who have different discount factors, then V is present-biased.

Implications:

- 1. Utilitarian planners, be it within oneself or for a collective, will necessarily exhibit present-bias.
- 2. An econometrician measuring $\mathbf{E}(\delta_i^{t-1})$ would deduce presentbias when populations are heterogeneous.

Utilitarian Aggregation: Intuition

- $\delta_1 < \delta_2$... $< \delta_n$
- $w_1 \delta_1^t + ... + w_n \delta_n^t$ tends to $w_n \delta_n^t$
- Relatively more influence from higher δ_i 's as t grows regardless of explicit weighting
- → More patience as look further ahead in time
- Time inconsistent preferences when aggregating

Outline

- Utilitarian aggregation
 - must be present-biased
- General aggregation of utilities
 - must be time inconsistent

- Voting over time streams
 - must be intransitive

General Aggregation Rules

 Is there some other method (nonutilitarian) of aggregating utilities that will be time consistent?

• E.g., minmax, order statistic, measure of inequality of utilities, time varying weights on individuals,

Time Consistency

1.
$$V(C) > V(C')$$
 iff $V(c_1, C) > V(c_1, C')$

Time Consistency

1.
$$V(C) > V(C')$$
 iff $V(c_1, C) > V(c_1, C')$

Let

$$C \mid_{t} C' = (c_1, ..., c_t, c'_{t+1}, c'_{t+2}, ...)$$

Time Consistency

1.
$$V(C) > V(C')$$
 iff $V(c_1, C) > V(c_1, C')$

Let

$$C \mid_{t} C' = (c_1, ..., c_t, c'_{t+1}, c'_{t+2}, ...)$$

2.
$$V(C \mid_{t} C" \mid_{t}, C) > V(C' \mid_{t} C" \mid_{t}, C')$$
 iff
$$V(C \mid_{t} C" \mid_{t}, C) > V(C' \mid_{t} C" \mid_{t}, C')$$

Unanimity

If
$$U_i(C) > U_i(C')$$
 for all i,

then
$$V[U](C) > V[U](C')$$

General Aggregation Rules

Consider U such that each agent has a different discount factor.

Theorem: If a collective utility function is time consistent and satisfies unanimity, then it is dictatorial: there exists i such that, up to affine transformation,

$$V[U](C) = \sum_{t} \delta_{i}^{t-1} u(c_{t})$$
 for all C .

Koopmans (1960): Time consistency implies

$$V(C) = \sum_{t} \delta^{t-1} v(c_{t})$$

Koopmans (1960): Time consistency implies

$$V(C) = \sum_{t} \delta^{t-1} v(c_{t})$$

Time consistency has powerful implications for functional forms, and exponential discounting is essentially the only time consistent form

Koopmans (1960): Time consistency implies

$$V(C) = \sum_{t} \delta^{t-1} v(c_{t})$$

Unanimity: $v(c_t) = u(c_t)$ and $\delta = \delta_i$ for some i

- Suppose $v(c_t) = u(c_t)$
- Suppose $\delta \neq \delta_i$ for all i and that all δ_i are different
- $\{(1, \delta_i, \delta_i^2, ...)\}$ and $(1, \delta, \delta^2, ...)$ are linearly independent

Koopmans (1960): Time consistency implies

$$V(C) = \sum_{t} \delta^{t-1} v(c_{t})$$

Unanimity: $v(c_t)=u(c_t)$ and $\delta=\delta_i$ for some i

- Suppose $v(c_t) = u(c_t)$
- Suppose $\delta \neq \delta_i$ for all i. From independence, find C, C' such that:

$$\sum_{t} \delta_{i}^{t-1} \left[u(c_{t}) - u(c'_{t}) \right] > 0, \quad i = 1, ..., n$$

$$\sum_{t} \delta^{t-1} \left[u(c_{t}) - u(c'_{t}) \right] < 0.$$

Koopmans (1960): Time consistency implies

$$V(C) = \sum_{t} \delta^{t-1} v(c_{t})$$

Unanimity: $v(c_t) = u(c_t)$ and $\delta = \delta_i$ for some i

- Suppose $v(c_t) = u(c_t)$
- Suppose $\delta \neq \delta_i$ for all i. From independence, find C, C' such that:

Agents prefer
$$C \text{ to } C'$$

$$\sum_{t} \delta_{i}^{t-1} \left[u(c_{t}) - u(c'_{t}) \right] > 0, \quad i = 1, ..., n$$

$$\sum_{t} \delta^{t-1} \left[u(c_{t}) - u(c'_{t}) \right] < 0.$$

Social planner prefers *C*' to *C*

General Aggregation Rules: Remarks

• Slightly more intricate proof for different instantaneous utilities

General Aggregation Rules: Remarks

• Slightly more intricate proof for different instantaneous utilities

Proof uses consumption variations on at least three dates

General Aggregation Rules: Remarks

- Slightly more intricate proof for different instantaneous utilities
- Proof uses consumption variations on at least three dates
- May provide a bridge between empirical work showing time consistency on simple tasks and that illustrating time inconsistency on more intricate life decisions

Relaxing Time Consistency

• Suppose we allowed the social planner to have timedependent discount rates, but maintained separability:

$$V(C) = \sum_{t} \delta(t) \ u(c_{t})$$

Claim: If a collective utility function of the form $V(C) = \sum_t \delta(t) \ u(c_t)$ satisfies unanimity, then it is a weighted utilitarian.

In particular, it is present-biased if it weighs more than one individual.

Intuition

• If $(\delta(1), \delta(2), ...)$ is linearly independent of $\{(1, \delta_i, \delta_i^2, ...)\}$, there exists a pair of consumption streams such that the planner prefers one while all agents prefer the other, violating unanimity.

Intuition

- If $(\delta(1), \delta(2), ...)$ is linearly independent of $\{(1, \delta_i, \delta_i^2, ...)\}$, there exists a pair of consumption streams such that the planner prefers one while all agents prefer the other, violating unanimity.
- Therefore, $(\delta(1), \delta(2),...)$ is a linear combination of $\{(1, \delta_i, \delta_i^2,...)\}$, and is thus utilitarian, implying present-bias.

Outline

- Utilitarian aggregation
 - must be present-biased
- General aggregation of utilities
 - must be time inconsistent

- Voting over time streams
 - must be intransitive

Voting

Rank C and C' by voting

• Can we find a representative voter? Say with the median discount factor? (would look like a dictator...)

• Is the resulting ranking rational? (at a minimum transitive?)

Intuition: Cycles

There are "three dimensions" to decisions —

- Short-term consumption: impatient agents care most about
- •Overall consumption: patient agents care most about
- **Distribution of consumption**: moderately patient care about

General Voting Rules

R[U] is a *voting rule* if it only depends on information regarding who prefers one alternative to another.

So includes weighted majority, supermajorities, other non-anonymous, non-neutral rules...

General Voting Rules

R[U] is a *voting rule* if it only depends on information regarding who prefers one alternative to another.

R[U] is *locally non-dictatorial* if it never picks in favor of one agent's ranking when all others have the opposite ranking.

Voting - Main Result

Let all agents have a strictly concave $u_i = u$

Theorem: If a voting rule is locally non-dictatorial, then it is intransitive for some profiles of discount factors.

Summary

- Utilitarian aggregation leads to a present-bias.
- Any non-dictatorial, unanimous collective utility function is time inconsistent.
- Voting rules are necessarily intransitive

Summary

- Utilitarian aggregation leads to a present-bias.
- Any non-dictatorial, unanimous collective utility function is time inconsistent.
- Voting rules are necessarily intransitive
- See time inconsistency and intransitivity in the lab, 'planners' weigh utilitarian and egalitarian motives.

Koopmans (1960): Time consistency implies

$$V(C) = \sum_{t} \delta^{t-1} v(c_{t})$$

Unanimity: $v(c_t) = u_i(c_t)$ and $\delta = \delta_i$ for some i

- Suppose $v(c_t) = u(c_t) = u_i(c_t)$ for all i
- If we used average δ_i , what would go wrong?

Example: Problem with Averaging

$$\delta_1 = 0 < \delta_{avg} = .5 < \delta_3 = 1$$
, linear utility $u(c) = c$

Example: Problem with Averaging

$$\delta_1 = 0 < \delta_{avg} = .5 < \delta_3 = 1$$

$$C = (1, 1, 1, 0, 0, ...)$$
 vs
 $C' = (1 + \varepsilon, 1 - 6\varepsilon, 1 + 6\varepsilon, 0, 0, ...)$

$$U_1(C) = 1 < U_1(C') = 1 + \varepsilon$$

$$U_3(C) = 3 < U_3(C') = 3 + \varepsilon$$

Example: Problem with Averaging

$$\delta_1 = 0 < \delta_{avg} = .5 < \delta_3 = 1$$

$$C = (1, 1, 1, 0, 0, ...)$$
 vs
 $C' = (1 + \varepsilon, 1 - 6\varepsilon, 1 + 6\varepsilon, 0, 0, ...)$

$$U_1(C) = 1 < U_1(C') = 1 + \varepsilon$$

 $U_3(C) = 3 < U_3(C') = 3 + \varepsilon$

$$U_{avg}(C) = 1.75 > U_{avg}(C') = 1.75 + \varepsilon - 3 \varepsilon + 1.5 \varepsilon$$

Experiments on a Shoestring

- Have groups of agents make decisions over streams of consumptions
 - Have some subjects act like planners and choose for a group: are they time consistent?
 - What heuristics do experimental social planners use?
 - Hold a vote over paths of consumption: is the group intransitive?

