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Preface

The world around us – and especially the biological world – is inherently multi-
dimensional. Biological diversity is the product of the interaction between many 
species, be they marine, plant or animal life, and of the many limiting factors that 
characterize the environment in which the species live. The environment itself is 
a complex mix of natural and man-induced parameters: for example, meteoro-
logical parameters such as temperature or rainfall, physical parameters such as 
soil composition or sea depth, and chemical parameters such as level of carbon 
dioxide or heavy metal pollution. 

The properties and patterns we focus on in ecology and environmental biology 
consist of these many covarying components. Evolutionary ecology has shown 
that phenotypic traits, with their functional implications, tend to covary due 
to correlational selection and trade-offs. Community ecology has uncovered 
gradients in community composition. Much of this biological variation is organ-
ized along axes of environmental heterogeneity, consisting of several correlated 
physical and chemical characteristics. Spectra of functional traits, ecological and 
environmental gradients, all imply correlated properties that will respond collec-
tively to natural and human perturbations. Small wonder that scientifi c inference 
in these fi elds must rely on statistical tools that help discern structure in datasets 
with many variables (i.e., multivariate data). These methods are comprehensively 
referred to as multivariate analysis, or multivariate statistics, the topic of this book. 
Multivariate analysis uses relationships between variables to order the objects of 
study according to their collective properties, that is to highlight spectra and gra-
dients, and to classify the objects of study, that is to group species or ecosystems in 
distinct classes each containing entities with similar properties.

Although multivariate analysis is widely applied in ecology and environmental 
biology, also thanks to statistical software that makes the variety of methods more 
accessible, its concepts, potentials and limitations are not always transparent to 
practitioners. A scattered methodological literature, heterogeneous terminology, 
and paucity of introductory texts suffi ciently comprehensive to provide a meth-
odological overview and synthesis, are partly responsible for this. Another reason 
is the fact that biologists receive a formal quantitative training often limited to 
univariate, parametric statistics (regression and analysis of variance), with some 
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exposure to statistical modelling. In order to provide a training opportunity 
that could compensate for this, we collaborated on an introductory, intensive 
workshop in multivariate analysis of ecological data, generously supported and 
hosted several times by the BBVA Foundation in Madrid, Spain. The material 
for the workshop, consisting of lectures and practical sessions (R being our choice 
of software for the daily practicals) developed out of a graduate and postgraduate 
course at the University of Tromsø, Norway, now in its tenth year. Further intensive 
courses for professional ecologists and biologists were given at research institutions 
and universities in Iceland, Norway, United Kingdom, Italy and South Africa. 

The aim of the material, developed for the various teaching and training pur-
poses, refi ned, expanded and organized in this book, was always to provide the 
practitioner with the necessary tools to (i) choose the appropriate method for a 
given problem and data, (ii) implement the method correctly with the help of a 
computer, (iii) interpret the results with regard to the question asked, and (iv) 
clearly communicate the results and interpretation with the help of graphical il-
lustrations. The last point about the importance of publishing quantitative results 
has been an emphasis of ours. As the ecologist Robert MacArthur has put it, “you 
have a choice, you can either keep up with the literature or you can contribute to 
it”. For your scientifi c contribution to be effective, quantitative results and their 
interpretation must be presented in an understandable and accessible way.

The book, aimed at graduate and post-graduate students and professional bi-
ologists, is organized in a series of topics, labelled as parts consisting of multiple 
chapters, refl ecting the sequence of lectures of our courses. The background for 
understanding multivariate methods and their applications is presented in the 
fi rst introductory part, summarizing the character of ecological data and review-
ing multivariate methods. The second part defi nes the basic concepts of distance 
and correlation measures for multivariate data, measuring inter-sample and 
inter-variable relationships. Initial approaches to analysing multivariate data are 
given in the third part, in the form of clustering and multidimensional scaling, 
both of which visualize these relationships in a fairly simple way. The fourth part 
introduces the core concept of the biplot, which explains how a complete data 
set can be explored using well-known ideas of linear regression and geometry, 
leading up to the method of principal component analysis. The fi fth part is de-
voted to correspondence analysis and the related method of log-ratio analysis, and 
ending with canonical correspondence analysis, one of the key methodologies in 
ecology, which attempts to relate multivariate biological responses to multivariate 
environmental predictors. The sixth part is dedicated to aids to interpretation of 
results, statistical inference, and modelling, including an introduction to permu-
tation testing and bootstrapping for the diffi cult problem of hypothesis testing in 
the multivariate context. Throughout the book the methods are illustrated using 
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small to medium-sized data sets. The seventh and last part of the main text of the 
book consists of two case studies that apply the above multivariate techniques to 
larger data sets, where the reader can see the challenge for analysis, interpretation 
and communication when dealing with large studies and complex designs. Finally, 
three appendices are provided on theoretical, bibliographical and computational 
aspects. All the analyses presented in the book can be replicated using the R 
scripts and data sets that are available on the website www.multivariatestatistics.org.

All the above topics contain material accessible to graduate students and practi-
tioners with a basic statistical training. To make the material accessible we relied 
on the more visual (geometric) and intuitive aspects of the subjects. But chapters, 
and sections within chapters, do vary with regard to technicality and diffi culty. A 
suggestion for the reader unfamiliar with multivariate methods is to fi rst focus 
on the more general, accessible sections of the book, respecting the suggested 
sequence of parts and chapters, and wait before dwelling into the deeper, more 
technical layers of explanation upon a second reading. With some basic exposure 
to multivariate methods, the text can also be used as a handbook, with individual 
core chapters covering the rationales, strengths and weaknesses of various stand-
ard methods of interest, and providing illustrations (based on case studies) of 
appropriate visualization and pertinent interpretation of results. 

Our most sincere gratitude goes to the colleagues and institutions that have 
hosted and helped organize our workshops and courses. First and foremost, we 
thank the BBVA Foundation and its director, Prof. Rafael Pardo, for continual 
support and assistance from their dedicated and friendly staff, who are now help-
ing us further to publish the book that summarizes it all. A special thanks goes to 
the University of Tromsø, which has helped us maintain our course over a pro-
longed period. Many other institutions have provided help during the planning 
and running of our intensive courses. The Marine Research Institutes of Iceland 
and Norway, the University of Lancaster, UK, the Universities of Stellenbosch and 
Potchefstroom in South Africa, the Universities of Parma and Ancona, Italy, and 
the Italian Ecological Society. 

Many colleagues have helped, directly or indirectly, with the preparation of this 
book: Giampaolo Rossetti, for his hospitality and support in Parma; Michaela 
Aschan, Maria Fossheim, Magnus Wiedmann, Grégoire Certain, Benjamin Pl-
anque, Andrej Dolgov, Edda Johannesen and Lis Lindal Jørgensen, our co-work-
ers on the Barents Sea Ecosystem Resilience project (BarEcoRe) of the Norwegian 
Research Council; Paul Renaud, Sabine Cochrane, Michael Carroll, Reinhold 
Fieler and Salve Dahle, colleagues from Akvaplan-niva in Tromsø; Janne Søreide, 
Eva Leu, Anette Wold and Stig Falk-Petersen, for interesting discussions on fatty 
acid compositional data; and our families, for their patience and support. 



 MULTIVARIATE ANALYSIS OF ECOLOGICAL DATA

12

Beginning with our fi rst course at the University of Tromsø in 2004 and our 
fi rst workshop at the BBVA Foundation in 2005, which developed into courses and 
workshops in six countries, we have had the privilege of a continuous exposure to 
insightful comments and friendly exchange with over 500 attendants sharing our 
passion for science and the environment. To all of them go our sincere gratitude 
and hope for a long and rewarding career. To us remains the intense satisfaction 
of interacting with motivated and enthusiastic people. We hope for more, thanks 
to this book.

Michael Greenacre
Raul Primicerio

Barcelona and Tromsø
November 2013



ECOLOGICAL DATA AND 
MULTIVARIATE METHODS 



 MULTIVARIATE ANALYSIS OF ECOLOGICAL DATA



Data set “bioenv”: 
Introductory data set 
from marine biology

15

Chapter 

Multivariate Data in Environmental Science

In this introductory chapter we take a simple univariate or bivariate view of multi-
variate data, using a small educational example taken from marine biology. This 
means we will not venture beyond studying one or two variables at a time, using 
graphical displays as much as possible. Often we will show many of these rep-
resentations simultaneously, which facilitates comparison and interpretation. 
The descriptive graphical methods that we use here – histograms, bar-charts 
and box-and-whisker plots – are well-known in any basic statistical course, and 
are invaluable starting points to what we could call a “marginal” understanding 
of our data before embarking on multivariate analysis. We encourage research-
ers to make as many graphical displays as possible of their data, to become ac-
quainted with each variable, and to be aware of problems at an early stage, such 
as incorrect or very unusual values, or unusual distributions.

Contents

Data set “bioenv”: Introductory data set from marine biology   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  15
Continuous variables   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  17
Categorical variables   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  17
Count variables   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  18
Relationships amongst the environmental variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  18
Relationships amongst the species abundances   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  20
Relationships between the species and continuous environmental variables . . . . . . . . . . . . . . . . . . .  20
Relationships between the species and categorical environmental variables . . . . . . . . . . . . . . . . . . .  21
SUMMARY: Multivariate data in environmental science . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  23

As a simple introductory example to motivate and illustrate the concepts 
and methods explained in this book, consider the data in Exhibit 1.1. These 
are biological and environmental observations made at 30 sampling points, 
or sites, on the sea-bed. Typically, a number of grabs (for example, fi ve) are 
made close by at each site and then a fi xed volume of each grab is sent to 
a biological laboratory for analysis. The more grabs one takes at a site, the 
more species are eventually identifi ed. The biological data consist of species 

1
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Exhibit 1.1:
Typical set of multivariate 

biological and environmental 
data: the species data 

are counts, whereas the 
environmental data are 

continuous measurements, 
with each variable on a 
different scale; the last 
variable is a categorical 
variable classifying the 

sediment of the 
sample as mainly 

C ( clay/silt), S ( sand) 
or G ( gravel/stone)

abundances obtained by summing the counts of the species identifi ed in the 
grabs for each site.

Usually there are dozens or hundreds of species found in an ecological study. Ex-
hibit 1.1 is intentionally a small data set with only fi ve species, labelled a to e. The 
number of sites, 30 in this case, is more realistic, because there are usually few 

Site No. Species counts Environmental variables

a b c d e 
Depth 

(x)
Pollution

(y)
Temperature

(z)
Sediment

(s)

s1 0 2 9 14 2 72 4.8 3.5 S

s2 26 4 13 11 0 75 2.8 2.5 C

s3 0 10 9 8 0 59 5.4 2.7 C

s4 0 0 15 3 0 64 8.2 2.9 S

s5 13 5 3 10 7 61 3.9 3.1 C

s6 31 21 13 16 5 94 2.6 3.5 G

s7 9 6 0 11 2 53 4.6 2.9 S

s8 2 0 0 0 1 61 5.1 3.3 C

s9 17 7 10 14 6 68 3.9 3.4 C

s10 0 5 26 9 0 69 10.0 3.0 S

s11 0 8 8 6 7 57 6.5 3.3 C

s12 14 11 13 15 0 84 3.8 3.1 S

s13 0 0 19 0 6 53 9.4 3.0 S

s14 13 0 0 9 0 83 4.7 2.5 C

s15 4 0 10 12 0 100 6.7 2.8 C

s16 42 20 0 3 6 84 2.8 3.0 G

s17 4 0 0 0 0 96 6.4 3.1 C

s18 21 15 33 20 0 74 4.4 2.8 G

s19 2 5 12 16 3 79 3.1 3.6 S

s20 0 10 14 9 0 73 5.6 3.0 S

s21 8 0 0 4 6 59 4.3 3.4 C

s22 35 10 0 9 17 54 1.9 2.8 S

s23 6 7 1 17 10 95 2.4 2.9 G

s24 18 12 20 7 0 64 4.3 3.0 C

s25 32 26 0 23 0 97 2.0 3.0 G

s26 32 21 0 10 2 78 2.5 3.4 S

s27 24 17 0 25 6 85 2.1 3.0 G

s28 16 3 12 20 2 92 3.4 3.3 G

s29 11 0 7 8 0 51 6.0 3.0 S

s30 24 37 5 18 1 99 1.9 2.9 G
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Continuous variables

Categorical variables 

Exhibit 1.2:
Histograms of three 
environmental variables and 
bar-chart of the categorical 
variable

sampling locations in marine environmental sampling. As well as the biological 
data, several environmental variables are typically available that characterize the 
sites. As examples of these we give four variables, three measurements and one 
classifi cation – Exhibit 1.1 shows the values of depth x (in metres), a pollution 
index y, the temperature z in C and the sediment type (three categories). The 
pollution index is based on data for heavy metal concentrations such as barium, 
cadmium and lead, as measured in the sea-bed samples – the higher the index, 
the higher is the overall level of pollution. The last column gives the classifi cation 
of the sediment in the sample as clay/silt (C), sand (S) or gravel/stone (G). In this 
chapter we look at well-known univariate and bivariate summaries of these data, 
before we move on to a multivariate treatment.

The three variables pollution, depth and temperature are called continuous vari-
ables because they can – theoretically, at least – have any value on a continuous 
scale. To take a look at the range of values as well as the shape of the distribution 
of a continuous variable, we typically plot a histogram for each variable – see the 
fi rst three histograms in Exhibit 1.2. A histogram divides the range of a continu-
ous variable into intervals, counts how many observations are in each interval, 
and then plots these frequencies. Pollution and temperature are seen to have 
single-peaked distributions, while the distribution of depth seems more uniform 
across its range.

The sediment variable is a categorical (or discrete) variable because it can take only 
a few “values”, which in this case are sediment types – see the bar-chart form of its 
distribution in Exhibit 1.2. A bar-chart simply counts how many observations cor-
respond to each given category – this is why the bar-chart shows spaces between 
the categories, whereas in the histogram the frequency bars touch one another. 
The bar-chart shows a fairly even distribution, with gravel/rock (G) being the least 
frequent sediment category.
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Count variables

Relationships amongst 
the environmental 

variables

Exhibit 1.3:
Histograms of the five 

species, showing the usual 
high frequencies of low 

values that are mostly zeros, 
especially in species e

Categorical variables are either ordinal or nominal depending on whether the 
categories can be ordered or not. In our case, the categories could be considered 
ordered in terms of granularity of the sediment, from fi nest (clay/silt) to coars-
est (gravel/rock). An example of a nominal variable, where categories have no 
inherent ordering, might be “sampling vessel” (if more than one ship was used 
to do the sampling) or “region of sampling” (if sampling was done in more than 
one region). Often, continuous variables are categorized into intervals (i.e., dis-
cretized), giving an ordinal variable; for example, “depth” could be categorized 
into several categories of depth, from shallow to deep.

The biological data are measured on a different scale from the others – these are 
counts, and have an integer scale: 0, 1, 2, and so on. Counts have a special place in 
statistics, lying somewhere between a continuous variable and a categorical varia-
ble. For the moment, however, we shall treat these data as if they were continuous 
variables; later we shall discuss various special ways to analyse them. Exhibit 1.3 
shows histograms of the fi ve species, with highly skew distributions owing to the 
many zeros typically found in such species abundance data.