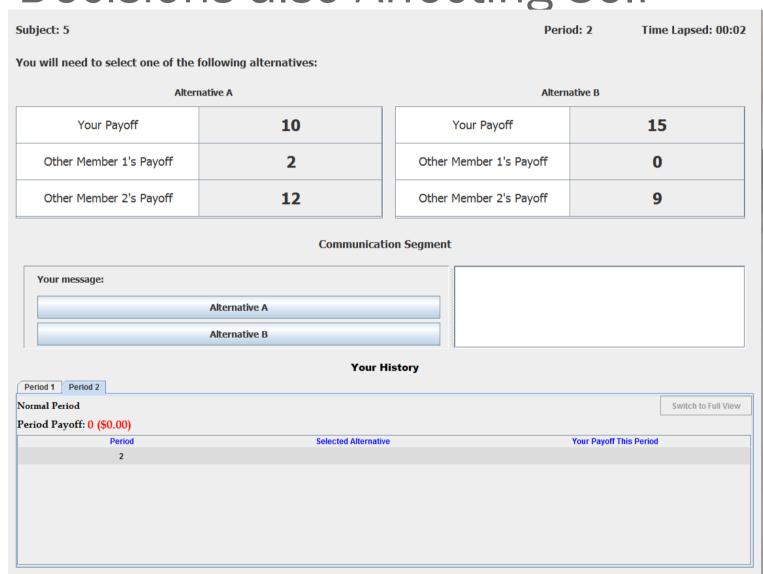
Experiments - Social Planners

- 96 planners in the lab
- Each makes about 35 allocation decisions between three individuals (presented as net present values), sometimes including herself
- Randomly rematched
- (For 60) Decisions affect the payoff of someone else in the room (chosen at random)

Decisions Affecting Others

Subject: 0		Perio	d: 1 Time Lapsed: 00:02
You will need to select one of the	following alternatives:		
Alternative A		Alternative B	
Member 1 Payoff	5	Member 1 Payoff	2
Member 2 Payoff	10	Member 2 Payoff	15
Member 3 Payoff	8	Member 3 Payoff	9
Decision Panel			
Submit your decision by clicking on either button below: Your decision: Alternative A			
Alternative A			
Alternative B			
Your History			
Period 1 Practice Period			Switch to Full View
Period Payoff: 0 (\$0.00)			
Period 1			
	,		

Decisions also Affecting Self



A Note on Elicitation (and Using NPVs)

- Problems with delaying payments:
 - Arbitrage: bank account? What is the discount rate?
 - Confounding Uncertainty: subjects not sure of utility in future, credit constraints, etc.
- Also, want to isolate effect of aggregation
 - Want to ensure underlying preferences are time consistent: stack deck towards consistency
 - Want to control and vary underlying time preferences

New Method

Tokens of different color substitute for time

Blue tokens worth 1, Red worth δ , Grey worth δ^2

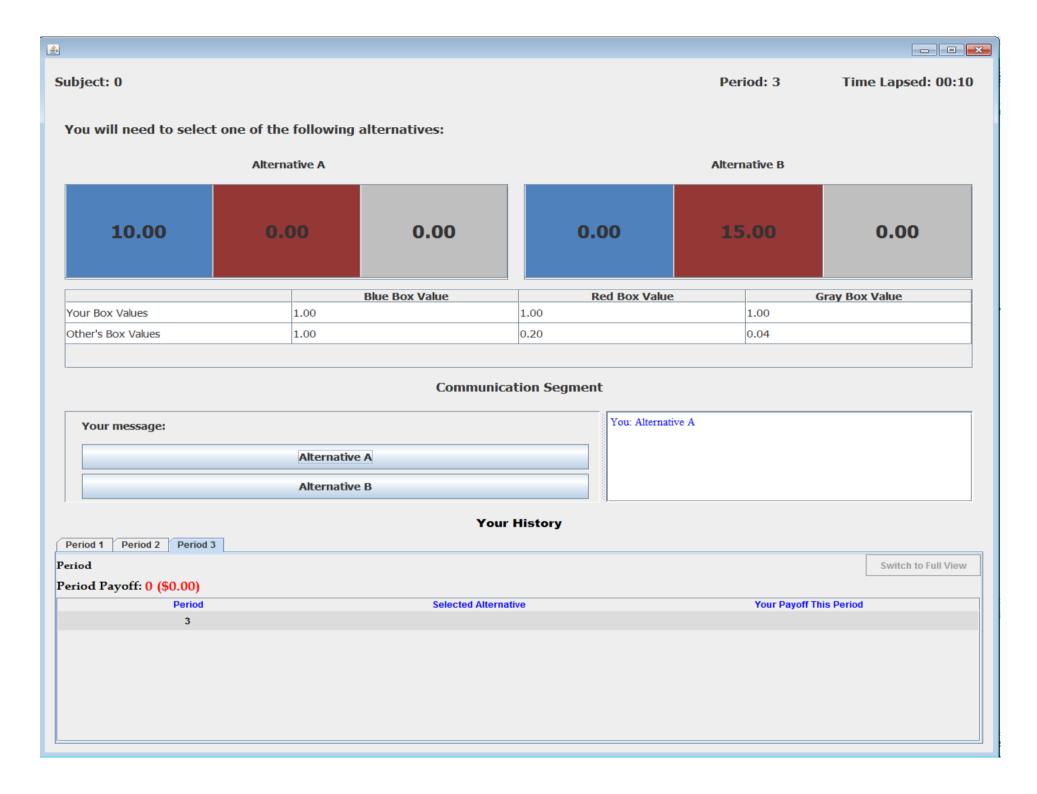
• Vary δ to simulate time preferences

Alternative Elicitation

- To induce a discount factor $\delta_i = .9$
- Three types of tokens: Blue, Red, Grey
- Tokens are worth (1, .9, .81), respectively

Example of Choice: C = (105,0,0) vs C' = (0,160,0)

so payoffs ("NPVs") are 105 160x.9=144



Alternative Elicitation

 We conducted an auxiliary set of experiments with the token method

Results qualitatively the same

Today: present results from experiments with NPVs

- Subject 3 is a planner: gets paid 80 regardless
- Subject 1 has $\delta_1 = .2$, Subject 2 has $\delta_2 = .9$
- 3 chooses between C and C' that both 1 and 2 consume:

Immediate: C = (105,0,0) vs C' = (0,160,0)

- Subject 3 is a planner: gets paid 80 regardless
- Subject 1 has $\delta_1 = .2$, Subject 2 has $\delta_2 = .9$
- 3 chooses between C and C' that both 1 and 2 consume:

Immediate: C = (105,0,0) vs C' = (0,160,0)

NPVs (105, 105, 80) NPVs (32, 144, 80)

- Subject 3 is a planner: gets paid 80 regardless
- Subject 1 has $\delta_1 = .2$, Subject 2 has $\delta_2 = .9$
- 3 chooses between C and C' that both 1 and 2 consume:

Immediate: C = (105,0,0) vs C' = (0,160,0)

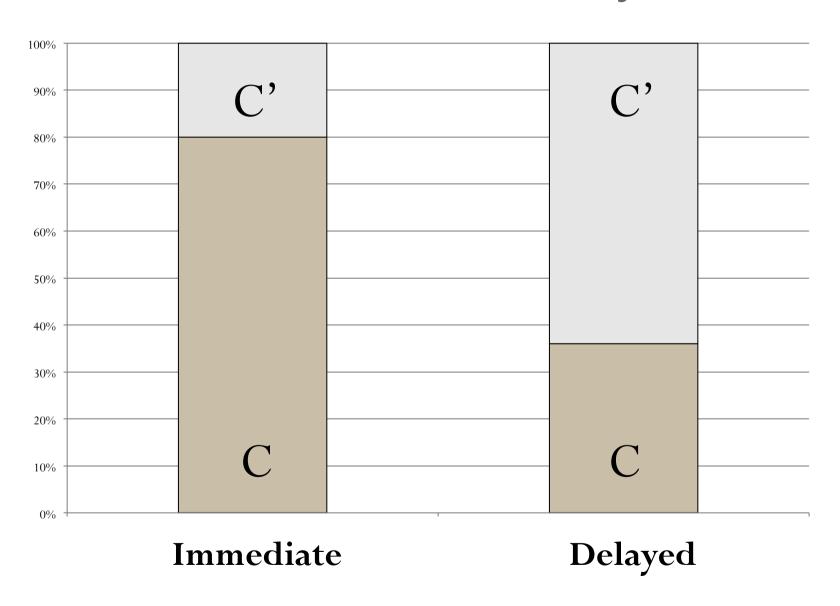
Delayed: C = (0,105,0) vs C' = (0,0,160)

Immediate:
$$C = (105,0,0)$$
 vs $C' = (0,160,0)$
NPVs (105, 105, 80) NPVs (32, 144, 80)
Total = 290 Total = 256

Delayed:
$$C = (0,105,0)$$
 vs $C' = (0,0,160)$
NPVs (21, 95, 80) NPVs (6, 130, 80)
Total = 116 Total = 136

Present Biased/Time Inconsistent if pick C then C'