The usual way to investigate the relationships between two continuous variables 
is to make a scatterplot of their relationship. The scatterplots of the three pairs 
of variables are shown in Exhibit 1.4, as well as the numerical value of their 
correlation coeffi cients. The only statistically signifi cant correlation is between 
depth and pollution, a negative correlation of 0.396 (p0.0305, using the 
two-tailed t -test1).
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1 Note that the t -test is not the correct test to use on such nonnormal data. An alternative is the distribution-
free permutation test, which gives an estimated p -value of 0.0315, very close to the 0.0305 of the t -test. The 
permutation test for a correlation is described in Chapter 6, with a full treatment of permutation testing in 
Chapter 17.
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Exhibit 1.4:
Pairwise scatterplots 
of the three continuous 
variables in the lower 
triangle, showing smooth 
relationships (in brown, a 
type of moving average) of 
the vertical variable with 
respect to the horizontal 
one; for example, at the 
intersection of depth an 
pollution, pollution defines 
the vertical (“y”) axis and 
depth the horizontal (“x”) 
one. The upper triangle 
gives the correlation 
coefficients, with size of 
numbers proportional to 
their absolute values

To show the relationship between the continuous environmental variables and 
the categorical one (sediment), the box-and-whisker plots in Exhibit 1.5 compare 
the distributions of each continuous variable within each category. The boxes 
are drawn between the lower and upper quartiles of the distribution, hence the 
central 50% of the data values lie in the box. The median value is indicated by 
a line inside the box, while the whiskers extend to the minimum and maximum 
values in each case. These displays show differences between the gravel samples 
(G) and the other samples for the depth and pollution variables, but no differ-
ences amongst the sediment types with respect to temperature. A correlation 
can be calculated if the categorical variable has only two categories, i.e., if it is 
dichotomous. For example, if clay and sand are coded as 0 and gravel as 1, then the 
correlations2 between the three variables depth, pollution and temperature, and 
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2 This correlation between a continuous variable and a dichotomous categorical variable is called the point 
biserial correlation. Based on permutation testing (see Chapters 6 and 17), the p -values associated with these 
correlations are estimated as 0.0011, 0.0044 and 0.945 respectively.
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Exhibit 1.5:
Box-and-whisker plots 

showing the distribution 
of each continuous 

environmental variable 
within each of the three 
categories of sediment 

(Cclay/silt, Ssand, 
Ggravel/stone). In each 
case the central horizontal 

line is the median of the 
distribution, the boxes 
extend to the first and 

third quartiles, and the 
dashed lines extend 
to the minimum and 

maximum values 

Relationships amongst 
the species abundances

Relationships 
between the species 
and the continuous 

environmental variables

this dichotomous sediment variable, are 0.611, 0.520 and 0.015 respectively, 
confi rming our visual interpretation of Exhibit 1.5. 

Similar to Exhibit 1.4 the pairwise relationships between the species abundances 
can be shown in a matrix of scatterplots (Exhibit 1.6), giving the correlation coef-
fi cient for each pair. Species a, b and d have positive inter-correlations, whereas 
c tends to be correlated negatively with the others. Species e does not have a 
consistent pattern of relationship with the others.

Again, using scatterplots, we can make a fi rst inspection of these relationships by 
looking at each species-environmental variable pair in a scatterplot. The simplest 
way of modelling the relationship, although perhaps not the most appropriate 
way (see Chapter 18), is by a linear regression, shown in each mini-plot of Ex-
hibit 1.7. The coeffi cient of determination R 2 (variance explained by the regres-
sion) is given in each case, which for simple linear regression is just the square 
of the correlation coeffi cient. The critical point for a 5% signifi cance level, with 
n30 observations, is R 20.121 (R 0.348); but because there are 15 regres-
sions we should reduce the signifi cance level accordingly. A conservative way of 
doing this is to divide the signifi cance level by the number of tests, in which case 
the R 2 for signifi cance is 0.236 (R 0.486).3 This would lead to the conclusion 
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3 This is known as the Bonferroni correction. If many tests are performed, then the chance of fi nding a signifi cant 
result by chance increases; that is, there is higher probability of committing a “type I” error. If the signifi cance 
level is  and there are M tests, the Bonferroni correction is to divide  by M, then use the /M signifi cance 
level for the tests. This is a conservative strategy because the tests are usually not independent, so the correction 
overcompensates for the problem. But in any case, it is good to be conservative, at least in statistics! 
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Exhibit 1.6:
Pairwise scatterplots of the 
five species abundances, 
showing in each case the 
smooth relationship of 
the vertical variable with 
respect to the horizontal 
one; the lower triangle gives 
the correlation coefficients, 
with size of numbers 
proportional to their 
absolute values

Relationships 
between the species 
and the categorical 
environmental variables

that a, b and d are signifi cantly correlated with pollution, and that d is also signifi -
cantly correlated with depth. 

To show how the species abundances vary across the sediment groups, we use the 
same boxplot style of analysis as Exhibit 1.5, shown in Exhibit 1.8. The statistic 
that can be used to assess the relationship is the F -statistic from the correspond-
ing analysis of variance (ANOVA). For this size data set and testing across three 
groups, the 5% signifi cance point of the F distribution4 is F3.34. Thus, species 
groups a, b and d show apparent signifi cant differences between the sediment 
types, with the abundances generally showing an increase in gravel/stone. 
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4 Note that using the F -distribution is not the appropriate way to test differences between count data, but we 
use it anyway here as an illustration of the F test.
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Exhibit 1.7:
Pairwise scatterplots of 

the five groups of species 
with the three continuous 
environmental variables, 

showing the simple 
least-squares regression 
lines and coefficients of 

determination (R 2) 
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Exhibit 1.8:
Box-and-whisker plots 
showing the distribution of 
each count variable across 
the three sediment types 
(Cclay/silt, Ssand, 
Ggravel/stone) and the 
F-statistics of the respective 
ANOVAs 

SUMMARY:
Multivariate data in 
environmental science

1.  Large numbers of variables are typically collected in environmental research: 
it is not unusual to have more than 100 species, and more than 10 environ-
mental variables.

2.  The scale of the variables is either continuous, categorical or in the form of counts.

3.  For the moment we treat counts and continuous data in the same way, whereas 
categorical data are distinct in that they usually have very few values. 
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4.  The categorical data values do not have any numerical meaning, but they 
might have an inherent order, in which case they are called ordinal. If not, they 
are called nominal.

5.  The univariate distributions of count and continuous variables are summa-
rized in histograms, whereas those of categorical variables are summarized in 
bar-charts.

6.  The bivariate distributions of continuous and count variables are summarized 
in typical “x-y” scatterplots. Numerically, the relationship between a pair of vari-
ables can be summarized by the correlation coeffi cient.

7.  The relationship between a continuous and a categorical variable can be sum-
marized using box-and-whisker plots side by side, one for each category of 
the categorical variable. The usual correlation coeffi cient can be calculated 
between a continuous variable and a dichotomous categorical variable (i.e., 
with only two categories). 
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The basic data structure: 
a rectangular data matrix

Chapter 

The Four Corners of Multivariate Analysis

Multivariate analysis is a wide and diverse fi eld in modern statistics. In this chapter 
we shall give an overview of all the multivariate methods encountered in ecology. 
Most textbooks merely list the methods, whereas our approach is to structure the 
whole area in terms of the principal objective of the methods, divided into two 
main types – functional methods and structural methods. Each of these types is 
subdivided into two types again, depending on whether the variable or variables 
of main interest are continuous or categorical. This gives four basic classes of 
methods, which we call the “four corners” of multivariate analysis, and all multi-
variate methods can be classifi ed into one of these corners. Some methodologies, 
especially more recently developed ones that are formulated more generally, are 
of a hybrid nature in that they lie in two or more corners of this general scheme. 

Contents

The basic data structure: a rectangular data matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  25
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The four corners of multivariate analysis   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  27
Regression: Functional methods explaining a given continuous variable . . . . . . . . . . . . . . . . . . . . . . .  28
Classification: Functional methods explaining a given categorical variable . . . . . . . . . . . . . . . . . . . . .  28
Clustering: Structural methods uncovering a latent categorical variable . . . . . . . . . . . . . . . . . . . . . . .  29
Scaling/ordination: Structural methods uncovering a latent continuous variable   . . . . . . . . . . . . . . . .  29
Hybrid methods   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  30
SUMMARY: The four corners of multivariate analysis   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  31

In multivariate statistics the basic structure of the data is in the form of a cases-
by-variables rectangular table. This is also the usual way that data are physically 
stored in a computer fi le, be it a text fi le or a spreadsheet, with cases as rows and 
variables as columns. In some particular contexts there are very many more vari-
ables than cases and for practical purposes the variables are defi ned as rows of 
the matrix: in genetics, for example, there can be thousands of genes observed 
on a few samples, and in community ecology species (in their hundreds) can be 
listed as rows and the samples (less than a hundred) as columns of the data 

2
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Functional and structural 
methods

Exhibit 2.1:
Schematic diagram of the 

two main types of situations 
in multivariate analysis: on 

the left, a data matrix where 
a variable y is singled 

out as being a response 
variable and can be partially 

explained in terms of the 
variables in X. On the right, 

a data matrix Y with a set 
of response variables but no 

observed predictors, where 
Y is regarded as being 

explained by an unobserved, 
latent variable f 

table. By convention, however, we will always assume that the rows are the cases or 
sampling units of the study (for example, sampling locations, individual animals 
or plants, laboratory samples), while the columns are the variables (for example: 
species, chemical compounds, environmental parameters, morphometric meas-
urements). 

Variables in a data matrix can be on the same measurement scale or not (in the 
next chapter we treat measurement scales in more detail). For example, the 
matrix might consist entirely of species abundances, in which case we say that we 
have “same-scale” data: all data in this case are counts. A matrix of morphometric 
measurements, all in millimetres, is also same-scale. Often we have a data matrix 
with variables on two or more different measurement scales – the data are then 
called “mixed-scale”. For example, on a sample of fi sh we might have the com-
position of each one’s stomach contents, expressed as a set of percentages, along 
with morphometric measurements in millimetres and categorical classifi cations 
such as sex (male or female) and habitat (littoral or pelagic). 

We distinguish two main classes of data matrix, shown schematically in Ex-
hibit 2.1. On the left is a data matrix where one of the observed variables is sepa-
rated from the rest because it has a special role in the study – it is often called a 
response variable. By convention we denote the response data by the column vector 
y, while data on the other variables – called predictor, or explanatory, variables – are 
gathered in a matrix X. We could have several response variables, gathered in a 
matrix Y. On the right is a different situation, a data matrix Y of several response 
variables to be studied together, with no set of explanatory variables. For this 
case we have indicated by a dashed box the existence of an unobserved variable 

X y Y f

Data format for functional methods Data format for structural methods

Predictor or 
explanatory
variables 

Response
variable(s)

Response
variables

Latent
variable(s)
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The four corners of 
multivariate analysis

Exhibit 2.2:
The four corners of 
multivariate analysis. 
Vertically, functional and 
structural methods are 
distinguished. Horizontally, 
continuous and discrete 
variables of interest are 
contrasted: the response 
variable(s) in the case of 
functional methods, and 
the latent variable(s) in the 
case of structural methods

f, called a latent variable, which we assume has been responsible, at least partially, 
for generating the data Y that we have observed. The vector f could also consist 
of several variables and thus be a matrix F of latent variables. 

We call the multivariate methods which treat the left hand situation functional 
methods, because they aim to come up with a model which relates the response var-
iable y as a function of the explanatory variables X. As we shall see in the course 
of this book, the nature of this model need not be a mathematical formula, often 
referred to as a parametric model, but could also be a more general nonparametric 
concept such as a tree or a set of smooth functions (these terms will be explained 
more fully later). The methods which treat the right hand situation of Exhibit 2.1 
are called structural methods, because they look for a structure underlying the data 
matrix Y. This latent structure can be of different forms, for example gradients 
or typologies. 

One major distinction within each of the classes of functional and structural 
methods will be whether the response variable (for functional methods) or the 
latent variable (for structural methods) is of a continuous or a categorical nature. 
This leads us to a subdivision within each class, and thus to what we call the “four 
corners” of multivariate analysis.

Exhibit 2.2 shows a vertical division between functional and structural methods 
and a horizontal division between continuous and discrete variables of inter-
est, where “of interest” refers to the response variable(s) y (or Y) for functional 
methods and the latent variable(s) f (or F) for the structural methods (see Ex-
hibit 2.1). The four quadrants of this scheme contain classes of methods, which 
we shall treat one at a time, starting from regression at top left and then moving 
clockwise.

Functional methods

Structural methods

Regression Classification

Clustering
Scaling/

ordination 

Continuous
variable

‘of interest’ 

Discrete
variable

‘of interest’ 
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Regression: Functional 
methods explaining a 

given continuous variable

Classification: Functional 
methods explaining 
a given categorical 

variable

At top left we have what is probably the widest and most prolifi c area of statistics, 
generically called regression. In fact, some practitioners operate almost entirely 
in this area and hardly move beyond it. This class of methods attempts to use 
multivariate data to explain one or more continuous response variables. In our 
context, an example of a response variable might be the abundance of a particu-
lar plant species, in which case the explanatory variables could be environmental 
characteristics such as soil texture, pH level, altitude and whether the sampled 
area is in direct sunshine or not. Notice that the explanatory variables can be of 
any type, continuous or categorical, whereas it is the continuous nature of the 
response variable – in this example, species abundance – that implies that the 
appropriate methodology is of a regression nature. 

In this class of regression methods are included multiple linear regression, analy-
sis of variance, the general linear model and regression trees. Regression methods 
can have either or both of the following purposes: to explain relationships and/
or to predict the response from new observations of the explanatory variables. For 
example, on the one hand, a botanist can use regression to study and quantify 
the relationship between a plant species and several variables that are believed 
to infl uence the abundance of the plant. But on the other hand, the objective 
could also be to ask “what if?” type questions: what if the rainfall decreased by so 
much % and the pH level rose to such-and-such a value, what would the average 
abundance of the species be, and how accurate is this prediction? 

Moving to the top right corner of Exhibit 2.2, we have the class of methods analo-
gous to regression but with the crucial difference that the response variable is 
not continuous but categorical. That is, we are attempting to model and predict 
a variable that takes on a small number of discrete values, not necessarily in any 
order. This area of classifi cation methodology is omnipresent in the biological and 
life sciences: given a set of observations measured on a person just admitted to 
hospital having experienced a heart attack – age, body mass index, pulse, blood 
pressure and glucose level, having diabetes or not, etc. – can we predict whether 
the patient will survive in the next 24 hours? Having found a fossil skull at an 
archeological site, and made several morphometric measurements, can we say 
whether it is a human skull or not, and with what certainty? 

The above questions are all phrased in terms of predicting categories, but our 
investigation would also include trying to understand the relationship between 
a categorical variable, with categories such as “healthy” and “sick”, and a host of 
variables that are measured on each individual. Especially, we would like to know 
which of these variables is the most important for discriminating between the 
categories. Classifi cation methods can also be used just to quantify differences 
between groups, as in Exhibits 1.5 and 1.8 of Chapter 1. There we observed some 
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Clustering: Structural 
methods uncovering 
a latent categorical 
variable

Scaling/ordination: 
Structural methods 
uncovering a latent 
continuous variable

differences between the sediment types for one variable at a time; the multivariate 
challenge will be to see if we can quantify combinations of variables that explain 
group differences.

We now move down to the structural methods, where the unobserved latent vari-
able f is sought that “explains” the many observed variables Y. This is a much 
more subtle area than the functional one, almost abstract in nature: how can a 
variable be “unobserved”? Well, let us suppose that we have collected a whole 
bunch of data on clams found in the Arctic. Are they all of the same species? 
Suppose they are not and there are really two species involved, but we cannot 
observe for a particular clam whether it is of species A or B, we just do not know. 
So species is an unobserved categorical variable. Because it is categorical, we are 
in the bottom right area of the scheme of Exhibit 2.2. The idea of clustering is 
to look for similarities between the individual clams, not on single variables but 
across all measured variables. Can we come up with a grouping (i.e., clustering) 
of the clams into two clusters, each of which consists internally of quite similar 
individuals, but which are quite different if we compare individuals from different 
clusters? This is the objective of cluster analysis, to create a categorical structure 
on the data which assigns each individual to a cluster category. Supposing that 
the cluster analysis does come up with two clusters of clams, it is then up to the 
marine biologist to consider the differences between the two clusters to assess if 
these are large enough to warrant evidence of two different species. 

Cluster analysis is often called unsupervised learning because the agenda is open 
to whether groups really do exist and how many there are; hence we are learn-
ing without guidance, as it were. Classifi cation methods, on the other hand, are 
sometimes called supervised learning because we know exactly what the groups 
are and we are trying to learn how to predict them. 

The fi nal class of methods, at bottom left in Exhibit 2.2, comprise the various 
techniques of scaling, more often referred to as ordination by ecologists. Ordina-
tion is just like clustering except the structures that we are looking for in the data 
are not of a categorical nature, but continuous. Examples of ordination abound 
in environmental science, so this will be one of the golden threads throughout 
this book. The origins of scaling, however, come from psychology where measure-
ment is an issue more than in any other scientifi c discipline. It is relatively simple 
for a marine biologist to measure a general level of “pollution” – although the 
various chemical analyses may be expensive, reliable fi gures can be obtained of 
heavy metal concentrations and organic materials in any given sample. A psy-
chologist interested in emotions such as anxiety or satisfaction, has a much more 
diffi cult job arriving at a reliable quantifi cation. Dozens of measurements could 
be made to assess the level of anxiety, for example, most of them “soft” in the 
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Hybrid methods

sense that they could be answers to a battery of questions on how the respondent 
feels. Scaling attempts to discern whether there is some underlying dimension 
(i.e., a scale) in these data which is ordering the respondents from one extreme 
to another. If this dimension can be picked up, it is then up to the psychologist, 
to decide whether it validly orders people along a continuous construct that one 
might call “anxiety”.

In the large data sets collected by environmental biologists, the search for con-
tinuous constructs can be the identifi cation of various environmental gradients in 
the data, for example pollution or temperature gradients, and of geographical 
gradients (e.g., north–south). Almost always, several gradients (i.e., several con-
tinuous latent variables f) can be identifi ed in the data, and these provide new 
ways of interpreting the data, not in terms of their original variables, which are 
many, but in terms of these fewer latent dimensions. Because of the importance 
of ordination and reduction of dimensionality in environmental research, a large 
part of this book will be devoted to this area. 

It is in the nature of scientifi c endeavour that generalizations are made that 
move the fi eld ahead while including everything that has been discovered before. 
Statistics is no exception and there are many examples of methods developed 
as generalizations of previous work, or a gathering together of interconnected 
methodologies. “General linear modelling” and “generalized linear modelling” 
(similar in name but different in scope) are two such examples. 

In classical linear regression of a continuous response variable there are several 
variants: multiple regression (where all the explanatory variables are continuous), 
analysis of variance (ANOVA, where all the explanatory variables are categori-
cal), and analysis of covariance (ANCOVA, where the explanatory variables are 
continuous and categorical). Each of these has its own quirks and diagnostics 
and terminology. Design and analysis of experiments usually involve ANOVA or 
ANCOVA, where the cases are assigned to various treatments in order to be able 
to estimate their effects. All of these methods are subsumed under the umbrella 
of the general linear model, which falls into the regression corner of Exhibit 2.2.

A more fundamental gathering together of methodologies has taken place in the 
form of generalized linear modelling. Many techniques of regression and classifi ca-
tion, which we grouped together as functional methods, have an inherent similar-
ity in that the explanatory variables are combined linearly in order to make mod-
els or predictions of the response variable. The aspect that distinguishes them 
is how that linear function is used to connect with the response variable, and 
what probability distribution is assumed for the conditional distributions of the 
response. The generalized linear model involves fi rstly the choice of a function that 
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SUMMARY:
The four corners of 
multivariate analysis

acts as the link between the mean of the response variable and the predictors, and 
secondly the choice of a distribution of the response around this mean – these 
choices lead to many well-known modelling methods as special cases. Generalized 
linear modelling straddles both functional corners of our four corner multivari-
ate analysis scheme. Multiple linear regression is the simplest generalized linear 
model, while logistic regression (when responses are categorical) and Poisson 
regression (when responses are counts) are other examples – more details will be 
given in Chapter 18.

Well-known methods in environmental science are canonical correspondence analysis 
and redundancy analysis (see Chapter 15). These are basically ordination methods 
but force the ordination scales to be functions of observed explanatory variables, 
which recalls the idea of regression. Hence canonical correspondence analysis 
can be said to straddle the upper and lower corners on the left of our scheme. 
The method of partial least squares has a similar objective, but allows the inclusion 
of a very large number of explanatory variables. 

Finally, the generalization of all generalizations is potentially structural equation 
modelling. We say “potentially” because it is presently covering at least the two left 
hand continuous corners of our scheme and, as the fi eld develops, moving to 
cover the right hand ones as well. This area of methodology and its accompany-
ing terminology are very specifi c to psychological and sociological research at the 
moment, but could easily fi nd wider use in the environmental sciences as more 
options are added to handle count and categorical response data. 

1.  Methods of multivariate analysis treat rectangular data matrices where the 
rows are usually cases, individuals, sampling or experimental units, and the 
columns are variables. 

2.  A basic classifi cation of methods can be achieved by fi rst distinguishing the 
overall objective of a study as either (i) explaining an observed “response” 
variable in terms of the others, or (ii) ascertaining the inherent structure in 
the form of a “latent” variable that underlies the set of observed variables. This 
separates functional from structural methods, respectively.

3.  Functional and structural methods can be subdivided into those where (in the 
case of functional methods) the response variable is continuous or categorical, 
or (in the case of structural methods) where the identifi ed latent structure is 
of a continuous or categorical nature.

4.  Thus four main classes of methods exist: functional methods explaining a 
continuous variable (regression and related methods), functional methods ex-
plaining a categorical variable (classifi cation), structural methods with latent 
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structure that is continuous (scaling/ordination) and structural methods with 
latent categorical structure (clustering).

5.  Several general methodologies, such as general and generalized linear models, 
canonical correspondence analysis, partial least squares and structural equa-
tion modelling, can cover more than one of these classes.
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Data theory

Chapter 

Measurement Scales, Transformation 
and Standardization

To conclude this introductory part on multivariate data analysis, we present a dis-
cussion about scales of measurement and the various possibilities for transform-
ing variables. Questions such as the following can plague environmental biolo-
gists: “Should I log-transform my data?”, “How do I analyse a data set where there 
is a mixture of continuous and categorical variables?”, “My data are not normally 
distributed, does this matter? And if it does, help!”, “Do I need to standardize my 
data?” and “My data are percentages that add up to 100: does this make a differ-
ence to the analysis?” The answers to some of these questions will only become 
fully apparent later, but at least in this chapter we will catalogue some of the issues 
involved and list some of the standard ways of transforming data. Readers can op-
tionally skip this chapter for the moment if they are keen to proceed, and dip into 
it later as we refer back to these issues when they come up in real applications.
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Data are the manifestation of statistical variables, and these variables can be clas-
sifi ed into various types according to their scales of measurement. Our own per-
sonal hierarchical classifi cation of measurement scales is depicted in Exhibit 3.1. 
The main division, as we have mentioned already, is between categorical and 
continuous scales. This is a pragmatic distinction, because in reality all observed 
data are categorical. As Michael types these words his age is 59.5475888 years 

3
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Exhibit 3.1:
A classification of data in 

terms of their measurement 
scales. A variable can be 

categorical (nominal or 
ordinal) or continuous 

(ratio or interval). Count 
data have a special place: 

they are usually thought 
of as ratio variables but 
the discreteness of their 

values links them to 
ordinal categorical data. 
Compositional data are a 
special case of ratio data 

that are compositional in a 
collective sense because of 
their “unit-sum” constraint (to seven decimal places and, theoretically, we could give it to you with even more 

accuracy), but it has now already advanced to 59.5475902 years in the interim, 
and is increasing by the second! Of course, in any statistical study, for example 
an epidemiological study, his age would be recorded simply as 59, having been 
discretized. But we still consider the value 59 to be the manifestation of the continu-
ous variable “age”.

Categorical data can be measured on a nominal or ordinal scale. Nominal catego-
ries have no ordering: for example, region of sampling (1. Tarehola, 2. Skognes, 
3. Njosken, or 4. Storura), and habitat (1. pelagic, or 2. littoral), hence the num-
bers recorded in the database have no numerical meaning apart from assigning 
the samples into groups. Ordinal categories do have an ordering: for example, 
nature of substrate (1. clay, 2. silt, 3. sand, 4. gravel, or 5. stone – these are ordered 
by grain size), and month of sampling (1. June, 2. July, 3. August, 4. September), 
hence the ordering of the numbers (but not their actual values) can be taken 
into account in the subsequent statistical analysis. Circular ordering of categories 
(e.g., directions N, NE, E, SE, S, SW, W, NW) is a very special case, as are angular 
data in the continuous case, where 360 is identical to 0. 

Continuous data can be measured on a ratio or interval scale. A continuous scale 
is classifi ed as ratio when two numbers on the scale are compared multiplicatively, 
and an interval scale is when they are compared additively. For example, age – in 
fact, any variable measuring time – is an interval variable. We would not say that 
Michael’s age increased by 0.000002% (the multiplicative increase) in the time it 
took him to write that sentence above, but we would simply say that it increased 
by 44 seconds (the additive increase). Ratio variables are almost always nonnega-
tive and have a fi xed zero value: for example, biomass, concentration, length, 
euros and tonnage. Temperature, even though it does have an absolute zero, is 
an interval variable, unless you like to say that today is 2.6% hotter than yesterday 

Measurement scales

Categorical Continuous

Nominal Ordinal Ratio Interval

Count
Composition
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distribution

(with respect to absolute zero) – we prefer to say that the temperature today has 
risen by 7 C compared to yesterday’s 20 C. 

Count data have a special place in the scheme of Exhibit 3.1, as they can be con-
sidered both ordinal and ratio. When 23 individuals of Galothowenia oculata are 
counted in a marine benthic sample, is that a continuous variable? We could not 
have counted a fraction of an individual, so this sounds like an ordinal categorical 
observation, but with many possible categories. On the other hand, in a survey of 
family sizes in Europe, we fi nd only a few values – 0, 1, 2, 3 and 4 children and a 
sprinkling of families with 5 or more. This sounds more ordinal categorical and 
less continuous than the Galothowenia oculata count. The truth is that they can be 
validly considered one or the other, depending on how many possible values are 
observable. If there are many possible values, as in the case of species abundance, 
then we tend to think of it as a ratio variable. Another aspect is whether we model 
the expected, or average, count, which is theoretically continuous: for example, 
at a given sampling location we might predict an average Galothowenia oculata 
abundance of 10.57, even though individual counts are, of course, integers. 

Finally, we have singled out compositional data as a special case – these are pro-
portions that add up to 1, a property called closure, or the unit-sum constraint. The 
compositional label applies to a set of variables, not to a single one, since it is 
the property of the set that gives it that nature. Compositional data are usually 
created from a set of counts or a set of ratio variables when their total is not as 
relevant as the composition formed by the parts. For example, when we count dif-
ferent species sampled at a particular site, it is likely that the total number is not 
so relevant, but rather the proportion that each species contributes to the overall 
count. But if the sampling sites were exactly the same size, as in quadrat sam-
pling in botany, then the overall counts would also be valid measures of overall 
abundance per unit area sampled. By contrast, a geochemist looking at a mineral 
sample is not concerned about the weight or volume of the particular sample but 
in the breakdown of that sample into its components. The situation is identical 
for fatty acid studies in biology where the data are inherently proportions or per-
centages, with the overall size of the material sampled having no relevance at all. 

One of the thorniest issues for applied researchers is that of the normal distribu-
tion – most would think that their data should be normal or close to normal in 
order to arrive at valid conclusions subsequently. This belief is mostly misguided, 
however, and is a myth created in idealized statistics courses that assume that 
everything is normally distributed and teach very little about nonparametric sta-
tistics, categorical data analysis and modern hypothesis testing using computer-
based algorithms such as permutation testing and bootstrapping (see Chapter 
17). In any case, it is important to distinguish between exploratory and confi rmatory 
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Logarithmic 
transformation 

of ratio data

data analysis. In data exploration, which is actually the theme of most of the pre-
sent book, we are considering methods to summarize and interpret large data 
sets, to give us an understanding of the information that we have painstakingly 
collected and to diagnose relationships between the observed variables. The 
normal distribution is a minor issue here, but outliers and standardization and 
transformations are major ones, which we deal with soon. In the second case of 
confi rmatory analysis, which we will touch on now and again in passing, data 
are assumed to be representative of a wider population and we want to make 
conclusions, called inferences, about that population. An example of an inference 
might be that a particular underlying gradient detected in the sample exists in 
the population with a high degree of probability, based on statistical hypothesis 
testing. Here we need to know the probabilistic characteristics of the population, 
and the assumption of normality is the easiest (and most studied) choice. There 
are, however, other solutions which do not depend on this assumption at all. 
But, having said this, the idea of data being approximately normally distributed, 
or at least symmetrically distributed, does have some advantages in exploratory 
analysis too. 

Most of the methods we use are what we call least-squares methods that were devel-
oped in the context of well-behaved normally distributed data. By “least squares” 
we mean that solutions are found by minimizing an error criterion defi ned as a 
sum of squared differences between our estimated (or “fi tted”) solution and the 
observed data. Even in our simple data set of Chapter 1 (Exhibit 1.1) we have 
seen that the variables are generally not symmetrically distributed around their 
means. The count variables in Exhibit 1.3, for example, show very skew distribu-
tions, with mostly low values and a few much higher ones. Data analysis with these 
variables, using standard least-squares procedures to fi t the models, will be sensi-
tive to the higher values, where the larger error in fi tting the high values is even 
larger when squared. There are several solutions to this problem: one is to use 
a different theory – for example, maximum likelihood rather than least squares 
– or make some transformation of the data to make the distributions more sym-
metric and closer to “well-behaved” normal. Another possibility, used often in the 
case of count data, is to introduce weights into the analysis, where rare or unu-
sual values are downweighted and contribute less to the results (for example, see 
Chapters 13 and 14 on correspondence analysis and log-ratio analysis).

Since most ratio variables are skew with long tails to the right, a very good 
all-purpose transformation is the logarithmic one. This not only pulls in the 
long tails but also converts multiplicative relationships to additive ones, since 
log(ab)log(a)log(b) – this is advantageous not only for interpretation but 
also because most of the methods we use involve addition and subtraction. The 
logarithmic function is shown in Exhibit 3.2 (the lowest curve) as well as other 
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Exhibit 3.2:
The natural logarithmic 
transformation x'log (x) 
and a few Box-Cox power 
transformations, for powers 
½ (square root), ¼ 
(double square root, or 
fourth root) and 0.05

functions that will be described in the next section. Notice how large values of the 
original variable a are pulled down by the log-transformation.

To illustrate the effect the log-transformation has on the interpretation of a 
variable, consider fi rst the simple linear additive relationship expressed in this 
equation between the average abundance of a certain marine species and the 
concentration of the heavy metal barium:

 abundanceC0.023 Ba (3.1)

where C is some constant. The interpretation is that abundance decreases 
on average by 0.023 per unit increase of barium (measured in ppm), or 2.3 
per 100 units increase in barium. Now consider another equation where 
abundance has been log-transformed using the natural logarithm (sometimes 
denoted by “ln”):

 log(abundance)C0.0017 Ba (3.2)

where C is another constant. A unit increase in Ba now decreases the logarithm 
of abundance on average by 0.0017. If we exponentiate both sides of equation 
(3.2), which is the inverse transformation of the natural logarithm, we obtain:

 abundancee (C0.0017 Ba)e Ce (0.0017 Ba) (3.3)
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Power transformations 
and Box-Cox

Dummy variables

That is, a unit increase in barium changes exp(0.0017 Ba) to exp(0.0017 
Ba1)exp(0.0017 Ba) · exp(0.0017). So the effect is that abundance is mul-
tiplied by exp(0.0017)0.9983, in other words a 0.17% decrease. For a 100 unit 
increase in barium, abundance is multiplied by exp(0.0017100)exp(0.17)
0.8437, a 15.63% decrease. Notice that this is not a 1000.17%17% de-
crease since the multiplicative effect is compounded (just like interest calcula-
tions in fi nance where the “capital” is being diminished). The above example 
shows how the logarithmic transformation converts an additive effect into a 
multiplicative one.