Results – Time Consistency



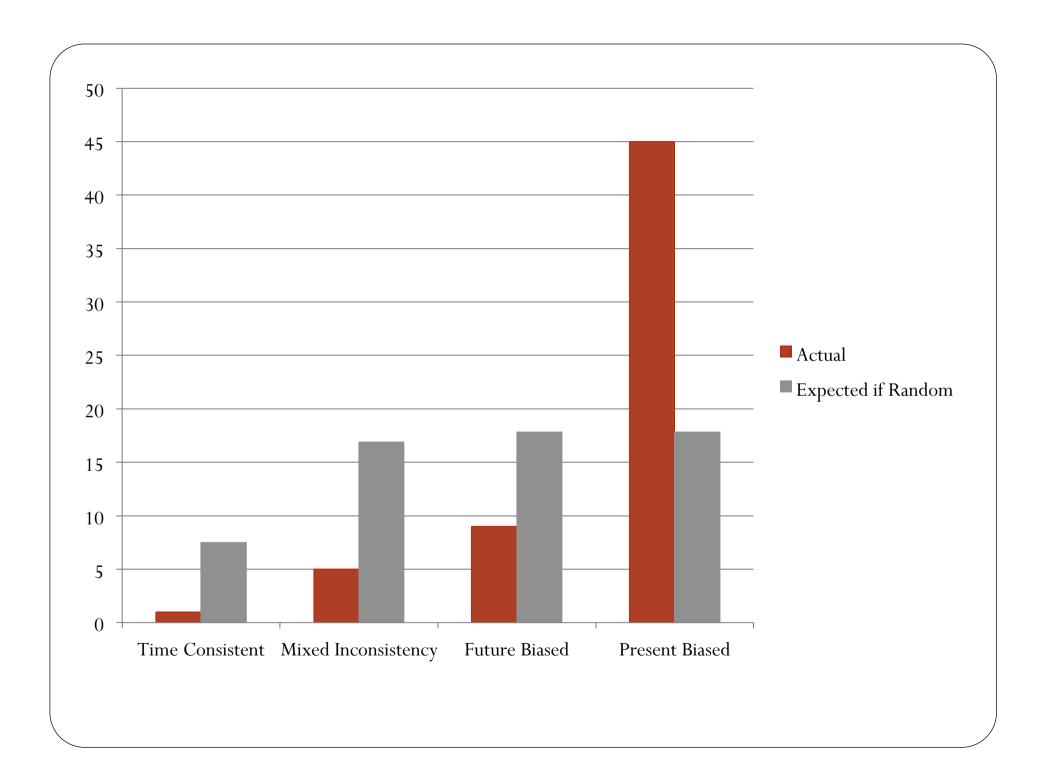
Individuals

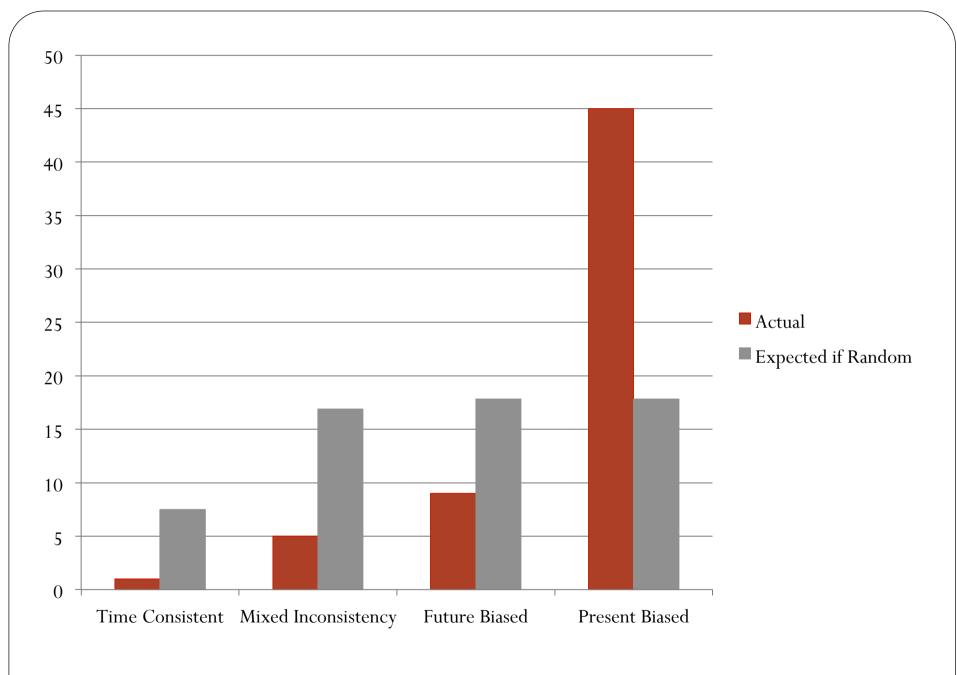
• How many are always time consistent?

• How many are present biased?

• How many are future biased?

• How many exhibit mixed inconsistencies?





[probability of at least 45 present biased individuals if randomly choosing is $\sim\!10\,\text{1/}{-28}$]

Planner Types

- Can we distinguish between different 'types' of planners?
- Do they use different collective utility functions?
 - Utilitarian
 - Maximin
 - Equality...

• Subject 1 has $\delta_1 = .2$, Subject 2 has $\delta_2 = .9$

```
Decision 1: C= (105,0,0) vs C'=(0,160,0)

NPVs (105, 105, 80) NPVs (32, 144, 80)

290 (Util) 256

Decision 2: C= (0,105,0) vs C'=(0,0,160)

NPVs (21, 95, 80) NPVs (6, 130, 80)

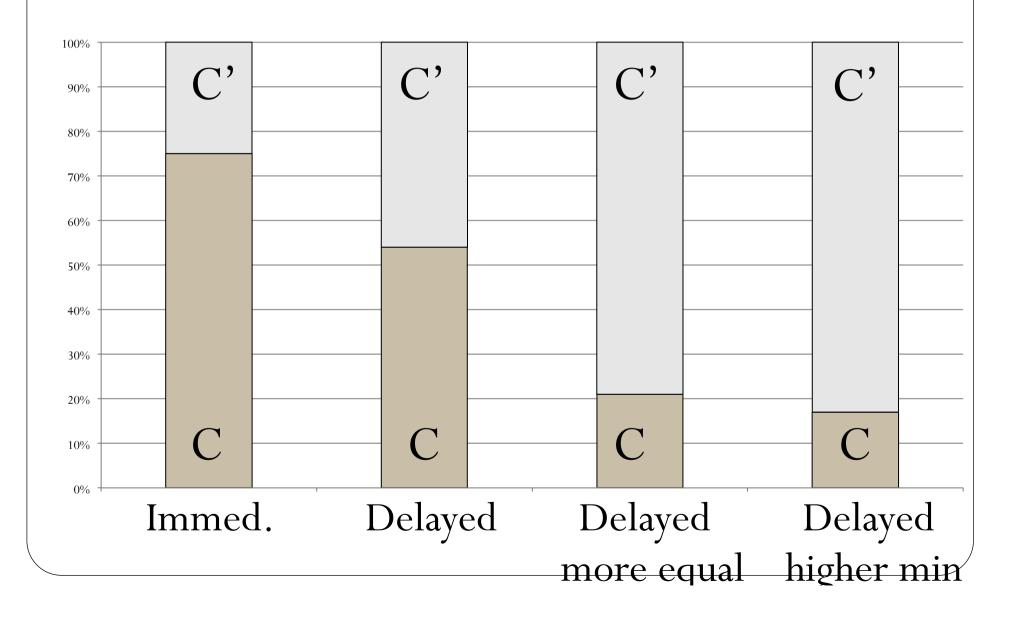
116 136 (Util)
```

Note that a non-utilitarian planner might *not* show a reversal on these alternatives: e.g., maximin, inequality averse would pick C each time

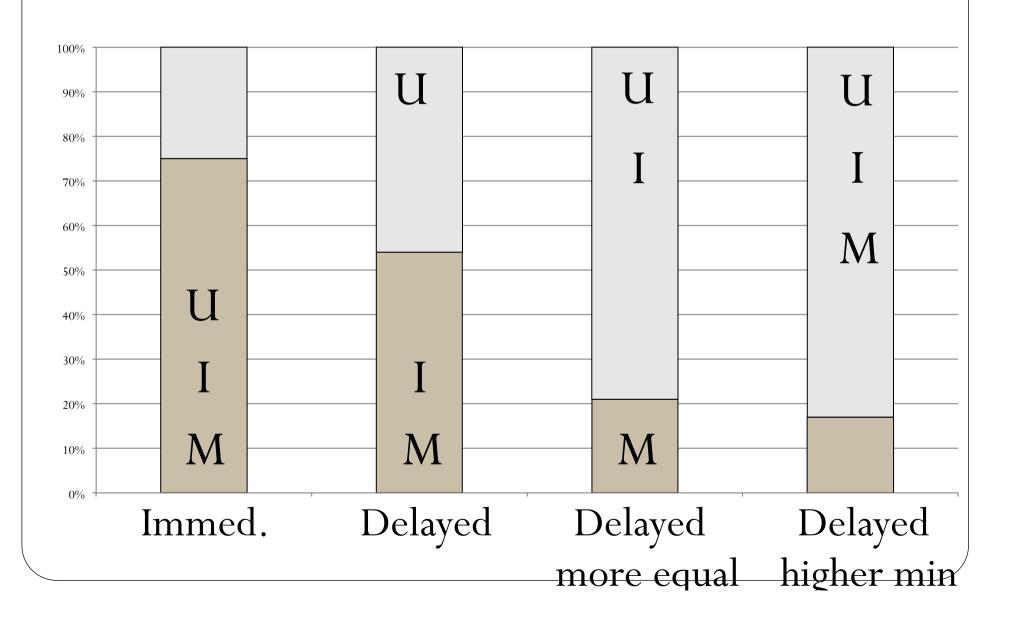
Distinguishing Types

```
C = NPVs (105, 105, 80)
                                   C'=NPVs (32, 144, 80)
   290 (Util., Maxmin, Ineq)
                                      256
C = NPVs (21, 95, 80)
                                   C' = NPVs (6, 130, 80)
   116 (Maxmin, Ineq)
                                      136 (Util.)
C = NPVs (61, 55, 80)
                                   C'=NPVs (46, 90, 80)
   116 (Maxmin)
                                     136 (Util., Ineq)
C = NPVs (21, 95, 80)
                                   C'=NPVs (36, 100, 80)
                                   136 (Util, Ineq, Maxmin)
   116
```

Results - Inequality



Results - Inequality



Social Planners' Objectives

- Looking at the set of all choices, the important parameters for choice appear to be:
 - The sum of utilities of each alternative;
 - The inequality (or variance) of the payoff distribution.