In Exhibit 3.2 three other curves are shown corresponding to power transforma-
tions of the variable x, called Box-Cox transformations after two of the most infl uen-
tial statisticians of the 20th century, the American George Box and the Englishman 
Sir David Cox. These are a slight modifi cation of a simple power transformation 
x  and take the following form:

 ′ = −x x1 1
λ

λ( )  (3.4)

The advantage of this form is that it tends to the log-transformation as the 
power parameter tends to 0, as shown in Exhibit 3.2 – as  decreases the curve 
a pproaches the logarithmic curve. The division by  conveniently keeps the scale 
of the original variable from collapsing: for example, if you take the 20th roots 
(that is, x 0.05) of a set of data, you will quickly see that all the values are close to 
1, so the division by 0.05, which multiplies the values by 20, restores them to an 
almost logarithmic scale.

Box-Cox transformations serve as a fl exible way of symmetrizing data and have 
found extensive application in regression analysis. The inverse transformation is:

 = + ′x x1
1
λλ( )  (3.5)

where x is the transformed value in (3.4). We shall refer to these transformations 
in Chapter 14 in our treatment of compositional data.

In functional methods of regression and classifi cation, there is no problem at 
all to have some continuous and some categorical predictors. The categorical 
variables are coded as dummy variables, which are variables that take on the val-
ues 0 or 1. For example, suppose one of the predictors is sampling region, with 
four regions. This variable is coded as four dummy variables which have values 
1 0 0 0 for region A, 0 1 0 0 for region B, 0 0 1 0 for region C and 
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Fuzzy coding

Exhibit 3.3:
Fuzzy coding of a continuous 
variable x into three 
categories, using triangular 
membership functions. 
The minimum, median and 
maximum are used as hinge 
points. An example is given 
of a value x* just below the 
median being fuzzy coded as 
[ 0.22 0.78 0 ]

0 0 0 1 for region D. For a technical reason only 3 out of these 4 dummies can 
be used – the statistical program usually does this all automatically, omitting (for 
example) the last dummy for region D. Then the results for the three included 
dummies are interpreted as the differences of those three regions compared to 
the omitted region. If the categorical variable has only two categories, for exam-
ple pelagic or littoral habitat, then only one dummy variable is included, omitting 
the one for littoral, for example, in which case the model estimates the effect 
of the difference between pelagic and littoral habitats. 

For structural methods, however, the situation is more complicated, because we 
are trying to explore structure amongst all the variables and here the coding 
does matter. We could resort to dummy variable coding of all the categorical 
variables but this is not satisfactory because of the inherently different vari-
ances in the dummy variables compared to the continuous ones. For example, 
a danger might exist that the dummy variables have much less variance than 
the continuous variables, so when we look for structure we only see patterns 
in the continuous variables while those in the categorical variables are more 
or less “invisible” to our investigation. We need to balance the contributions 
of the variables in some way that gives them all a fair chance of competing for 
our attention. This is a problem of standardization, which we treat in detail in a 
later section.

An alternative approach to the problem of mixed-scale data is to recode the con-
tinuous variables also as dummy variables, so that we put them on the same scale 
as the categorical dummies. This can be achieved by dividing up the continuous 
scale into intervals, for example three intervals which can be labelled “low”, “me-
dium” and “high”. Clearly, this loses a lot of information in the continuous vari-
ables, so there is a way to avoid data loss called fuzzy coding. If we again choose the 
three-category option, then a continuous variable can be fuzzy coded as shown 
in Exhibit 3.3.

1
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Standardization

In this example we have used the simplest procedure, triangular membership func-
tions, for fuzzy coding. For three categories we need three hinge points, which we 
have chosen to be the minimum, median and maximum of the continuous vari-
able x. Triangles are drawn as shown and these provide the fuzzy values for the 
three categories – notice that the third category, drawn in gray, has value zero 
below the median. The general algorithm for computing the three fuzzy values 
z1 z2 z3 is as follows:
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 (3.6)

where m1, m2 and m3 denote the three hinge points. For example, in Exhibit 3.3, 
the hinges were m13.69, m28.64 and m319.65. The value x* was 7.55 and 
was fuzzy coded as z1(7.55)(8.647.55)/(8.643.69)0.22; z2(7.55)
(7.553.69)/(8.643.69)0.78, and z3(7.55)0.

The advantage of this coding is that it is invertible – we can recover the original 
value from the fuzzy values as a linear combination of the hinge values (in fact, a 
weighted average since the fuzzy values add up to 1):

 xz1 m1z2 m2z3 m3 (3.7)

for example, 0.223.690.788.64019.657.55. This reverse process 
of going from the fuzzy values back to the original data is called defuzzifi cation. 
The fact that the fuzzy coding is reversible means that we have conserved all the 
information in the coded values, while gaining the advantage of converting the 
continuous variable to a form similar to the categorical dummies. However, there 
is still a problem of balancing the variances, which we now discuss. 

Standardization is an important issue in structural methods of multivariate analy-
sis. Variables on different scales have natural variances which depend mostly on 
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their scales. For example, suppose we measure the length of a dorsal fi n of a sam-
ple of fi sh in centimeters – the variance of our measurements across the sample 
might be 0.503 cm2, and the standard deviation 0.709 cm (the square root of the 
variance). Then we decide to express the lengths in millimeters, because most of 
the other measurements are in millimeters; so the variance is now 50.3 mm2, a 
hundred times the previous value, while the standard deviation is 7.09 mm, ten 
times more. The fact that some variables can have high variances just because of 
the chosen scale of measurement causes problems when we look for structure 
amongst the variables. The variables with high variance will dominate our search 
because they appear to contain more information, while those with low variance 
are swamped because of their small differences between values.

The answer is clearly to balance out the variances so that each variable can play 
an equal role in our analysis – this is exactly what standardization tries to achieve. 
The simplest form of standardization is to make all variances in the data set ex-
actly the same. For a bunch of continuous variables, for example, we would divide 
the values of each variable by its corresponding sample standard deviation so that 
each variable has variance (and also standard deviation) equal to 1. Often this 
is accompanied by centering the variable as well, that is, subtracting its mean, in 
which case we often refer to the standardized variable as a Z-score. This terminol-
ogy originates in the standardization of a normally distributed variable X, which 
after subtracting its mean and dividing by its standard deviation is customarily 
denoted by the letter Z and called a standard normal variable, with mean 0 and 
variance 1. 

Standardization can also be thought of as a form of weighting. That is, by dividing 
variables with large variances by their large standard deviations, we are actually 
multiplying them by small numbers and reducing their weight. The variables with 
small variances, on the other hand, are divided by smaller standard deviations 
and thus have their weight increased relative to the others.

Other forms of standardization are: 

  by the range: each variable is linearly transformed to lie between 0 and 1, where 
0 is its minimum and 1 its maximum value;

  by chosen percentiles: because the range is sensitive to outliers, we can “peg” 
the 0 and 1 values of the linearly transformed variable to, say, the 5th and 95th 
percentile of the sample distribution;

  by the mean: the values of a variable are divided by their mean, so that they 
have standard deviations equal to what is called their coeffi cient of variation. 
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Measurement scales, 

transformation and 
standardization

There are various forms of standardization which rely on the assumed theoreti-
cal characteristics of the variable. For example, count data are often assumed to 
come from a Poisson distribution. This distribution has the property that the 
variance is theoretically equal to the mean. Thus, dividing by the square root of 
the mean would be like dividing by the standard deviation (this is, in fact, the 
standardization inherent in correspondence analysis – see Chapter 13). Another 
theoretical result is that, while a Poisson variable has variance that increases as 
the average count increases, its square root has a variance tending to a constant 
value of ¼. Hence, an alternative form of standardization that is regularly used 
to “stabilize” the variance of count data is simply to square root transform them.

Finally, coming back to the handling of continuous and categorical variables 
jointly, where the continuous variables have been coded into fuzzy dummy 
variables and the categorical variables into “crisp” (zero-one) dummies, we could 
standardize by calculating the collective variance of each set of dummies corre-
sponding to one variable and then weighting the set accordingly. That is, we do 
not standardize individual dummy variables, which would be incorrect, but each 
group as a whole.

1.  Variables can be either categorical or continuous, although all measurements 
are categorical in the sense of being discretized. Continuous variables are 
those that have very many categories, for example a count variable, or are dis-
cretized versions of a variable which could, at least theoretically, be measured 
on a continuous scale, for example a length or a concentration.

2.  Categorical variables can be either ordinal or nominal, depending on whether 
the categories have an inherent ordering or not.

3.  Continuous variables can be either ratio or interval, depending on whether 
we compare two observations on that variable multiplicatively (as a ratio) or 
additively (as a difference).

4.  The logarithmic transformation is a very useful transformation for most posi-
tive ratio measurements, because multiplicative comparisons are converted to 
additive ones and because high values are pulled in, making the distribution 
of the variable more symmetric.

5.  Box-Cox transformations are a very fl exible class of power transformations 
which include the log-transformation as a limiting case.

6.  Categorical variables are usually coded as dummy variables in order to be able 
to judge the effect or relationship of individual categories.

7.  Continuous variables can also be dummy coded but this loses a lot of informa-
tion. A better option is to fuzzy code them into a small number of categories, 
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which allows continuous variables to be analysed together with categorical 
ones more easily, especially in the case of structural multivariate methods.

8.  In structural methods standardization is a major issue for consideration. Vari-
ances of the variables being analysed need to be balanced in some way that 
gives each variable a fair chance of being involved in the determination of 
the latent structure. Results should not depend on the scale of measurement. 
Standardization is not an issue for functional methods because the effect of a 
variable on a response is measured independently of the scale.
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Pythagoras’ theorem

Chapter

Measures of Distance between Samples: 
Euclidean

We will be talking a lot about distances in this book. The concept of distance 
between two samples or between two variables is fundamental in multivariate 
analysis – almost everything we do has a relation with this measure. If we talk 
about a single variable we take this concept for granted. If one sample has a pH 
of 6.1 and another a pH of 7.5, the absolute difference between them is 1.4. But 
on the pH line, the values 6.1 and 7.5 are at a distance apart of 1.4 units, and this 
is how we want to start thinking about data: points on a line, points in a plane, … 
even points in a 10-dimensional space! So, given two samples with not one meas-
urement on them but several, how do we measure the difference between them? 
There are many possible answers to this question, and we devote three chapters to 
this topic. In the present chapter we consider what are called Euclidean distances, 
which coincide with our basic physical idea of distance, but generalized to multi-
dimensional space.

Contents

Pythagoras’ theorem   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  47
Euclidean distance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  48
Standardized Euclidean distance   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  51
Weighted Euclidean distance   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  53
Distances for count data   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  54
Chi-square distance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  55
Distances for categorical data   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  57
SUMMARY: Measures of distance between samples: Euclidean   . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  59

Pythagoras’ theorem is at the heart of most of the multivariate analysis pre-
sented in this book, and particularly the graphical approach to data analysis 
that we are strongly promoting. When you see the word “square” mentioned in 
a statistical text (for example, chi-square or least squares), you can be almost 
sure that the corresponding theory has some relation to this theorem. We fi rst 

4
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Exhibit 4.1:
Pythagoras’ theorem in 

the familiar right-angled 
triangle, and the monument 

to this triangle in the port of 
Pythagorion, Samos island, 

Greece, with Pythagoras 
himself forming one 

of the sides
(Photo: Michael Greenacre)

Euclidean distance

show the theorem in its simplest and most familiar two-dimensional form, 
before showing how easy it is to generalize it to multidimensional space. In a 
right-angled triangle, the square on the hypotenuse (the side denoted by A in 
Exhibit 4.1) is equal to the sum of the squares on the other two sides (B and 
C); that is, A2B2C2.

The immediate consequence of this is that the squared length of a vector 
xx1 x2 is the sum of the squares of its coordinates (see triangle OPA in 
Exhibit 4.2, or triangle OPB – OP2 denotes the squared length of x, that is 
the distance between point O, with both co-ordinates zero, and P); and the 
squared distance between two vectors xx1 x2 and yy1 y2 is the sum 
of squared differences in their coordinates (see triangle PQD in Exhibit 4.2; 
PQ2 denotes the squared distance between points P and Q). To denote the 
distance between vectors x and y we can use the notation dx,y so that this last 
result can be written as:

 d x y x yx y, ( ) ( )2
1 1

2
2 2

2= − + −  (4.1)

that is, the distance itself is the square root 

 d x y x yx y, ( ) ( )1 1
2

2 2
2= − + −  (4.2)

AB

C

A2 = B2 + C2
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Exhibit 4.2:
Pythagoras’ theorem 
applied to distances in 
two-dimensional space 

What we called the squared length of x, the distance between points P and O in 
Exhibit 4.2, is the distance between the vector xx1 x2 and the zero vector 
00 0:

 d xx ,0 1= 22
2
2+ x  (4.3)

which we could just denote by dx . The zero vector is called the origin of the space. 

We move immediately to a three-dimensional point xx1 x2 x3, shown in Ex-
hibit 4.3. This fi gure has to be imagined in a room where the origin O is at the 
corner – to reinforce this idea “fl oor tiles” have been drawn on the plane of axes 
1 and 2, which is the “fl oor” of the room. The three coordinates are at points A, 
B and C along the axes, and the angles AOB, AOC and COB are all 90 as well as 
the angle OSP at S, where the point P (depicting vector x) is projected onto the 
“fl oor”. Using Pythagoras’ theorem twice we have:

OP2OS2PS2 (because of right-angle at S) 
OS2OA2AS2 (because of right-angle at A)

and so

OP2OA2AS2PS2 

P

O A

B

Q

D

Axis 1

Axis 2

x2

|x2 – y2|

y2

|x1 – y1|

x1 y1

x = [x1  x2]

y = [y1  y2]

|OP|2 = x1
2 + x2

2 |PQ|2 = (x1 – y1)
2 + (x2 – y2)

2
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Exhibit 4.3:
Pythagoras’ theorem 

extended into three 
dimensional space

that is, the squared length of x is the sum of its three squared coordinates, hence 
the length is

 
1
2

2
2

3
2= + +d x x xx

 

It is also clear that placing a point Q in Exhibit 4.3 to depict another vector y and 
going through the motions to calculate the distance between x and y will lead to 

 
1 1

2
2 2

2
3 3

2= − + − + −d x y x y x yx y, ( ) ( ) ( )  (4.4)

Furthermore, we can carry on like this into four or more dimensions, in general 
J dimensions, where J is the number of variables. Although we cannot draw the 
geometry any more, we can express the distance between two J -dimensional vec-
tors x and y as:

 ∑=d xx y, ( jj jy
j

J

−
=

)2

1

 (4.5)

This well-known distance measure, which generalizes our notion of physical dis-
tance in two- or three-dimensional space to multidimensional space, is called the 
Euclidean distance. 
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Standardized Euclidean 
distance

Let us consider measuring the distances between our 30 samples in Exhibit 1.1, 
using the three continuous variables depth, pollution and temperature. What 
would happen if we applied formula (4.5) to measure distance between the last 
two samples, s29 and s30, for example? Here is the calculation:

 d = − + − + −( ) ( . . ) ( . . )2 2 251 99 6 0 1 9 3 0 2 9s29,s30

= +2304 166 81 0 01 2320 82 48 17. . . .+ = =

 

The contribution of the fi rst variable depth to this calculation is huge – one could 
say that the distance is practically just the absolute difference in the depth values 
(equal to 51-9948) with only tiny additional contributions from pollution and 
temperature. This is the problem of standardization discussed in Chapter 3 – the 
three variables have completely different units of measurement and the larger 
depth values have larger inter-sample differences, so they will dominate in the 
calculation of Euclidean distances.

Some form of transformation of the data is necessary to balance out the contribu-
tions, and the conventional way to do this is to make all variables have the same 
variance of 1. At the same time we centre the variables at their means – this cen-
tring is not necessary for calculating distance, but it makes the variables all have 
mean zero and thus easier to compare. This transformation, commonly called 
standardization, is thus as follows:

 standardized value(original value – mean) / standard deviation  (4.6)

The means and standard deviations (sd) of the three variables are:

Depth Pollution Temperature

mean 74.433 4.517 3.057

sd 15.615 2.141 0.281

leading to the table of standardized values given in Exhibit 4.4. These values 
are now on comparable standardized scales, in units of standard deviation with 
respect to the mean. For example, the standardized pollution value 0.693 for row 
s29 would signify 0.693 standard deviations above the mean, while 1.222 for 
row s30 would signify 1.222 standard deviations below the mean. The distance 
calculation thus aggregates squared differences in standard deviation units of 
each variable. As an example, the distance between the last two sites of the table 
in Exhibit 4.4 is:
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Exhibit 4.4:
Standardized values of the 
three continuous variables 

of Exhibit 1.1

 

. ]− +ds29, s30 1 501 1 573 0 6932[ . [ . (= − − −11 222 0 201 5572 2. )] [ . ( . )]+ − − −

9 449 3 667 0 127 13 243 3 639. . . .= + + = =.  

For this particular pair of sites the difference in temperatures is still small but 
pollution now has a higher contribution than before. Depth still plays the largest 
role in this particular example, even after standardization, but this contribution is 

Site No. Environmental variables

Depth Pollution Temperature

s1 −0.156 0.132 1.576

s2 0.036 −0.802 −1.979

s3 −0.988 0.413 −1.268

s4 −0.668 1.720 −0.557

s5 −0.860 −0.288 0.154

s6 1.253 −0.895 1.576

s7 −1.373 0.039 −0.557

s8 −0.860 0.272 0.865

s9 −0.412 −0.288 1.221

s10 −0.348 2.561 −0.201

s11 −1.116 0.926 0.865

s12 0.613 −0.335 0.154

s13 −1.373 2.281 −0.201

s14 0.549 0.086 −1.979

s15 1.637 1.020 −0.913

s16 0.613 −0.802 −0.201

s17 1.381 0.880 0.154

s18 −0.028 −0.054 −0.913

s19 0.292 −0.662 1.932

s20 −0.092 0.506 −0.201

s21 −0.988 −0.101 1.221

s22 −1.309 −1.222 −0.913

s23 1.317 −0.989 −0.557

s24 −0.668 −0.101 −0.201

s25 1.445 −1.175 −0.201

s26 0.228 −0.942 1.221

s27 0.677 −1.129 −0.201

s28 1.125 −0.522 0.865

s29 −1.501 0.693 −0.201

s30 1.573 −1.222 −0.557
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Exhibit 4.5:
Standardized Euclidean 
distances between the 30 
samples, based on the three 
continuous environmental 
variables, showing part 
of the triangular distance 
matrix

Weighted Euclidean 
distance

justifi ed now, since depth does show the biggest standardized difference between 
the samples. We call this the standardized Euclidean distance, meaning that it is the 
Euclidean distance calculated on standardized data. It will be assumed that stand-
ardization refers to the form defi ned by (4.6), unless specifi ed otherwise. 

We can repeat this calculation for all pairs of samples. Since the distance between 
sample A and sample B will be the same as between sample B and sample A, we 
can report these distances in a triangular matrix – Exhibit 4.5 shows part of this 
distance matrix, which contains a total of ½3029435 distances.

Readers might ask how all this has helped them – why convert a data table with 
90 numbers into one that has 435, almost fi ve times more? Were the histograms 
and scatterplots in Exhibits 1.2 and 1.4 not enough to understand these three 
variables? This is a good question, but we shall have to leave the answer to Part 3 
of the book, from Chapter 7 onwards, when we describe actual analyses of these 
distance matrices. At this early stage in the book, we can only ask readers to accept 
that the computation of interpoint distances is an intermediate step in a process 
that will lead to an eventual simplifi cation in interpreting the data structure – 
having a measure of distance (i.e., difference) between samples based on several 
variables is the key to this process.

The standardized Euclidean distance between two J -dimensional vectors can be 
written as:

s1 s2 s3 s4 s5 s6 · · · s24 s25 s26 s27 s28 s29

s2 3.681  

s3 2.977 1.741  

s4 2.708 2.980 1.523  

s5 1.642 2.371 1.591 2.139  

s6 1.744 3.759 3.850 3.884 2.619  

s7 2.458 2.171 0.890 1.823 0.935 3.510  

·
·
·

·
·
·

·
·
·

·
·
·

·
·
·

·
·
·

·
·
·

·
·
·

·
· ·

s25 2.727 2.299 3.095 3.602 2.496 1.810 · · · 2.371  

s26 1.195 3.209 3.084 3.324 1.658 1.086 · · · 1.880 1.886  

s27 2.333 1.918 2.507 3.170 1.788 1.884 · · · 1.692 0.770 1.503  

s28 1.604 3.059 3.145 3.204 2.122 0.813 · · · 2.128 1.291 1.052 1.307  

s29 2.299 2.785 1.216 1.369 1.224 3.642 · · · 1.150 3.488 2.772 2.839 3.083  

s30 3.062 2.136 3.121 3.699 2.702 2.182 · · · 2.531 0.381 2.247 0.969 1.648 3.639
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Distances for count data
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where sj is the sample standard deviation of the j -th variable. Notice that we need 
not subtract the j -th mean from xj and yj because the means will just cancel out 
in the differencing. Now (4.7) can be rewritten in the following equivalent way:

 ∑ w xj jd
s

x yx y
jj

J
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j
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where wj1/s j
2 is the inverse of the j -th variance. We can think of wj as a weight 

attached to the j -th variable: in other words, we compute the usual squared dif-
ferences between the variables on their original scales, as we did in the (unstand-
ardized) Euclidean distance, but then multiply these squared differences by their 
corresponding weights. Notice in this case how the weight of a variable with high 
variance is low, while the weight of a variable with low variance is high, which is 
another way of thinking about the compensatory effect produced by standardi-
zation. The weights of the three variables in our example are (to 4 signifi cant 
fi gures) 0.004101, 0.2181 and 12.64 respectively, showing how much the depth 
variable is downweighted and the temperature variable upweighted: depth has 
over 3000 times the variance of temperature, so each squared difference in (4.8) 
is downweighted relatively by that much. We call (4.8) weighted Euclidean distance.

So far we have looked at the distances between samples based on continuous 
data, now we consider distances on count data, for example the abundance data 
for the fi ve species labelled a, b, c, d and e in Exhibit 1.1. First, notice that these 
fi ve variables apparently do not have the problem of different measurement units 
that we had for the continuous environmental variables – all variables are counts. 
There are, however, different average frequencies of counts, and as we mentioned 
in Chapter 3, variances of count variables can be positively related to their means. 
The means and variances of these fi ve variables are as follows:

a b c d e

mean 13.47 8.73 8.40 10.90 2.97

variance 157.67 83.44 73.62 44.44 15.69

Variable a with the highest mean also has the highest variance, while e with the 
lowest mean has the lowest variance. Only d is out of line with the others, having 
smaller variance than b and c but a higher mean. Because this variancemean 
relationship is a natural phenomenon for count variables, not one that is just par-
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Chi-square distance

ticular to any given example, some form of compensation of the variances needs 
to be performed, as before. It is not common for count data to be standardized as 
Z-scores (i.e., with mean 0, variance 1), as was the case for continuous variables in 
(4.6). The most common ways of balancing the contributions of count variables 
to the distance measure are:

  a power transformation: usually square root n1/2, where n is the count value, but 
also double square root (i.e., fourth root n1/4) when the variance increases 
faster than the mean (this situation is called overdispersion in the literature);

  a “shifted log” transformation: because of the many zeros in ecological count data, 
a positive number, usually 1, has to be added to the data before log-transforming; 
that is, log(1n);

  chi-square distance: this is a weighted Euclidean distance of the form (4.8), which 
we shall discuss now.

The chi-square distance is special because it is at the heart of correspond-
ence analysis, used extensively in ecological research. The fi rst premise of this 
distance function is that it is calculated on relative counts,1 and not on the 
original ones, and the second is that it standardizes by the mean and not by 
the variance.

In our example, the count data are fi rst converted into relative counts by dividing 
the rows by their row totals so that each row contains relative proportions across 
the species, which add up to 1. These sets of proportions are called profi les, site 
profi les in this example – see Exhibit 4.6.

The extra row at the end of Exhibit 4.6 gives the set of proportions called the 
average profi le. These are the proportions calculated on the set of column totals, 
which are equal to 404, 262, 252, 327 and 89 respectively, with grand total 1334. 
Hence, 404/13340.303, 262/13340.196, etc. Chi-square distances are then 
calculated between the profi les, in a weighted Euclidean fashion, using the in-
verse of the average proportions as weights. Suppose cj denotes the j -th element 
of the average profi le, that is the abundance proportion of the j -th species in 
the whole data set. Then the chi-square 2 distance, denoted by , between two sites 
with profi les xx1 x2 ··· xJ and yy1 y2 ··· yJ is defi ned as:

1 A defi nition of chi-square distance on raw counts is referred to in the bibliographical appendix.
2 From the defi nition of this distance function it would have been better to call it the chi distance function, 
because it is not squared, as in the chi-square statistic! But the “chi-square” epithet persists in the literature, so 
when we talk of its square we say the “squared chi-square distance”.
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Exhibit 4.6:
Profiles of the sites, 

obtained by dividing the 
rows of counts in Exhibit 

1.1 by their respective row 
totals. The last row is the 
average profile, computed 

in the same way, as 
proportions of the column 
totals of the original table 

of counts

 ∑
j

J

= 1
x y

j
j jc

x y, ( )21= −χ  (4.8)

Exhibit 4.7 shows part of the 3030 triangular matrix of chi-square distances. 
Once again, this is a large matrix with more numbers (435) than the original 
table of counts (150), and we shall see the benefi t of calculating these distances 

Site No. Species proportions

a b c d e

s1 0.000 0.074 0.333 0.519 0.074

s2 0.481 0.074 0.241 0.204 0.000

s3 0.000 0.370 0.333 0.296 0.000

s4 0.000 0.000 0.833 0.167 0.000

s5 0.342 0.132 0.079 0.263 0.184

s6 0.360 0.244 0.151 0.186 0.058

s7 0.321 0.214 0.000 0.393 0.071

s8 0.667 0.000 0.000 0.000 0.333

s9 0.315 0.130 0.185 0.259 0.111

s10 0.000 0.125 0.650 0.225 0.000

s11 0.000 0.276 0.276 0.207 0.241

s12 0.264 0.208 0.245 0.283 0.000

s13 0.000 0.000 0.760 0.000 0.240

s14 0.591 0.000 0.000 0.409 0.000

s15 0.154 0.000 0.385 0.462 0.000

s16 0.592 0.282 0.000 0.042 0.085

s17 1.000 0.000 0.000 0.000 0.000

s18 0.236 0.169 0.371 0.225 0.000

s19 0.053 0.132 0.316 0.421 0.079

s20 0.000 0.303 0.424 0.273 0.000

s21 0.444 0.000 0.000 0.222 0.333

s22 0.493 0.141 0.000 0.127 0.239

s23 0.146 0.171 0.024 0.415 0.244

s24 0.316 0.211 0.351 0.123 0.000

s25 0.395 0.321 0.000 0.284 0.000

s26 0.492 0.323 0.000 0.154 0.031

s27 0.333 0.236 0.000 0.347 0.083

s28 0.302 0.057 0.226 0.377 0.038

s29 0.423 0.000 0.269 0.308 0.000

s30 0.282 0.435 0.059 0.212 0.012

ave. 0.303 0.196 0.189 0.245 0.067
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Exhibit 4.7:
Chi-square distances 
between the 30 samples, 
based on the biological 
count data, showing part 
of the triangular distance 
matrix

Distances for categorical 
data

from Part 3 onwards. For the moment, think of Exhibit 4.5 as a way of measuring 
similarities and differences between the 30 samples based on the (continuous) 
environmental data, while Exhibit 4.7 is the similar idea but based on the count 
data. Notice that the scale of distances in Exhibit 4.5 is not comparable to that of 
Exhibit 4.7, but the ordering of the values does have some meaning: for example, 
in Exhibit 4.5 the smallest standardized Euclidean distance (amongst those that 
we report there) is 0.381, between sites s30 and s25. In Exhibit 4.7 these two 
sites have one of the smallest chi-square distances as well. This means that these 
two sites are relatively similar in their environmental variables and also in their 
biological compositions. This might be an interesting fi nding, but we will need 
to study all the pairwise distances, and not just this isolated one, in order to see if 
there is any connection between the biological abundances and the environmen-
tal variables (this will come later).

In our introductory example we have only one categorical variable (sediment), so 
the question of computing distance is fairly trivial: if two samples have the same 
sediment then their distance is 0, and if different then it is 1. But what if there 
were several categorical variables, say K of them? There are several possibilities, 
one of the simplest being to count how many matches and mismatches there are 
between samples, with optional averaging over variables. For example, suppose 
that there are fi ve categorical variables, C1 to C5, each with three categories, 
which we denote by a/b/c and that there are two samples with the following char-
acteristics:

s1 s2 s3 s4 s5 s6 · · · s24 s25 s26 s27 s28 s29

s2 1.139

s3 0.855 1.137

s4 1.392 1.630 1.446

s5 1.093 0.862 1.238 2.008  

s6 1.099 0.539 0.887 1.802 0.597

s7 1.046 0.845 1.081 2.130 0.573 0.555  

·
·
·

·
·
·

·
·
·

·
·
·

·
·
·

·
·
·

·
·
·

·
·
·

·
· ·

s25 1.312 0.817 1.057 2.185 0.858 0.495 · · · 0.917

s26 1.508 0.805 1.224 2.241 0.834 0.475 · · · 0.915 0.338

s27 1.100 0.837 1.078 2.136 0.520 0.489 · · · 0.983 0.412 0.562

s28 0.681 0.504 0.954 1.572 0.724 0.613 · · · 0.699 0.844 0.978 0.688

s29 0.951 0.296 1.145 1.535 0.905 0.708 · · · 0.662 0.956 1.021 0.897 0.340

s30 1.330 0.986 0.846 2.101 0.970 0.535 · · · 0.864 0.388 0.497 0.617 1.001 1.142
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C1 C2 C3 C4 C5

Sample 1 a c c b a 

Sample 2 b c b a a

Then the number of matches is 2 and the number of mismatches is 3, hence the 
distance between the two samples is 3 divided by 5 (the number of variables), that 
is 0.6. This is called the simple matching coeffi cient. Sometimes this coeffi cient is ex-
pressed in terms of similarity, not dissimilarity, in which case the similarity would 
be equal to 0.4, the relative number of matches – so one should check which 
way it is being defi ned. Here we stick to distances, in other words dissimilarities 
or mismatches. Note that this coeffi cient is directly proportional to the squared 
Euclidean distance calculated between these data in dummy variable form, where 
each category defi nes a zero-one variable:

C1a C1b C1c C2a C2b C2c C3a C3b C3c C4a C4b C4c C5a C5b C5c

Sample 1 1 0 0 0 0 1 0 0 1 0 1 0 1 0 0

Sample 2 0 1 0 0 0 1 0 1 0 1 0 0 1 0 0

The squared Euclidean distance sums the squared differences between these 
two vectors: if there is an agreement (there are two matches in this example) 
there is zero sum of squared differences, but if there is a discrepancy there are 
two differences, 1 and 1, which give a sum of squares of 2. So the sum of 
squared differences here is 6, and if this is expressed relative to the maximum 
discrepancy that can be achieved, namely 10 when there are no matches in the 
5 variables, then this gives exactly the same value 0.6 as before.