Social Planners' Objectives

- Looking at the set of all choices, the important parameters for choice appear to be:
 - The sum of utilities of each alternative;
 - The inequality (or variance) of the payoff distribution.
- Assume social planners use an objective of the sort:

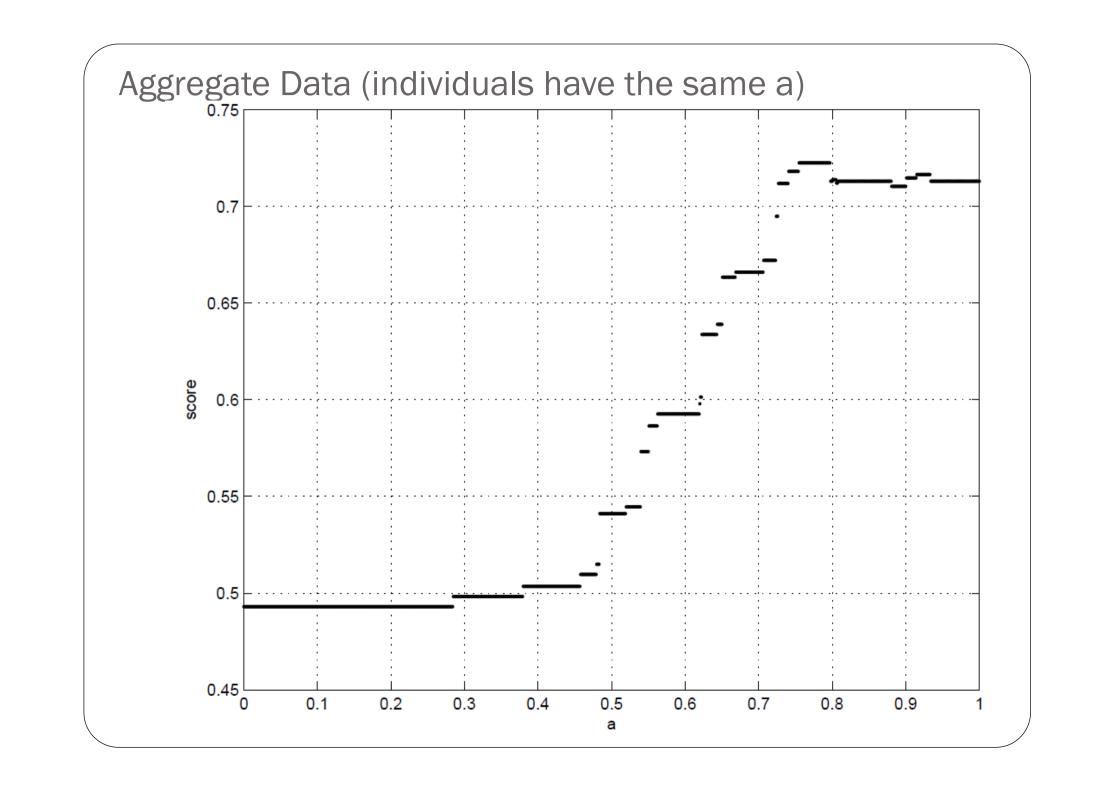
a * Utilitarian - (1-a) * Standard Deviation

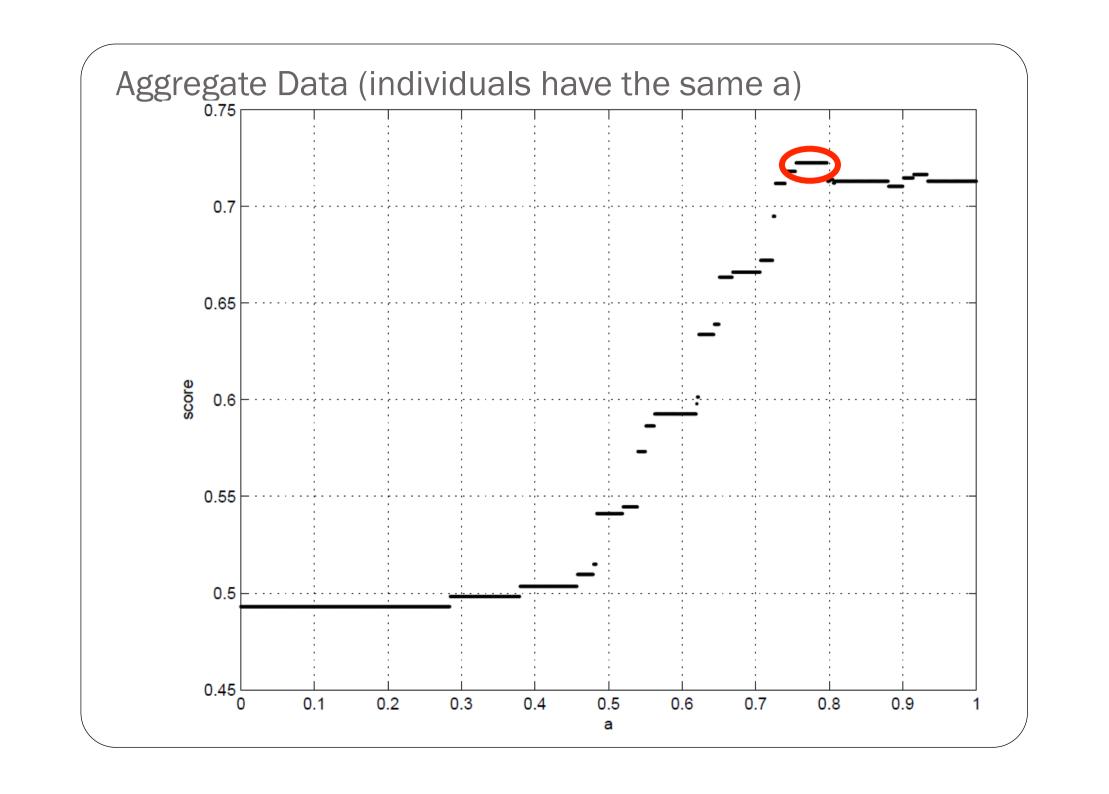
Social Planners' Objectives

- Looking at the set of all choices, the important parameters for choice appear to be:
 - The sum of utilities of each alternative;
 - The inequality (or variance) of the payoff distribution.
- Assume social planners use an objective of the sort:

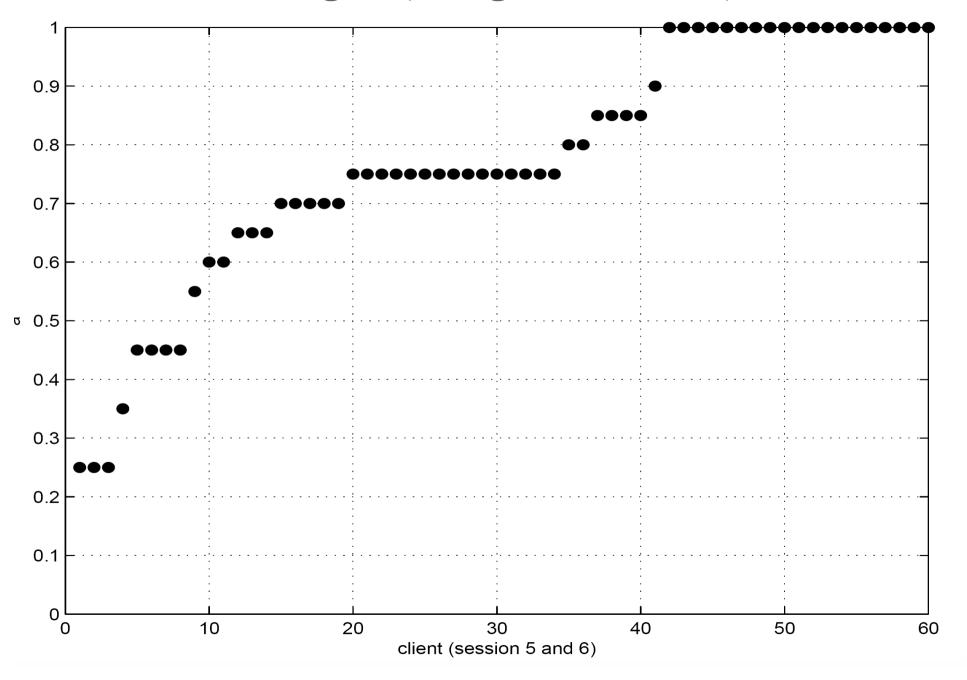
a * Utilitarian - (1-a) * Standard Deviation

• For each value of *a*, can define a *score*, the fraction of choices consistent with that choice of *a*.