There are several variations on the theme of the matching coeffi cient, and one of 
them is the chi-square distance for multivariate categorical data, which introduces 
a weighting of each category inverse to its mean value, as for profi le data based 
on counts. Suppose that there are J categories in total (in the above example 
J15) and that the total occurrences of each category are denoted by n1,…,nJ , 
with total nj nj (since the totals for each variable equal the sample size, n will 
be the sample size times the number of variables). Then defi ne cj as follows: 
cjnj /n and use 1/cj as weights in a weighted Euclidean distance between the 
samples coded in dummy variable form. The idea here is, as before, that mis-
matches on a rare category should have a higher weight in the distance calcula-
tion than that of a frequent category. Just like the chi-square distance function 
is at the heart of correspondence analysis of abundance data, so this form of the 
chi-square for multivariate categorical data is at the heart of multiple correspondence 
analysis. We do not treat multiple correspondence analysis specifi cally in this book, 
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SUMMARY:
Measures of distance 
between samples: 
Euclidean

as it is more common in the social sciences where almost all the data are categori-
cal, for example in survey research.

1.  Pythagoras’ theorem extends to sets of observations (called vectors) in multidi-
mensional space, for example sets of observations corresponding to a series of 
samples: the squared length of a vector is the sum of squares of its coordinates. 

2.  As a consequence, squared distances between two vectors (e.g., between two 
samples) in multidimensional space are the sum of squared differences in 
their coordinates. This multidimensional distance is called the Euclidean dis-
tance, and is the natural generalization of our three-dimensional notion of 
physical distance to more dimensions.

3.  When variables are on different measurement scales, standardization is neces-
sary to balance the contributions of the variables in the computation of dis-
tance. The Euclidean distance computed on standardized variables is called 
the standardized Euclidean distance.

4.  Standardization in the calculation of distances is equivalently thought of as 
weighting the variables – this leads to the notion of Euclidean distances with 
any choice of weights, called weighted Euclidean distance. 

5.  A particular weighted Euclidean distance applicable to count data is the chi-
square distance, which is calculated between the relative counts for each sample, 
called profi les, and weights each variable by the inverse of the variable’s overall 
mean count.
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The axioms of distance

Chapter 

Measures of Distance between Samples: 
Non-Euclidean

Euclidean distances are special because they conform to our physical concept of 
distance. But there are many other distance measures which can be defi ned be-
tween multivariate samples. These non-Euclidean distances are of different types: 
some still satisfy the basic axioms of what mathematicians call a distance metric, 
while others are not even true metrics but still make good sense as a measure 
of difference between samples in the context of certain data. In this chapter we 
shall consider several non-Euclidean distance measures that are popular in the 
environmental sciences: the Bray-Curtis dissimilarity, the L1 distance (also called 
the city-block or Manhattan distance) and the Jaccard index for presence-absence 
data. We also consider how to measure dissimilarity between samples for which 
we have mixed-scale data.

Contents

The axioms of distance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  61
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In mathematics, a true measure of distance, also called a metric, obeys three prop-
erties. These metric axioms are as follows (Exhibit 5.1), where dab denotes the 
distance between objects a and b:

 1. dabdba

 2. dab0    and0 if and only if ab (5.1)

 3. dabdacdca

5
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Exhibit 5.1:
Illustration of the triangle 
inequality for distances in 

Euclidean space

Bray-Curtis dissimilarity

The fi rst two axioms seem self-evident: the fi rst says that the distance from a to b is 
the same as from b to a, in other words the measure is symmetric; the second says 
that distances are always positive except when the objects are identical, in which 
case the distance is necessarily 0. The third axiom, called the triangle inequality, 
may also seem intuitively obvious but is the more diffi cult one to satisfy. If we draw 
a triangle abc in our Euclidean world, for example in Exhibit 5.1, then it is obvi-
ous that the distance from a to b must be shorter than the sum of the distances 
via another point c, that is from a to c and from c to b. The triangle inequality can 
only be an equality if c lies exactly on the line connecting a and b (see the right 
hand sketch in Exhibit 5.1).

But there are many apparently acceptable measures of distance that do not satisfy 
this property: with those it would be theoretically possible to get a “route” from a 
to b via a third point c which is shorter than from a to b “directly”. Because such 
measures that do not satisfy the triangle inequality are not true distances (in the 
mathematical sense) they are usually called dissimilarities. 

When it comes to species abundance data collected at different sampling loca-
tions, the Bray-Curtis (or Sørensen) dissimilarity is one of the most well-known ways 
of quantifying the difference between samples. This measure appears to be a very 
reasonable way of achieving this goal but it does not satisfy the triangle inequality 
axiom, and hence is not a true distance (we shall discuss the implications of this 
in later chapters when we analyse Bray-Curtis dissimilarities). To illustrate its defi -
nition, we consider again the count data for the last two samples of Exhibit 1.1, 
which we recall here:

a b c d e Sum

s29 11  0 7  8 0 26

s30 24 37 5 18 1 85

a

b

c

a

b

c

dab < dac + dcb dab = dac + dcb
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One of the assumptions of the Bray-Curtis measure is that the sampled areas 
or volumes are of the same size. This is because dissimilarity will be computed 
on raw counts, not on relative counts, so the fact that there is higher overall 
abundance at site s30 is part of the difference between these two samples – that 
is, “size” and “shape” of the count vectors will be taken into account in the 
measure.1

The computation involves summing the absolute differences between the 
counts and dividing this by the sum of the abundances in the two samples, de-
noted here by b:

 = =s29, s30 0.568  b =− + − + − + − + −
+

11 24 0 37 7 5 8 18 0 1

26 85
63
111

The general formula for calculating the Bray-Curtis dissimilarity between samples 
i and i is as follows, supposing that the counts are denoted by ni j and that their 
sample (row) totals are ni :

 
∑
j

J

= 1
iib

n n

n n

ij i j

i i
′ =

−

+

′

+ ′+

 (5.2)

This measure takes on values between 0 (for identical samples: ni jnij for all j) 
and 1 (samples completely disjoint; that is, when there is a nonzero abundance of 
a species in one sample, then it is zero in the other: ni j > 0 implies nij0) – hence 
it is often multiplied by 100 and interpreted as a percentage. Exhibit 5.2 shows 
part of the Bray-Curtis dissimilarities between the 30 samples (the caption points 
out a violation of the triangle inequality).

If the Bray-Curtis dissimilarity is subtracted from 100, a measure of similar-
ity is obtained, called the Bray-Curtis index. For example, the similarity between 
sites s25 and s4 is 10093.96.1%, which is the lowest amongst the values 
displayed in Exhibit 5.2; whereas the highest similarity is for sites s25 and s26: 
10013.786.3%. Checking back to the data in Exhibit 1.1 one can verify the 
similarity between sites s25 and s26, compared to the lack of similarity between 
s25 and s4.

1 In fact, the Bray-Curtis dissimilarity can be computed on relative abundances, as we did for the chi-square 
distance, to take into account only “shape” differences – this point is discussed later. This version is often 
referred to as the relative Sørensen dissimilarity.
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Exhibit 5.2:
Bray-Curtis dissimilarities, 

multiplied by 100, between 
the 30 samples of Exhibit 

1.1, based on the count 
data for species a to e. 
Violations of the triangle 
inequality can be easily 
picked out: for example, 

from s25 to s4 the Bray-
Curtis is 93.9, but the sum 

of the values “via s6” from 
s25 to s6 and from s6 to 
s4 is 18.669.287.8, 

which is shorter

Bray-Curtis dissimilarity 
versus chi-square 

distance

An ecologist would like some recommendation about whether to use Bray-
Curtis or chi-square on a particular data set. It is not possible to make any 
absolute statement of which is preferable, but we can point out some ad-
vantages and disadvantages of each one. The advantage of the chi-square 
distance is that it is a true metric, while the Bray-Curtis dissimilarity violates 
the triangle inequality, which can be problematic when we come to analysing 
them later. The advantage of Bray-Curtis is that the scale is easy to under-
stand: 0 means the samples are exactly the same, while 100 is the maximum 
difference that can be observed between two samples. The chi-square, on the 
other hand, has a maximum which depends on the marginal weights of the 
data set, and it is difficult to assign any substantive meaning to any particular 
value. If two samples have the same relative abundances, but different totals, 
then Bray-Curtis is positive, whereas chi-square is zero. As pointed out in a 
previous footnote in this chapter, Bray-Curtis dissimilarities can be calcu-
lated on the relative abundances (although conventionally the calculation 
is on raw counts), and in addition we could calculate chi-square distances 
on the raw counts, without “relativizing” them (although conventionally the 
calculation is on relative counts). This would make the comparison between 
the two approaches fairer.

So we also calculated Bray-Curtis on the relative counts and chi-square 
on the raw counts – Exhibit 5.3 shows parts of the four distance matrices, 
where the values in each triangular matrix have been strung out column-

s1 s2 s3 s4 s5 s6 · · · s24 s25 s26 s27 s28 s29

s2 45.7  

s3 29.6 48.1  

s4 46.7 55.6 46.7  

s5 47.7 34.8 50.8 78.6  

s6 52.2 22.9 52.2 69.2 41.9  

s7 45.5 41.5 49.1 87.0 21.2 50.9  

·
·
·

·
·
·

·
·
·

·
·
·

·
·
·

·
·
·

·
·
·

·
·
·

·
· ·

s25 70.4 39.3 66.7 93.9 52.9 18.6 · · · 46.4  

s26 69.6 32.8 60.9 92.8 41.7 15.2 · · · 39.3 13.7  

s27 63.6 38.1 63.6 93.3 38.2 21.5 · · · 42.6 16.3 22.6  

s28 32.5 21.5 50.0 57.7 31.9 29.5 · · · 30.9 41.8 47.5 34.4  

s29 43.4 35.0 43.4 54.5 31.2 53.6 · · · 39.8 64.5 58.2 61.2 34.2  

s30 60.7 36.7 58.9 84.5 48.0 21.6 · · · 40.8 18.1 25.3 23.6 37.7 56.8
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Exhibit 5.3:
Various dissimilarities and 
distances between pairs 
of sites (count data from 
Exhibit 1.1). B-C raw: 
Bray Curtis dissimilarities 
on raw counts (usual 
definition and usage), 
chi2 raw: chi-square 
distances on raw counts, 
B-C rel: Bray-Curtis 
dissimilarities on relative 
counts, chi2 rel: 
chi-square distances on 
relative counts (usual 
definition and usage)

wise (the column “site pair” shows which pair corresponds to the values in 
the rows).

The scatterplots of the two comparable sets of measures are shown in Ex-
hibit 5.4. Two features of these plots are immediately apparent: first, there is 
much better agreement between the two approaches when the counts have 
been relativized (plot (b)); and second, one can obtain 100% dissimilarity 
for the Bray-Curtis corresponding to different values of the chi-square dis-
tances: for example, in Exhibit 5.4(a) there are chi-square distances from 
approximately 5 to 16 corresponding to points above the tic-mark of 100 on 
the axis B-C raw. 

Site pair B-C raw chi2 raw B-C rel chi2 rel

(s2,s1)  45.679  7.398  48.148 1.139

(s3,s1)  29.630  3.461  29.630 0.855

(s4,s1)  46.667  4.146  50.000 1.392

(s5,s1)  47.692  5.269  50.975 1.093

(s6,s1)  52.212 10.863  53.058 1.099

(s7,s1)  45.455  4.280  46.164 1.046

(s8,s1)  93.333  5.359  92.593 2.046

(s9,s1)  33.333  5.462  40.741 0.868

(s10,s1)  40.299  6.251  36.759 0.989

(s11,s1)  35.714  4.306  36.909 1.020

(s12,s1)  37.500  5.213  39.762 0.819

(s13,s1)  57.692  5.978  59.259 1.581

(s14,s1)  63.265  5.128  59.091 1.378

(s15,s1)  20.755  1.866  20.513 0.464

(s16,s1)  85.714 13.937  80.960 1.700

(s17,s1) 100.000  5.533 100.000 2.258

(s18,s1)  56.897 11.195  36.787 0.819

(s19,s1)  16.923  1.762  11.501 0.258

(s20,s1)  33.333  3.734  31.987 0.800

·
·
·

 ·
 ·
 ·

 ·
 ·
 ·

 ·
 ·
 ·

·
·
·

(s23,s22)  34.400  7.213  25.655 0.688

(s24,s22)  61.224  9.493  35.897 0.897

(s25,s22)  23.567  7.855  25.801 0.617

s(24,s23)  34.177  4.519  16.401 0.340

s(25,s23)  37.681 11.986  37.869 1.001

(s25,s24)  56.757 13.390  44.706 1.142
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Exhibit 5.4:
Graphical comparison of 

Bray-Curtis dissimilarities 
and chi-square distances for 

(a) raw counts, taking into 
account size and shape, and 

(b) relative counts, taking 
into account shape only
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L1 distance (city-block)

This means that the measurement of shape is fairly similar in both measures, but 
the way they take size into account is quite different. A good illustration of this 
second feature is the measure between samples s1 and s17, which have counts as 
follows (taken from Exhibit 1.1): 

a b c d e Sum

s1 0 2 9 14 2 27

s17 4 0 0 0 0 4

The Bray-Curtis dissimilarity is 100% because the two sets of counts are disjoint, 
whereas the chi-square distance is a fairly low 5.533 (see row (s17, s1) of Exhib-
it 5.3). This is because the absolute differences between the two sets are not large. 
If they were larger, say if we doubled both sets of counts, then the chi-square dis-
tance would increase accordingly whereas the Bray-Curtis would remain at 100%. 
It is by considering examples like these that researchers can obtain a feeling for 
the properties of these measures, in order to be able to choose the measure that 
is most appropriate for their own data. 

When the Bray-Curtis dissimilarity is applied to relative counts, that is, row pro-
portions ri jni j / ni , the row sums ri  in the denominator of (5.2) are 1 for every 
row, so that the dissimilarity reduces to:

 ∑
j

J

= 1
ij i jbii r r ′−=′

1
2

 (5.3)

The sum of absolute differences between two vectors is called the L1 dis-
tance, or city-block distance. This is a true distance function since it obeys 
the triangle inequality, and as can be seen in Exhibit 5.4(b), agrees fairly 
well with the chi-square distance for the data under consideration. The 
reason why it is called the city-block distance, and also Manhattan distance or 
“taxicab” distance, can be seen in the two-dimensional illustration of Exhibit 
5.5. Going from a point A to a point B is achieved by walking “around the 
block”, compared to the Euclidean “straight line” distance. The city-block 
and Euclidean distances are special cases of the Lp distance, defined here 
between rows of a data matrix X (the Euclidean distance is obtained for 
p2):

 ∑
j

J

= 1

dii ijx′ ( ) = − xxi j

p
p

′
⎛
⎝⎜

⎞
⎠⎟

1/

p  (5.4)
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Exhibit 5.5:
Two-dimensional illustration 

of the L1 (city-block) and 
L2 (Euclidean) distances 

between two points i and i': 
the L1 distance is the sum 

of the absolute differences 
in the coordinates, while the 

L2 distance is the square 
root of the sum of squared 

differences

Dissimilarity measures 
for presence−absence 

data

In Chapter 4 we considered the matching coeffi cient and the chi-square distance 
for categorical data in general, but there is a special case which is often of inter-
est to ecologists: presenceabsence, or dichotomous, data. When categorical 
variables have only two categories, there are a host of coeffi cients defi ned to 
measure inter-sample difference (see Bibliographical Appendix for references to 
this topic). Here we consider one example which is an alternative to the match-
ing coeffi cient.