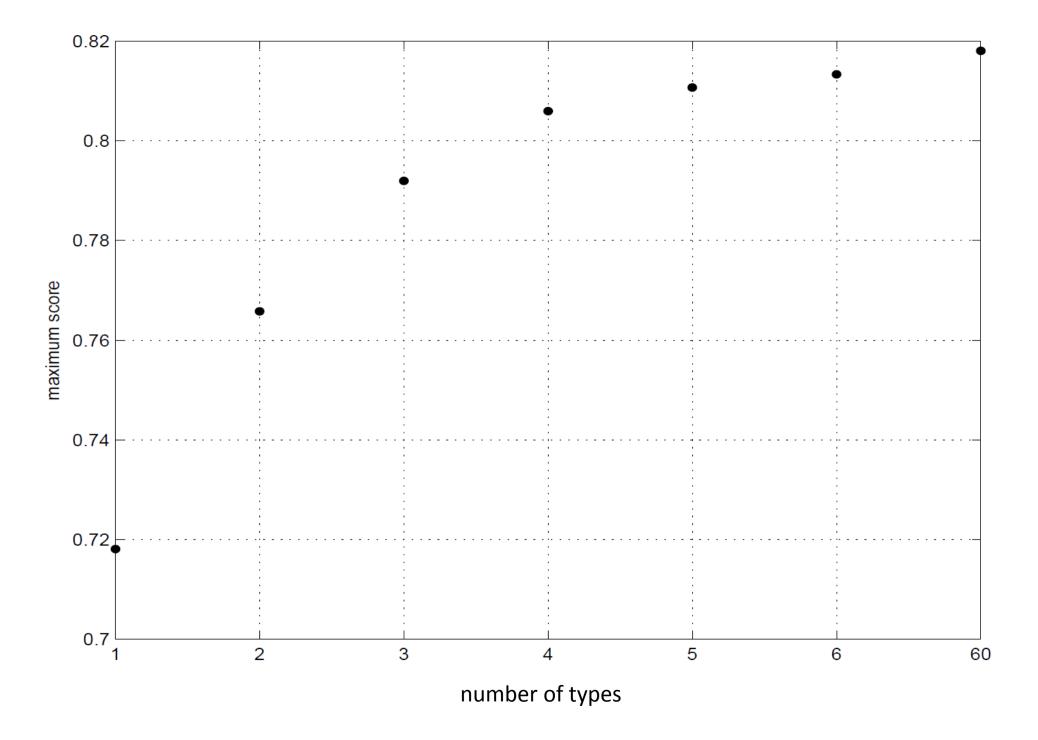


Individual best fitting a's (taking max if several):



Estimation by Types

Number of Types	Type 1	Type 2	Type 3	Type 4	Type 5	Type 6
1	0.75					
	(100%)					
Score	0.72					
2	0-0.25	0.95-1				
	(25%)	(75%)				
Score	0.67	0.80				
3	0-0.25	0.75	0.95-1			
	(21%)	(40%)	(39%)			
Score	0.66	0.79	0.86			
4	0-0.25	0.7	0.75	0.95-1		
	(17%)	(18%)	(27%)	(38%)		
Score	0.66	0.82	0.81	0.86		
5	0-0.25	0.55	0.7	0.75	0.95-1	
	(15%)	(7%)	(14%)	(26%)	(38%)	
Score	0.6449	0.7968	0.838	0.814	0.8653	
6	0-0.25	0.55	0.7	0.75	0.85	0.95-1
	(15%)	(7%)	(13%)	(25%)	(17%)	(23%)
Score	0.64	0.80	0.84	0.82	0.88	0.85



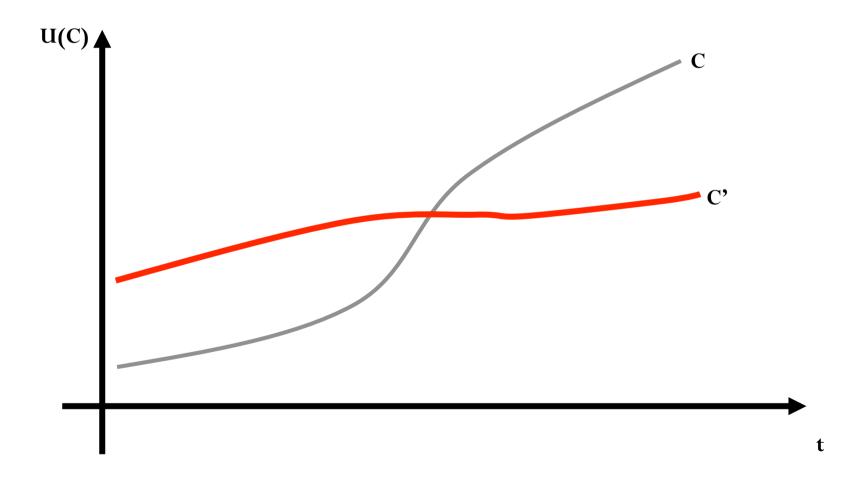
Voting?

Offer various pairs of streams to groups of three for voting

• Get cycles between 80 to 100 percent of the time predicted by selfish voting

- Suppose all i have $u_i = u$
- ullet Differ only in discount factors $oldsymbol{\delta}_{i}$

- Suppose all i have $u_i = u$
- ullet Differ only in discount factors $oldsymbol{\delta}_{i}$
- C, C' are well-ordered if $u(c_t) u(c'_t)$ is monotone in t



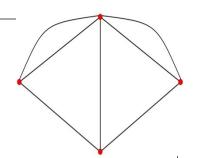
- Suppose all i have $u_i = u$
- ullet Differ only in discount factors $oldsymbol{\delta}_{i}$
- C, C' are well-ordered if $u(c_t) u(c'_t)$ is monotone in t
- Implication: if $\delta_i < \delta_k < \delta_j$ and i and j prefer C to C', then so does k.

• Suppose all i have $u_i = u$

ullet Differ only in discount factors $oldsymbol{\delta}_{i}$

Proposition 3: If a set of consumption streams is such that each pair is well ordered, then any neutral voting rule has a strict component that is transitive.

Empirical Implications:



- Political Bodies/Households/Committees/Firms/ Planners/Multiple Personalities/Representative Agents... will be intransitive and/or time inconsistent if they embody heterogeneity in time preferences
- Understanding time inconsistencies/intransitivities in individuals may mean that individuals are best modeled as multi-faceted
- Behavior depends on the aggregation method:
 - voting is time consistent but intransitive
 - utilitarian/other weighting is transitive but time inconsistent

Summary

- Aggregating preferences via nontrivial weighting leads to a present-bias.
- Aggregating preferences via voting results in intransitivities, even when restricting alternatives to pure consumption smoothing.
- Any non-dictatorial, unanimous collective utility function is time inconsistent.

Majority Voting: Intransitivities

Majority rule: CRC' iff a majority of agents do.

Proposition 2: If the largest group of agents having identical discount factors is smaller than a majority, then majority rule is intransitive.

In fact, for any interior *C*, can find a cycle: *CPC'PC"PC*

[even if further restrict alternatives...]

Majority Voting: Technical Intuition

- Suppose we want agents 1, ..., k to prefer C to C' and agents k+1, ..., n to prefer C' to C
- System of linear inequalities:

$$\sum_{t} \delta_{i}^{t-1} [u(c_{t}) - u(c'_{t})] > 0, \quad i = 1, ..., k$$

$$\sum_{t} \delta_{i}^{t-1} [u(c_{t}) - u(c'_{t})] < 0, \quad i = k+1, ..., n$$

- For different δ_i 's, linear independence of $\{(1, \delta_i, \ldots, \delta_i^{t-1}, \ldots)\}$ when the range of u is sufficiently rich
- In order to rule out intransitivities, need to rule out independence ↔ richness of range of instantaneous utility

General Voting Rules

$$p(U, C, C') = \{ i \mid U_i(C) > U_i(C') \}$$

• p(U, C, C') are agents who prefers C to C'

General Voting Rules

$$p(U, C, C') = \{ i \mid U_i(C) > U_i(C') \}$$

- p(U, C, C') are agents who prefers C to C'
- R[U] is a voting rule if it only depends on information in p(U, C, C') and p(U, C', C)
- So includes weighted majority, supermajorities, other non-anonymous, non-neutral rules...

Locally Non-dictatorial Voting

• R[U] is locally non-dictatorial if:

$$|p(U, C, C')| \ge n-1 \text{ implies } C R[U] C'$$

Locally Non-dictatorial Voting

• R[U] is locally non-dictatorial if: $|p(U, C, C')| \ge n-1$ implies C R[U] C'

• No agent can drive collective preferences (locally for some C, C') when all other agents prefer C to C'

Restricting Consumption Sets

C[x,g] = set of C's such that

- $c_1 + c_2/g + c_3/g^2 = x$
- $c_t = 0 \text{ for } t > 3$
- So, only smoothing with growth or decay
- Only three periods
- Restricts ability to construct cycles

General Voting Rules: Intransitivities

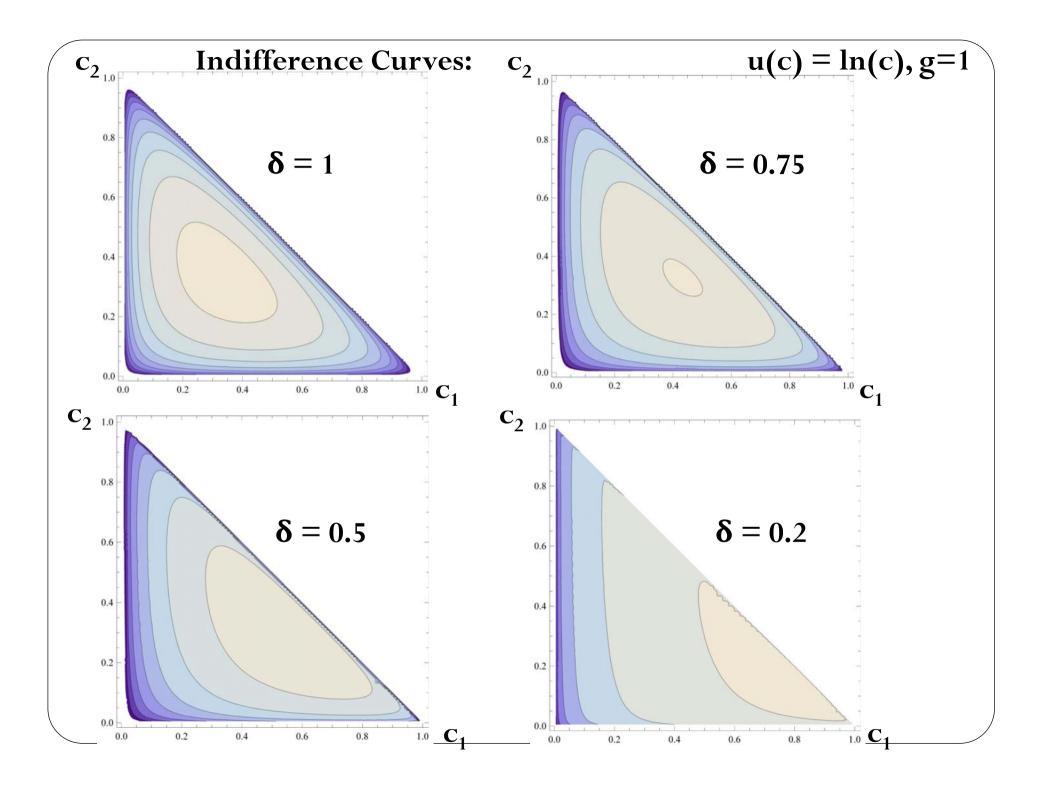
Theorem: Let all agents have a strictly concave $u_i = u$. If a voting rule is locally non-dictatorial, then it is intransitive.

General Voting: Intuition

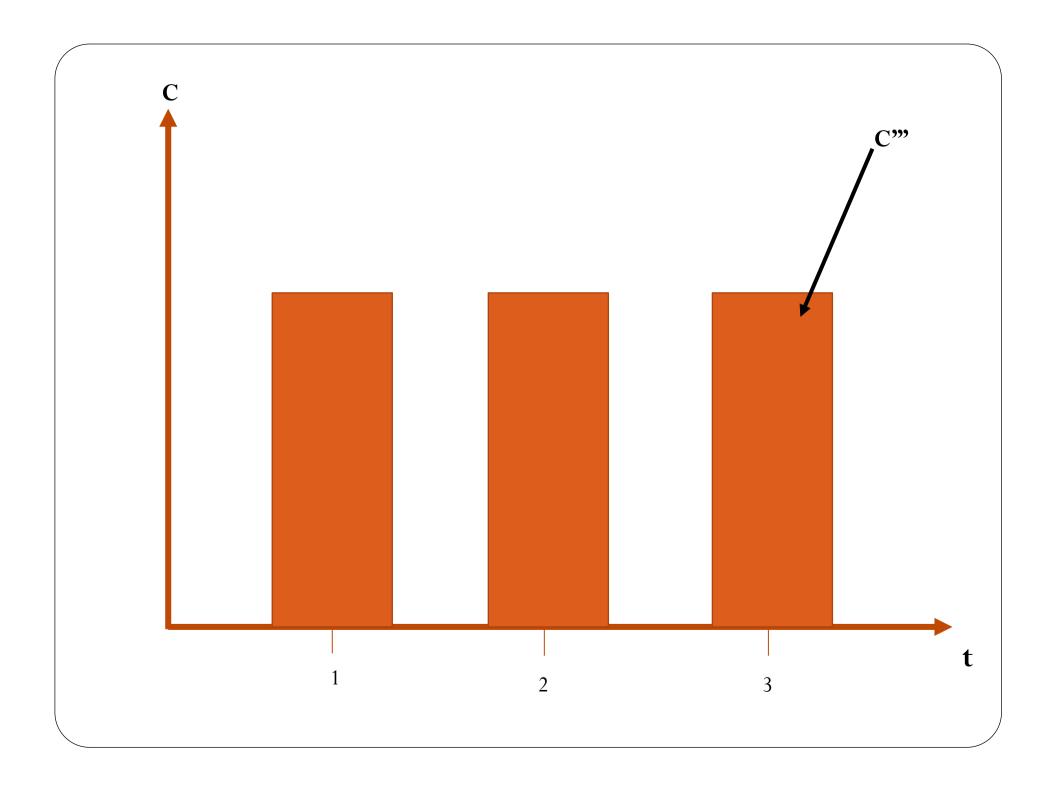
- Underlying tradeoff in decisions:
 - Time preference: push consumption forward
 - Strict concavity: equalize consumption over time
- Possibility of moving some consumption forward in exchange for other parts back, produces cycles

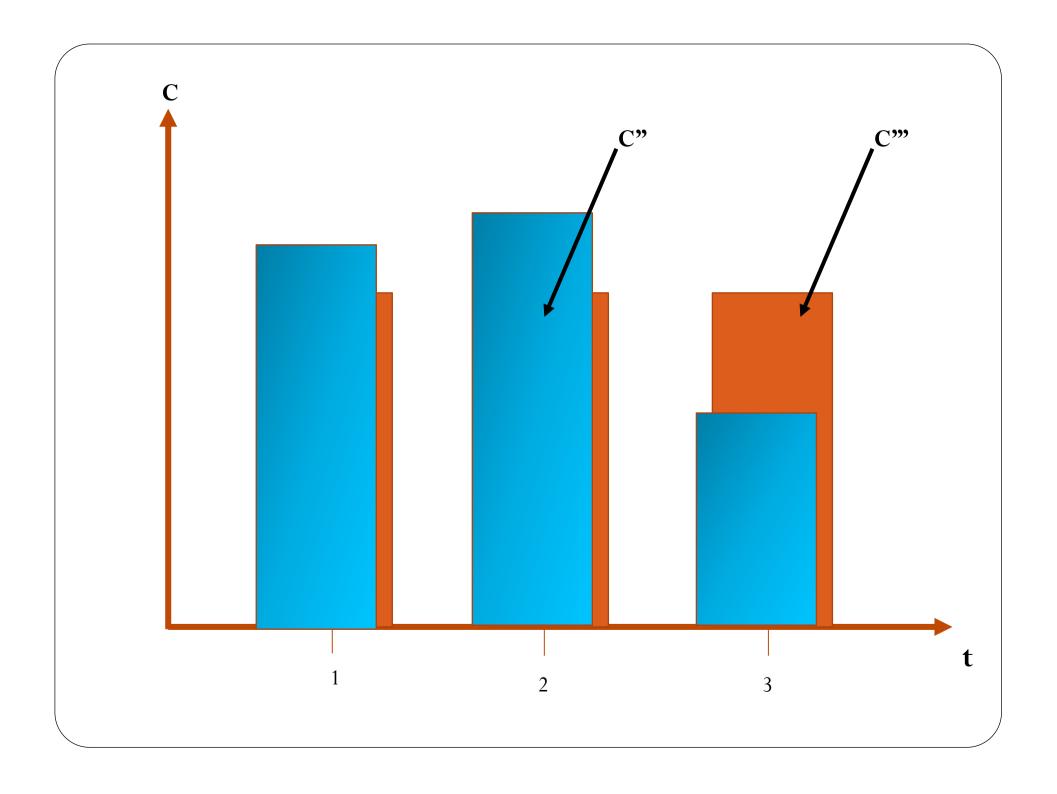
Ideas Behind Proof

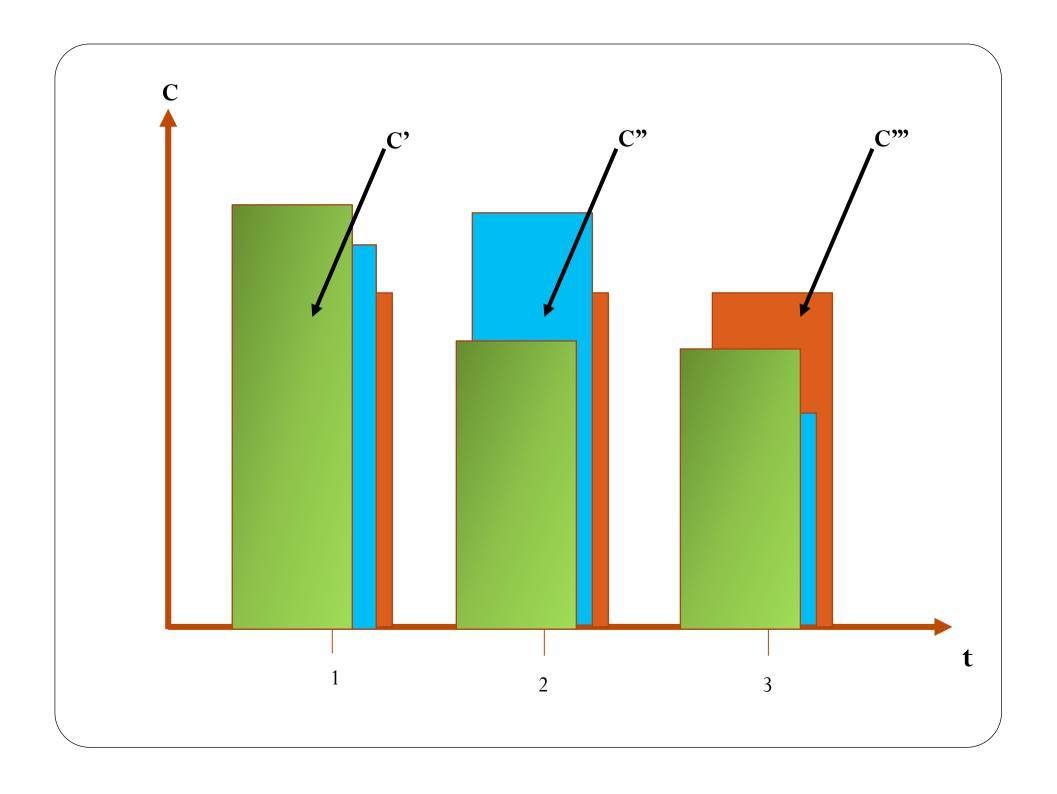
- Show there exist triples of alternatives with any possible preference ordering
- Not an environment with "single crossing"...
- Work with 3 groups: most patient, moderately patient, least patient
- Indifference curves cross multiple times...