Exhibit 5.6 gives some data that we shall use again (in Chapter 7), concern-
ing the presenceabsence of 10 species in 7 samples. The inter-sample dif-
ferences based on the matching coefficient would be obtained either by 
counting the matches or mismatches between the two samples. For example, 
between samples A and B there are 6 matches and 4 mismatches. Usually 
expressed relative to the number of variables (species) this would give a 
similarity value of 0.6 and a dissimilarity value of 0.4. But often in ecology 
it is possible to have very many species in the data set, up to 100 or more, 
and in each sample we find relatively few of these present. This makes the 
number of co-absences of species very high compared to the co-presences, 
but both count as matches. If co-absences are not informative, we can simply 
ignore them and calculate similarity in terms of co-presences. Furthermore, 
this co-presence count is expressed not relative to the total number of spe-
cies but relative to the number of species present in at least one of the two 

Axis 1

Axis 2

xi2

|xi2 – xi' 2|

xi' 2

|xi1 – xi' 1|

xi' 1xi1

i  [ xi1  xi2 ]

i'  [ xi' 1  xi' 2 ]

L1 : dii' (1) =  |xi1 – xi' 1| + |xi2 – xi' 2| 

L2 : dii' (2) =  (|xi1 – xi' 1|
2 + |xi2 – xi' 2|

2
 )½
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Exhibit 5.6:
Presence−absence data of 
10 species in 7 samples

samples under consideration. This is the definition of the Jaccard index for 
dichotomous data. Taking samples A and B of Exhibit 5.6 again, the number 
of co-presences is 4, we ignore the 2 co-absences, then we express 4 relative to 
8, so the result is 0.5. In effect, the Jaccard index is the matching coefficient 
of similarity calculated for a pair of samples after eliminating all the species 
which are co-absent. The dissimilarity between two samples is – as before – 1 
minus the similarity. 

Here’s another example, for samples C and D. This pair has 4 co-absences (for spe-
cies 1, 7, 9 and 10), so we eliminate them. To get the dissimilarity we can count the 
mismatches – in fact, all the rest are mismatches – so the dissimilarity is 6/61, 
the maximum that can be attained. Using the Jaccard approach we would say that 
samples C and D are completely different, whereas the matching coeffi cient would 
lead to a dissimilarity of 0.6 because of the 4 matched co-absences.

To formalize these defi nitions, the counts of matches and mismatches in a pair of 
samples are put into a 22 table as follows:

Sample 2

1 0

Sample 1
1 a b a + b

0 c d c + d

a + c b + d a + b + c + d

where a is the count of co-presences (1 and 1), b the count of mismatches where 
sample 1 has value 1 but sample 2 has value 0, and so on. The overall number of 

Samples Species

sp1 sp2 sp3 sp4 sp5 sp6 sp7 sp8 sp9 sp10

A 1 1 1 0 1 0 0 1 1 1

B 1 1 0 1 1 0 0 0 0 1

C 0 1 1 0 1 0 0 1 0 0

D 0 0 0 1 0 1 0 0 0 0

E 1 1 1 0 1 0 1 1 1 0

F 0 1 0 1 1 0 0 0 0 1

G 0 1 1 0 1 1 0 1 1 0
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Distances for mixed-
scale data

matches is ad, and mismatches bc. The two measures of distance/dissimilar-
ity considered so far are thus defi ned as:

 Matching coeffi cient dissimilarity: b c
a b c d

a d
a b c d

= −+
+ + +

+
+ + +

1  (5.5)

 Jaccard index dissimilarity: b c
a b c

a
a

= −+
+ +

1
+ +b c

 (5.6)

To give one fi nal example, the correlation coeffi cient can be used to measure 
the similarity between two vectors of dichotomous data, and can be shown to 
be equal to:

 = −
+ + + +

r
ad bc

a b c d a c b d( )( )( )( )
 (5.7)

Hence, a dissimilarity can be defi ned as 1r. Since 1r has a range from 0 
(when bc0, no mismatches) to 2 (when ad0, no matches), a convenient 
measure between 0 and 1 is ½ (1r).

When a data set contains different types of variables and it is required to measure 
inter-sample distance, we are faced with another problem of standardization: how 
can we balance the contributions of these different types of variables in an equi-
table way? We will demonstrate two alternative ways of doing this. The following 
is an example of mixed data (shown here are the data for four stations out of a 
set of 33:

Station Continuous variables Discrete variables

Depth Temperature Salinity Region Substrate

s3 30 3.15 33.52 Ta Si/St

s8 29 3.15 33.52 Ta Cl/Gr

s25 30 3.00 33.45 Sk Cl/Sa

·
·
·

·
·
·

·
·
·

·
·
·

·
·
·

·
·
·

s84 66 3.22 33.48 St Cl

Apart from the three continuous variables, depth, temperature and salinity there 
are the categorical variables of region (Tarehola, Skognes, Njosken and Storura), 
and substrate character (which can be any selection of clay, silt, sand, gravel and 
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stone). The fact that more than one substrate category can be selected implies 
that each category is a separate dichotomous variable, so that substrate consists 
of fi ve different variables.

The fi rst way of standardizing the continuous against the discrete variables is 
called Gower’s generalized coeffi cient of dissimilarity. First we express the discrete vari-
ables as dummies and calculate the means and standard deviations of all variables 
in the usual way:

Station Continuous variables Sampled region Substrate character

Depth Temperature Salinity Tarehola Skognes Njosken Storura Clay Silt Sand Gravel Stone

s3 30 3.15 33.52 1 0 0 0 0 1 0 0 1

s8 29 3.15 33.52 1 0 0 0 1 0 0 1 0

s25 30 3.00 33.45 0 1 0 0 1 0 1 0 0

·
·
·

·
·
·

·
·
·

·
·
·

·
·
·

·
·
·

·
·
·

·
·
·

·
·
·

·
·
·

·
·
·

·
·
·

·
·
·

s84 66 3.22 33.48 0 0 0 1 1 0 0 0 0

mean 58.15 3.086 33.50 0.242 0.273 0.242 0.242 0.606 0.152 0.364 0.182 0.061

sd 32.45 0.100 0.076 0.435 0.452 0.435 0.435 0.496 0.364 0.489 0.392 0.242

Notice that dichotomous variables (such as the substrate categories) are coded 
as a single dummy variable, not two, while polychotomous variables such as re-
gion are split into as many dummies as there are categories. The next step is to 
standardize each variable and multiply all the columns corresponding to dummy 
variables by /1 2 0.7071, a factor which compensates for their higher variance 
due to the 0/1 coding:

Station Continuous variables Sampled region Substrate character

Depth Temperature Salinity Tarehola Skognes Njosken Storura Clay Silt Sand Gravel Stone

s3 –0.868  0.615  0.260  1.231 –0.426 –0.394 –0.394 –0.864  1.648 –0.526 –0.328  2.741

s8 –0.898  0.615  0.260  1.231 –0.426 –0.394 –0.394  0.561 –0.294 –0.526  1.477 –0.177

s25 –0.868 –0.854 –0.676 –0.394  1.137 –0.394 –0.394  0.561 –0.294  0.921 –0.328 –0.177

·
·
·

·
·
·

·
·
·

·
·
·

·
·
·

·
·
·

·
·
·

·
·
·

·
·
·

·
·
·

·
·
·

·
·
·

·
·
·

s84  0.242  1.294 –0.294 –0.394 –0.426 –0.394  1.231  0.561 –0.294 –0.526 –0.328 –0.177

Now distances are calculated between the stations using either the L1 (city-block) 
or L2 (Euclidean) metric. For example, using the L1 metric and dividing the sum 
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Exhibit 5.7:
Distances between four 

stations based on the L1 
distance between their 

standardized and rescaled 
values, as described above. 

The distances are shown 
equal to the part due to 
the categorical (CAT.) 
variables plus the part 
due to the continuous 

(CONT.) variables

of absolute differences by the total number of variables (12 in this example), 
the distances between the above four stations are given in the left hand table of 
Exhibit 5.7. Because the L1 distance decomposes into parts for each variable, we 
can show the part of the distance due to the categorical variables, and the part 
due to the continuous variables. In this example the categorical variables are 
contributing more to the differences between the stations – the differences in 
the continuous variables are actually small if one looks at the original data, ex-
cept for the distance between s84 and s25, where there is a bigger difference in 
the continuous variables, which then contribute almost the same (0.303) as the 
categorical ones (0.386). 

Exhibit 5.7 suggests the alternative way of combining different types of variables: fi rst 
compute the distances which are the most appropriate for each set and then add 
them to one another. For example, suppose there are three types of data, a set of 
continuous variables, a set of categorical variables and a set of percentages or counts. 
Then compute the distance or dissimilarity matrices D1, D2 and D3 appropriate to 
each set of same-scale variables, and then combine these in a weighted average:

 + +
+ +

= w w w
w w w

1 1 2 2 3 3

1 2

D D D D

33

 (5.8)

Weights are a subjective but convenient inclusion, not only to account for the dif-
ferent scales in the distance matrices but also because there might be substantive 
reasons for down-weighting the distances for one set of variables, which might 
not be so important, or might suffer from high measurement error, for example. 
A default weighting system could be to make the variance of the distances the 
same in each matrix: wk1/sk, where sk is the standard deviation of the distances 
in matrix Dk. 

A third possible way to cope with mixed-scale data such as these would be to fuzzy-
code the continuous variables, as described in Chapter 3, and then apply a meas-

Total distance = Distance CAT. variables + Distance CONT. variables

s3 s8 · · · s25 s3 s8 · · · s25 s3 s8 · · · s25

s8 0.677  s8 0.674  s8 0.003  

s25 1.110 0.740 s25 0.910 0.537 s25 0.200 0.203
·
·
·

·
·
·

·
·
·

·
·
·

·
· ·

=
·
·
·

·
·
·

·
·
·

·
·
·

·
· ·

+
·
·
·

·
·
·

·
·
·

·
·
·

·
· ·

s84 0.990 0.619 · · · 0.689 s84 0.795 0.421 · · · 0.386 s84 0.195 0.198 · · · 0.303
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SUMMARY:
Measures of distance 
between samples: non-
Euclidean

ure of dissimilarity appropriate to categorical data, with possible standardization 
as also discussed in Chapter 3. We shall make full use of this option in subsequent 
chapters and the two fi nal case studies.

1.  The sum of absolute differences, or L1 distance (or city-block distance), is an 
alternative to the Euclidean distance: an advantage of this distance is that it 
decomposes into contributions made by each variable (for the L2 Euclidean 
distance, we would need to decompose the squared distance).

2.  A well-defi ned distance function obeys the triangle inequality, but there are 
several justifi able measures of difference between samples that do not have 
this property: to distinguish these from true distances we often refer to them 
as dissimilarities. 

3.  The Bray-Curtis dissimilarity is frequently used by ecologists to quantify dif-
ferences between samples based on abundance or count data. This measure 
is usually applied to raw abundance data, but can be applied to relative abun-
dances just like the chi-square distance, in which case it is equivalent to the L1, 
or city-block, distance. The chi-square distance can also be applied to the origi-
nal abundances to include overall size differences in the distance measure.

4.  A dissimilarity measure for presenceabsence data is based on the Jaccard 
index, where co-absences are eliminated from the calculation, otherwise the 
measure resembles the matching coeffi cient.

5.  Distances based on mixed-scale data can be computed after a process of stand-
ardization of all variables, using the L1 or L2 distances. Alternatively, distance 
matrices can be calculated for each set of same-scale variables and then these 
matrices can be linearly combined, optionally with user-defi ned weights. 
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The geometry 
of variables

Chapter 

Measures of Distance and Correlation
between Variables

In Chapters 4 and 5 we concentrated on distances between samples of a data 
matrix, which are usually the rows. We now turn our attention to the variables, 
usually the columns, and we can consider measures of distance and dissimilarity 
between these column vectors. More often, however, we measure the similarity 
between variables: this can be in the form of correlation coeffi cients or other 
measures of association. In this chapter we shall look at the geometric properties 
of variables, and various measures of correlation between them. In particular, 
we shall look at the geometric concept called a scalar product, which is highly 
related to the concept of Euclidean distance. The decision about which type of 
correlation function to use depends on the measurement scales of the variables, 
as we already saw briefl y in Chapter 1. Finally, we also consider statistical tests of 
correlation, introducing the idea of permutation testing.
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In Exhibits 4.3 and 5.5 in the previous chapters we have been encouraging the 
notion of samples being points in a multidimensional space. Even though we can-
not draw points in more than three dimensions, we can easily extend the math-
ematical defi nitions of distance to samples for which we have J measurements, 
for any J. Now, rather than considering the samples, the rows of the data matrix, 

6
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Exhibit 6.1:
(a) Two variables measured 

in three samples (sites in 
this case), viewed in three 
dimensions, using original 

scales; (b) Standardized 
values; (c) Same variables 

plotted in three dimensions 
using standardized values. 
Projections of some points 

onto the “floor” of the 
s2s3 plane are shown, 

to assist in understanding 
the three-dimensional 
positions of the points
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Correlation coefficient as 
an angle cosine

Exhibit 6.2:
Triangle of pollution and 
depth vectors with respect 
to origin (O) taken out of 
Exhibit 6.1(c) and laid flat

Correlation coefficient as 
a scalar product

we turn our attention to the variables (the columns of the data matrix) and their 
sets of observed values across the I samples. To be able to visualize two variables 
in I-dimensional space, we choose I3, since more than 3 is impossible to display 
or imagine. Exhibit 6.1(a) shows the variables depth and pollution according to 
the fi rst three samples in Exhibit 1.1, with depth having values (i.e. coordinates) 
72 75 59 and pollution 4.8 2.8 5.4. Notice that it is the samples that now 
form the axes of the space. The much lower values for pollution compared to 
those for depth causes the distance between the variables to be dominated by this 
scale effect. Standardizing overcomes this effect – Exhibit 6.1(b) shows standard-
ized values with respect to the mean and standard deviation of this sample of 
size 3 (hence the values here do not coincide with the standardized values in the 
complete data set, given in Exhibit 4.4). Exhibit 6.1(c) shows the two variables 
plotted according to these standardized values.

Exhibit 6.2 now shows the triangle formed by the two vectors in Exhibit 6.1(c) 
and the origin O, taken out of the three-dimensional space, and laid fl at. From 
the coordinates of the points we can easily calculate the lengths of the three sides 
a, b and c of the triangle (where the sides a and b subtend the angle  shown), so 
by using the cosine rule (c2a2b22abcos( )), which we all learned at school) 
we can calculate the cosine of the angle  between the vectors, which turns out to be 
0.798, exactly the correlation between pollution and depth (the angle is 142.9º). 
Notice that this is the correlation calculated in this illustrative sample of size 3, not 
in the original sample of size 30, where the estimated correlation is 0.396.

Hence we have illustrated the result that the cosine of the angle between two 
standardized variables, plotted as vectors in the space of dimensionality I, the 
number of samples, is their correlation coeffi cient. 

But there is yet another way of interpreting the correlation coeffi cient geo-
metrically. First we have to convert the standardized pollution and depth values 
to so-called unit variables. At present they are standardized to have variance 1, 
but a unit variable has sum of squares equal to 1 – in other words, its length is 
1. Since the variance of I centred values is defi ned as 1/(I1) times their sum 

Pollution

Depth

O

a b

c

θ
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Exhibit 6.3:
Same triangle as in Exhibit 

6.2, but with variables having 
unit length (i.e., unit variables. 

The projection of either 
variable onto the direction 

defined by the other variable 
vector will give the value of 

the correlation, cos(). (The 
origin O is the zero point 

– see Exhibit 6.1(c) – and 
the scale is given by the unit 

length of the variables.)

of squares, it follows that the sum of squares equals (I1) times the variance. 
By dividing the standardized values of pollution and depth in Exhibit 6.1(b) by 

I 1− , equal to 2 in this example, the standardized variables are converted to 
unit variables:

Site Depth Pollution

s1  0.277  0.242

s2  0.527 −0.796

s3 −0.804  0.554

it can be checked that 0.27720.5272(0.804)20.2422(0.796)20.55421
The correlation coeffi cient then has the alternative defi nition as the sum of the 
products of the elements of the unit variables:

(0.2420.277)(0.7960.527)(0.554(0.804))0.798

i.e., the scalar product:

 ∑r x xjj ij ij
i

I

1

=′ ′
=

 (6.1)

where xij are the values of the unit variables.

The concept of a scalar product underlies many multivariate techniques which 
we shall introduce later. It is closely related to the operation of projection, which is 
crucial later when we project points in high-dimensional spaces onto lower-
dimensional ones. As an illustration of this, consider Exhibit 6.3, which is the 
same as Exhibit 6.2 except that the sides a and b of the triangle are now shortened 

1 1

Pollution

Depth

O

–0.798

–0.798

θ
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Distances based on 
correlation coefficients

to length 1 as unit variables (the subtended angle is still the same). The projec-
tion of either variable onto the axis defi ned by the other one gives the exact value 
of the correlation coeffi cient.