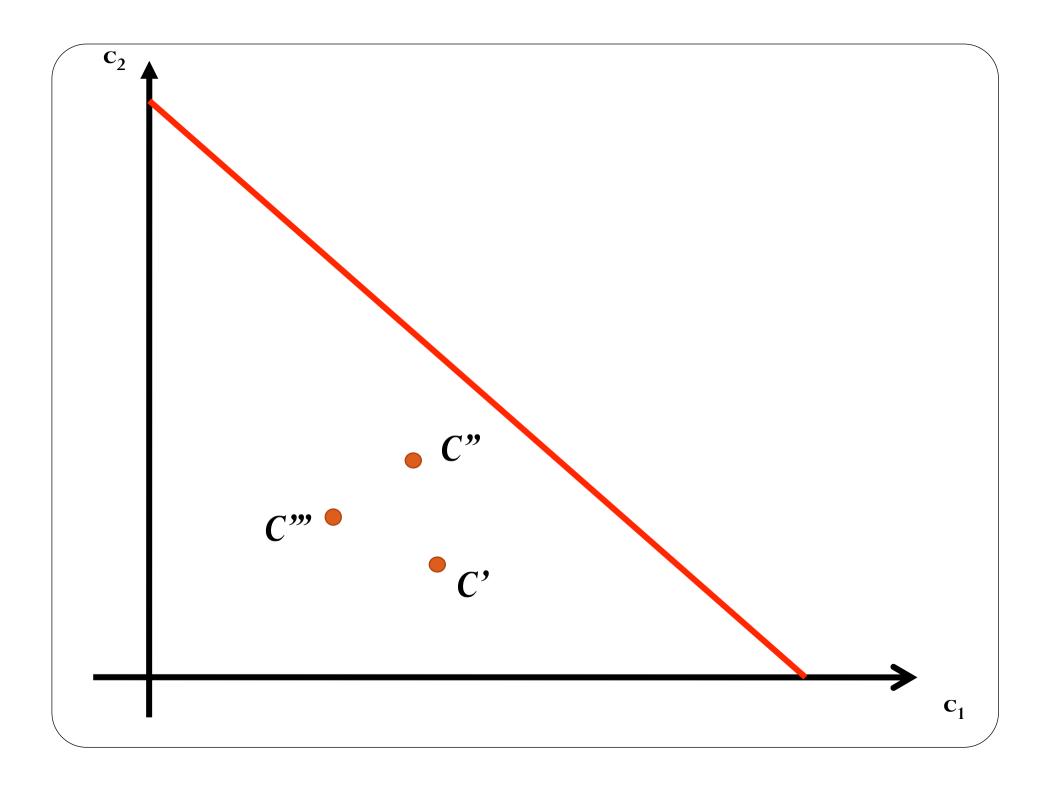


- Consider three consumption streams (can be done locally and constructively):
 - C" relatively balanced consumption across periods
 - *C*" moves more of the consumption forward to periods 1 and 2 relative to *C*".
 - C' moves consumption towards periods 1 and 3 relative to C"









• Patient agent likes balance - prefers **C**" to **C**', likes **C**" least as it has too little consumption in the third period:

$$C$$
"> $_3$ C "> $_3$ C "

• Patient agent likes balance - prefers *C*" to *C*', likes *C*" least as it has too little consumption in the third period:

$$C$$
"> $_3$ C "> $_3$ C "

• Moderately patient agent likes *C*" as patient enough to value second period, but not patient enough to like the wait entailed by *C*':

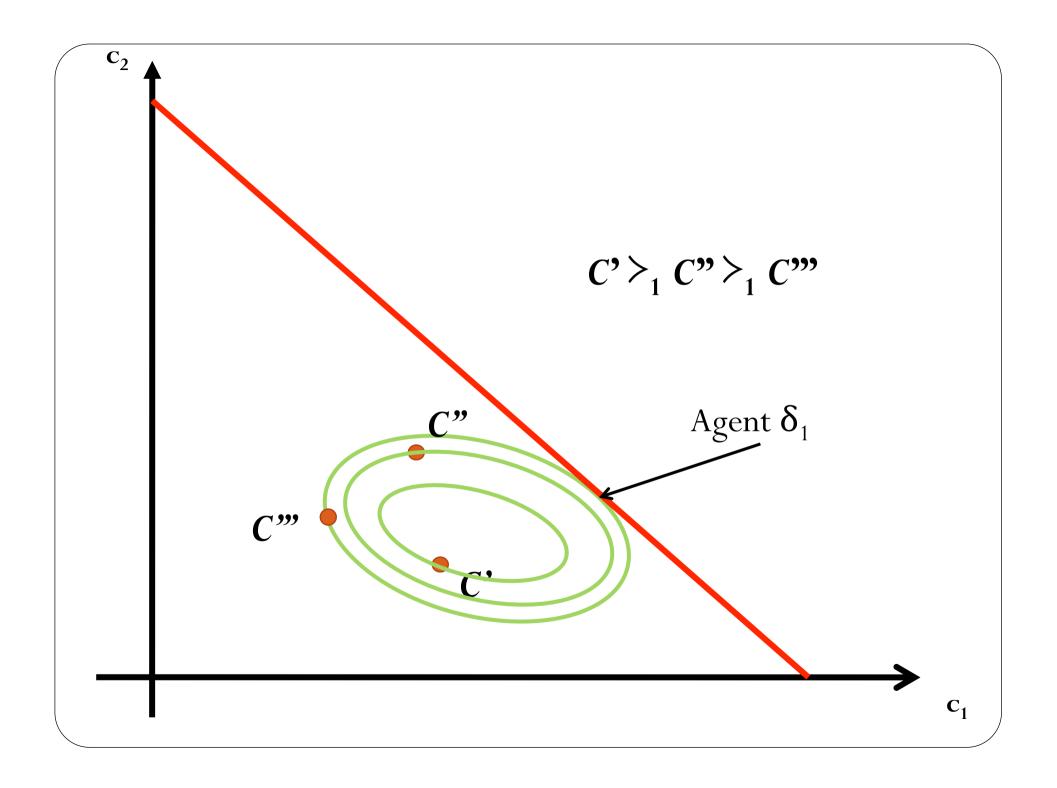
• Patient agent likes balance - prefers **C**** to **C***, likes **C**** least as it has too little consumption in the third period:

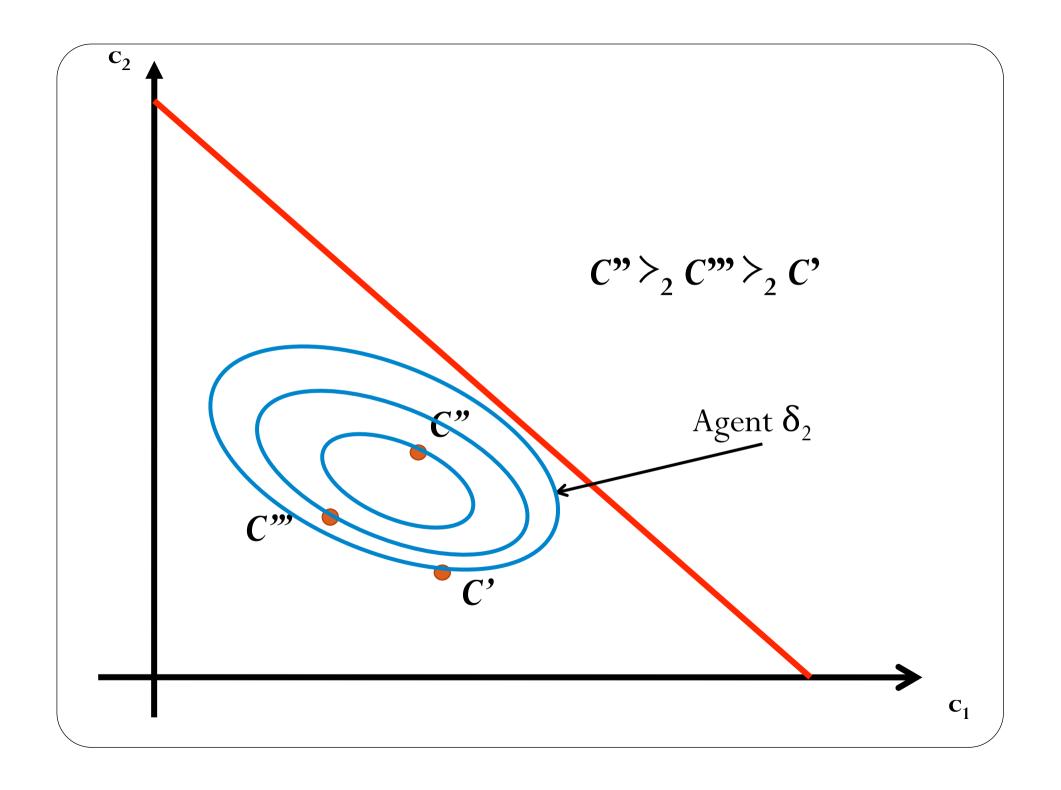
$$C$$
"> $_3$ C "> $_3$ C "

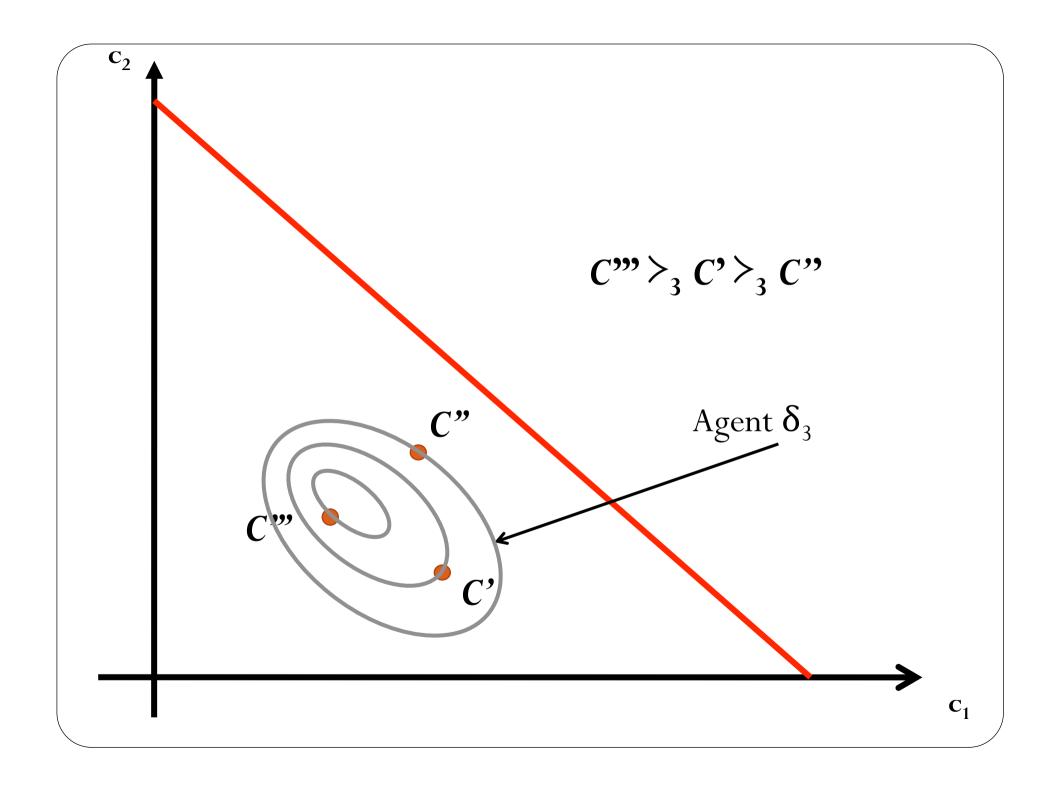
• Moderately patient agent likes C" as patient enough to value second period, but not patient enough to like the wait entailed by C:

Impatient agent considers mostly first period consumption:

$$C' >_1 C" >_1 C"$$







Aggregation by Majority Vote

Rank C and C' by a vote
 (for example: simple majority)

Aggregation by Majority Vote

- Rank C and C' by a vote
 (for example: simple majority)
- Can we find a representative voter? Say, the one with median discount factor? (would look like a dictator...)

Aggregation by Majority Vote

- Rank C and C' by a vote
 (for example: simple majority)
- Can we find a representative voter? Say, the one with median discount factor? (would look like a dictator...)
- Is the resulting ranking standard? (at a minimum transitive?)

Condorcet Cycles

- Alternatives: {a,b,c}
- Agent 1: $U_1(a) > U_1(b) > U_1(c)$
- Agent 2: $U_2(b) > U_2(c) > U_2(a)$
- Agent 3: $U_3(c) > U_3(a) > U_3(b)$
- Majority prefers a to b to c to a

Condorcet Cycles

- Alternatives: {a,b,c}
- Agent 1: $U_1(a) > U_1(b) > U_1(c)$
- Agent 2: $U_2(b) > U_2(c) > U_2(a)$
- Agent 3: $U_3(c) > U_3(a) > U_3(b)$
- Relies on richness: "unrestricted domain"
- Which underlies Arrow's Theorem, generalizing Condorcet's paradox

• Three individuals with discounts:

$$\delta_1 = 0 < \delta_2 = .5 < \delta_3 = 1$$

• Linear utility: u(c)=c

• Three individuals with discounts:

$$\delta_1 = 0 < \delta_2 = .5 < \delta_3 = 1$$

- Linear utility: u(c)=c
- Society chooses by voting over alternatives

Three individuals with discounts:

$$\delta_1 = 0 < \delta_2 = .5 < \delta_3 = 1$$

- Linear utility: u(c)=c
- Society chooses by voting over alternatives
- Can we order the voters to find a well-defined median, and hence a representative voter?
- If 1 and 3 prefer *C* to *C*', does 2 have the same preference?

$$\delta_1 = 0 < \delta_2 = .5 < \delta_3 = 1$$

$$C = (1, 1, 1, 0, 0, ...)$$
 or $C' = (1 + \varepsilon, 1 - 6\varepsilon, 1 + 6\varepsilon, 0, 0, ...)$

$$\delta_1 = 0 < \delta_2 = .5 < \delta_3 = 1$$

$$C = (1, 1, 1, 0, 0, ...)$$
 or $C' = (1 + \varepsilon, 1 - 6\varepsilon, 1 + 6\varepsilon, 0, 0, ...)$

$$U_1(C) = 1 < U_1(C') = 1 + \varepsilon$$

$$\delta_1 = 0 < \delta_2 = .5 < \delta_3 = 1$$

$$C = (1, 1, 1, 0, 0, ...)$$
 or $C' = (1 + \varepsilon, 1 - 6\varepsilon, 1 + 6\varepsilon, 0, 0, ...)$

$$U_1(C) = 1 < U_1(C') = 1 + \varepsilon$$

 $U_3(C) = 3 < U_3(C') = 3 + \varepsilon$

$$\delta_1 = 0 < \delta_2 = .5 < \delta_3 = 1$$

$$C = (1, 1, 1, 0, 0, ...)$$
 or $C' = (1 + \varepsilon, 1 - 6\varepsilon, 1 + 6\varepsilon, 0, 0, ...)$

$$U_1(C) = 1 < U_1(C') = 1 + \varepsilon$$

 $U_3(C) = 3 < U_3(C') = 3 + \varepsilon$

$$U_2(C) = 1.75 > U_2(C') = 1.75 + \varepsilon - 3\varepsilon + 1.5\varepsilon$$

Majority Voting: Example (Cycle)

$$\delta_{1} = 0 < \delta_{2} = .5 < \delta_{3} = 1$$

$$C = (1, 1, 1, 0, 0, ...)$$

$$C' = (1+\varepsilon, 1-6\varepsilon, 1+6\varepsilon, 0, 0, ...)$$

$$C'' = (1+2\varepsilon, 1-6\varepsilon, 1+3\varepsilon, 0, 0, ...)$$

$$U_{1}(C) = 1 < U_{1}(C') = 1 + \varepsilon < U_{1}(C'') = 1 + 2\varepsilon$$

$$U_{2}(C') = 1.75 - .5 \varepsilon < U_{2}(C'') = 1.75 - .25\varepsilon < U_{2}(C) = 1.75$$

$$U_{3}(C'') = 3 - \varepsilon < U_{3}(C) = 3 < U_{3}(C') = 3 + \varepsilon$$

Majority Voting: Example (Cycle)

$$\delta_1 = 0 < \delta_2 = .5 < \delta_3 = 1$$

1,3 prefer

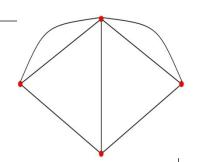
C' to C'

$$C = (1, 1, 1, 0, 0, ...)$$
 $C' = (1+\varepsilon, 1-6\varepsilon, 1+6\varepsilon, 0, 0, ...)$
 $C'' = (1+2\varepsilon, 1-6\varepsilon, 1+3\varepsilon, 0, 0, ...)$

$$U_2(C') = 1.75 - .5 \varepsilon < U_2(C'') = 1.75 - .25\varepsilon < U_2(C) = 1.75$$

$$U_3(C'') = 3 - \varepsilon < U_3(C) = 3 < U_3(C') = 3 + \varepsilon$$

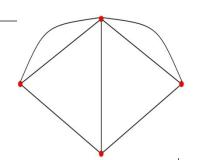
Voting?



Offer various pairs of streams to groups of three for voting

 Get cycles between 80 to 100 percent of the time predicted by selfish voting

How Altrusitic are subjects?

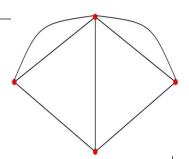


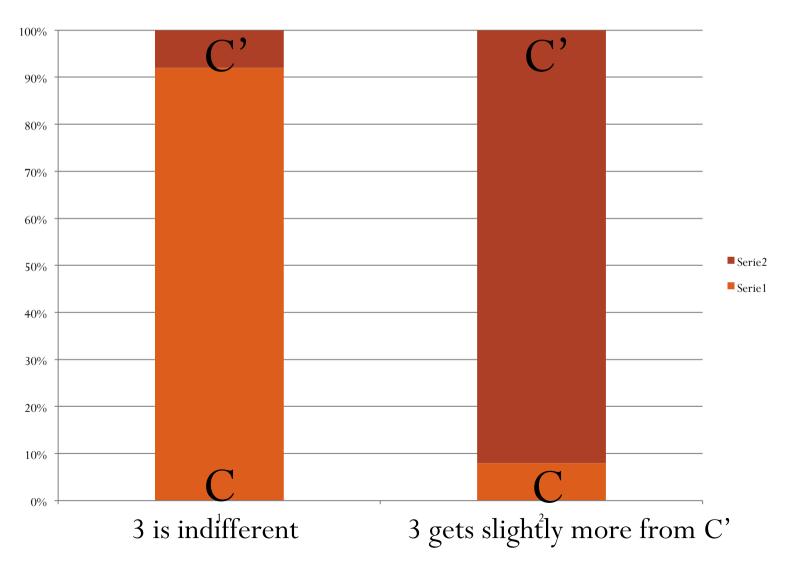
```
C = NPVs (170, 210, 90) vs C'=NPVs (120, 230, 90)
Total = 470 (Util., Maxmin, Ineq) Total = 440
```

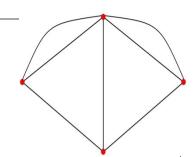
$$C = NPVs (170, 210, 90)$$
 vs $C'=NPVs (120, 230, 95)$
Total = 470 (Util., Maxmin, Ineq) Total = 445

Vote of subject 3:

How Altrusitic are subjects?







 Different subjects exhibit different patterns of time consistency

 Some 'appear' to pay more attention to inequality than others (in a revealed preference sense)

Individual Scores

Overall Score with individually optimal parameters: 0.83