When variables are plotted in their unit form as in Exhibit 6.3, the squared 
distance between the variable points is computed (again using the cosine rule) 
as 112 cos()22r, where r is the correlation. In general, therefore, a 
distance djj between variables j and j can be defi ned in terms of their correlation 
coeffi cient rjj as follows:

 d r rjj jj jj2 2 2 1= − = −′ ′ ′  (6.2)

where djj has a minimum of 0 when r1 (i.e., the two variables coincide), a 
maximum of 2 when r1 (i.e., the variables go in exact opposite directions), 
anddjj 2=′ when r0 (i.e., the two variables are uncorrelated and are at right-
angles to each other). For example, the distance between pollution and depth in 
Exhibit 6.3 is 2 1 0− −( .7798 1 896) .= . 

An inter-variable distance can also be defi ned in the same way for other types 
of correlation coeffi cients and measures of association that lie between 1 and 
1, for example the (Spearman) rank correlation. This so-called nonparametric 
measure of correlation is the regular correlation coeffi cient applied to the ranks 
of the data. In the sample of size 3 in Exhibit 6.1(a) pollution and depth have 
the following ranks: 

Site Depth Pollution

s1 2 2

s2 3 1

s3 1 3

where, for example in the pollution column, the value 2.8 for site 2 is the 
lowest value, hence rank 1, then 4.8 is the next lowest value, hence rank 2, 
and 5.4 is the highest value, hence rank 3. The correlation between these two 
vectors is 1, since the ranks are indeed direct opposites – therefore, the dis-
tance between them based on the rank correlation is equal to 2, the maximum 
distance possible. Exhibit 6.4 shows the usual linear correlation coeffi cient, 
the Spearman rank correlation, and their associated distances, for the three 
variables based on their complete set of 30 sample values. This example con-
fi rms empirically that the results are more or less the same using ranks instead 
of the original values: that is, most of the correlation is in the ordering of the 
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Exhibit 6.4:
Correlations and associated 
distances between the three 

continuous variables of 
Exhibit 1.1: first the regular 

correlation coefficient on 
the continuous data, and 

second the rank correlation

Distances between count 
variables

Distances between 
categorical variables and 

between categories

values rather than their actual numerical amounts. The rank correlation is also 
more robust, which means that it is less affected by unusual or extreme values 
in the data.

When it comes to the count data of Exhibit 1.1, the various distance measures 
considered in Chapter 5 can be used to measure distances between species. It 
makes little sense, however, to apply the chi-square distance or the Bray-Curtis 
dissimilarity to the raw data – these should be expressed as proportions, (i.e., 
relativized) with respect to their column sums. The two measures then turn 
out as in Exhibit 6.5, where the scatterplot shows them to be very similar, apart 
from their different scales, of course. The scatterplot is shown using the same 
horizontal and vertical scales as in Exhibit 5.4(b) in order to demonstrate that 
the spread of the distances between the columns is less than the corresponding 
spread between the rows.

Measures of distance between samples based on a set of dichotomous vari-
ables were defined on the basis of a 22 table of counts of matches and 
mismatches, and this same idea can be applied to the dichotomous variables 
based on their values across the samples: for example, the number of samples 
for which both variables were “present”, and so on. Then the various meas-
ures of dissimilarity (5.5), (5.6) and (5.7) apply, in particular the one based 
on the correlation coefficient r. But after (5.7) we proposed that 1r would 
make a reasonable measure of dissimilarity (or ½(1r) to give it a range of 
0 to 1). Now, based on our study of the geometry of variables in this chapter, 
a better choice would be 2 1 − r (or 1 2− r if again one prefers a value 
between 0 and 1), because this is a Euclidean distance and is therefore a true 
metric, whereas the previous definition turns out to be a squared Euclidean 
distance.

Correlation Depth Pollution Temperature Distance Depth Pollution Temperature

Depth  1 −0.3955 −0.0034 Depth 0 1.6706 1.4166

Pollution −0.3955  1 −0.0921 Pollution 1.6706 0 1.4779

Temperature −0.0034 −0.0921   1 Temperature 1.4166 1.4779 0

Rank 
correlation Depth Pollution Temperature Distance Depth Pollution Temperature

Depth  1 −0.4233 −0.0051 Depth 0 1.6872 1.4178

Pollution −0.4233  1 −0.0525 Pollution 1.6872 0 1.4509

Temperature −0.0051 −0.0525   1 Temperature 1.4178 1.4509 0
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Exhibit 6.5:
Chi-square distances and 
Bray-Curtis dissimilarities 
between the five species 
variables, in both cases 
based on their proportions 
across the samples 
(i.e., removing the effect 
of different levels of 
abundances for each 
species). The two sets of 
values are compared in the 
scatterplot

For categorical variables with more than two categories, there are two types of 
distances in question: distances between variables, and distances between cate-
gories of variables, both not easy to deal with. At the level of the variable, we can 
defi ne a measure of similarity, or association, and there are quite a few different 
ways to do this. The easiest way is to use a variation on the chi-square statistic 
computed on the cross-tabulation of the pair of variables. In our introductory 
data of Exhibit 1.1 there is only one categorical variable, but let us categorize 
depth into three categories: low, medium and high depth, by simply cutting up 
the range of depth into three parts, so there are 10 sites in each category – this 
is the crisp coding of a continuous variable described in Chapter 3. The cross-
tabulation of depth and sediment is then given in Exhibit 6.6 (notice that the 
counts of the depth categories are not exactly 10 each, because of some tied 
values in the depth data).

chi2 a b c d B-C a b c d

b 0.802  b 28.6  

c 1.522 1.407  c 60.9 56.4  

d 0.870 0.828 1.157 d 32.9 33.5 41.4

e 1.406 1.550 1.855 1.430 e 53.3 57.6 70.4 55.6
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Exhibit 6.6:
Cross-tabulation of depth, 

categorized into three 
categories, and sediment 

type, for the data of 
Exhibit 1.1

Distances between 
categories

The chi-square statistic for this table equals 15.58, but this depends on the sample 
size, so an alternative measure divides the chi-square statistic by the sample size, 
30 in this case, to obtain the so-called mean-square contingency coeffi cient, denoted by 
215.58/300.519. We will rediscover 2 in later chapters, since it is identical 
to what is called the inertia in correspondence analysis, which measures the total 
variance of a data matrix.

Now 2 measures how similar the variables are, but we need to invert this meas-
ure somehow to get a measure of dissimilarity. The maximum value of 2 turns 
out to be one less than the number of rows or columns of the cross-tabulation, 
whichever is the smaller: in this case there are 3 rows and 3 columns, so one less 
than the minimum is 2. You can verify that if a 33 cross-tabulation has only one 
nonzero count in each row (likewise in each column), that is there is perfect asso-
ciation between the two variables, then 22. So a dissimilarity could be defi ned 
as 22, equal to 1.481 in this example. 

There are many alternatives, and we only mention one more. Since the maximum 
of 2 for an IJ cross-tabulation is min{I1, J1}, we could divide 2 by this 
maximum. The so-called Cramer’s V coeffi cient does this but also takes the square 
root of the result:

 
2

1 1min ,
=

− −{ }
V

I J
φ  (6.3)

This coeffi cient has the properties of a correlation coeffi cient, but is never negative 
because the idea of negative correlation for categorical variables has no meaning: 
variables are either not associated or have some level of (positive) association. 
Once again, subtracting V from 1 would give an alternative measure of dissimilarity.

For a categorical variable such as sediment in Exhibit 1.1, measuring the distance 
between the categories C, S and G makes no sense at all, because they never 
co-occur in this data set. In this sense their correlations are always 1, and they 

Sediment

 C S G

Depth

Low 6 5 0

Medium 3 5 1

High 2 1 7
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Testing correlations: 
an introduction to 
permutation testing

are all at maximum distance apart. We can only measure their similarity in their 
relation to other variables. For example, in Exhibit 6.6 the sediment categories 
are cross-tabulated with depth, and this induces a measure of distance between 
the sediment types. An appropriate measure of distance would be the chi-square 
distance between the column profi les of the table in Exhibit 6.6, which gives the 
following distances:

chi2 C S

S 0.397

G 1.525 1.664

This shows that G is the most dissimilar to the other two sediment types, in terms 
of their respective relations with depth, which can be seen clearly in Exhibit 6.6.

Researchers usually like to have some indication of statistical signifi cance of the 
relationships between their variables, so the question arises how to test the cor-
relation coeffi cients and dissimilarity measures that have been described in this 
chapter. Tests do exist of some of these statistical quantities, for example there 
are several ways to test for the correlation coeffi cient, assuming that data are 
normally distributed, or with some other known distribution that lends itself to 
working out the distribution of the correlation. An alternative way of obtaining a 
p -value is to perform permutation testing, which does not rely on knowledge of 
the underlying distribution of the variables. The idea is simple, all that one needs 
is a fast computer and the right software, and this presents no problem these 
days. Under the null hypothesis of no correlation between the two variables, say 
between depth and pollution, the pairing of observations in the same sample is 
irrelevant, so we can associate any value of depth, say, with any value of pollution. 
Thus we generate many values of the correlation coeffi cient under the null hy-
pothesis by permuting the values across the samples. This process generates what 
is called the permutation distribution, and the exact permutation distribution can be 
determined if we consider all the possible permutations of the data set. But even 
with a sample of size 30, the 30! possible permutations are too many to compute, 
so we estimate the distribution by using a random sample of permutations.

This is exactly what we did in Chapter 1 to estimate the p -value for the correlation 
between pollution and depth. A total of 9,999 random permutations were made of 
the 30 observations of one of the variables, say depth (with the order of pollution 
kept fi xed), and Exhibit 6.7 is the histogram of the resulting correlations, with the 
actually observed correlation of 0.396 indicated. The p -value is the probability of 
the observed result and any more extreme ones, and since this is a two-sided 
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Exhibit 6.7:
Estimated permutation 

distribution for the 
correlation between 

pollution and depth (data 
from Exhibit 1.1), for testing 

the null hypothesis that 
the correlation is zero. The 

observed value of 0.396 is 
shown, and the permutation 

test consists in counting 
how many of the simulated 

correlations have an 
absolute value greater than 

or equal to 0.396

SUMMARY:
Measures of distance 

and correlation between 
variables

testing problem, we have to count how many of the 10,000 permutations (includ-
ing the observed one, this is why we generate 9,999) are equal or more extreme 
than 0.396 in absolute value. It turns out there are 159 values more extreme on the 
negative side ( 0.396) and 137 on the positive side ( 0.396), giving an estimated 
p -value of 296/10,0000.0296. This is very close to the p -value of 0.0305, which is 
calculated from the classical t -test for the correlation coeffi cient:

2 279
21 2

.
( ) ( )

= = −
− −

t r

r n
, 

corresponding to a two-sided p -value of 0.0305, using the t -distribution with n2 
degrees of freedom (n30 here).

1.  Two variables that have been centred defi ne two directions in the multidimen-
sional space of the samples.

2.  The cosine of the angle subtended by these two direction vectors is the classic 
linear correlation coeffi cient between the variables.
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3.  There are advantages in having the set of observations for each variable of 
unit length. This is obtained by dividing the standardized variables by I 1− , 
where I is the sample size, so that the sum of squares of their values is equal to 
1. These are then called unit variables.

4.  The distance d between the points defi ned by the unit variables is d  2 1 − r , 
where r is the correlation coeffi cient. Conversely, the correlation is r 1½ d 2.

5.  Distances between count variables can be calculated in a similar way to dis-
tances between samples for count data, with the restriction that the variables 
be expressed as profi les, that is as proportions relative to their total across the 
samples.

6.  Distances between dichotomous categorical variables can be calculated as be-
fore for distances between samples based on dichotomous variables.

7.  Distances between categories of a polychotomous variable can only be calcu-
lated in respect of the relation of this variable with another variable.

8.  Permutation tests are convenient computer-based methods of arriving at p -values 
for quantifying the signifi cance of relationships between variables.
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The algorithm for 
hierarchical clustering

Chapter

Hierarchical Cluster Analysis

In Part 2 (Chapters 4 to 6) we defi ned several different ways of measuring distance 
(or dissimilarity as the case may be) between the rows or between the columns of 
the data matrix, depending on the measurement scale of the observations. As we 
remarked before, this process often generates tables of distances with even more 
numbers than the original data, but we will now show how this step actually sim-
plifi es our understanding of the data. Distances between objects can be visualized 
in many simple and evocative ways. In this chapter we shall consider a graphical 
representation of a matrix of distances which is perhaps the easiest to understand 
– a dendrogram, or tree – where the objects are joined together in a hierarchical 
fashion from the closest, that is most similar, to the furthest apart, that is the most 
different. The method of hierarchical cluster analysis is best explained by describ-
ing the algorithm, or set of instructions, which creates the dendrogram result. In 
this chapter we demonstrate the application of hierarchical clustering on a small 
example and then list the different variants of the method that are possible.

Contents

The algorithm for hierarchical clustering   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  89
Cutting the tree   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  92
Maximum, minimum and average clustering   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  93
Validity of the clusters   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  94
Clustering correlations on variables  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  95
Clustering a large data set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  95
SUMMARY: Hierarchical cluster analysis   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  97

As an example we shall consider again the small data set in Exhibit 5.6: seven samples 
on which 10 species are indicated as being present or absent. In Chapter 5 we dis-
cussed two of the many dissimilarity coeffi cients that are possible to defi ne between 
the samples: the fi rst based on the matching coeffi cient and the second based on the 
Jaccard index. The latter index counts the number of “mismatches” between two sam-
ples after eliminating the species that do not occur in either of the pair. Exhibit 7.1 
shows the complete table of inter-sample dissimilarities based on the Jaccard index.

7
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Exhibit 7.1:
Dissimilarities, based on the 

Jaccard index, between all 
pairs of seven samples in 

Exhibit 5.6. Both the lower 
and upper triangles of this 

symmetric dissimilarity 
matrix are shown here (the 

lower triangle is outlined 
as in previous tables of 

this type)

The fi rst step in the hierarchical clustering process is to look for the pair of sam-
ples that are the most similar, that is the closest in the sense of having the lowest 
dissimilarity – this is the pair B and F, with dissimilarity equal to 0.2.1 These two 
samples are then joined at a level of 0.2 in the fi rst step of the dendrogram, or 
clustering tree (see the fi rst diagram of Exhibit 7.3, and the vertical scale of 0 to 
1 which calibrates the level of clustering). The point at which they are joined is 
called a node.

We are basically going to keep repeating this step, but the only problem is how to 
calculate the dissimilarity between the merged pair (B,F) and the other samples. 
This decision determines what type of hierarchical clustering we intend to per-
form, and there are several choices. For the moment, we choose one of the most 
popular ones, where the dissimilarity between the merged pair and the others 
will be the maximum of the pair of dissimilarities in each case. For example, the 
dissimilarity between B and A is 0.500, while the dissimilarity between F and A is 
0.625. Hence we choose the maximum of the two, 0.625, to quantify the dissimi-
larity between (B,F) and A. Continuing in this way we obtain a new dissimilarity 
matrix Exhibit 7.2.

The process is now repeated: fi nd the smallest dissimilarity in Exhibit 7.2, which 
is 0.250 for samples A and E, and then cluster these at a level of 0.25, as shown in 
the second fi gure of Exhibit 7.3. Then recompute the dissimilarities between the 
merged pair (A,E) and the rest to obtain Exhibit 7.4. For example, the dissimilar-
ity between (A,E) and (B,F) is the maximum of 0.625 (A to (B,F)) and 0.778 (E 
to (B,F)).

Samples A B C D E F G

A 0.000 0.500 0.429 1.000 0.250 0.625 0.375

B 0.500 0.000 0.714 0.833 0.667 0.200 0.778

C 0.429 0.714 0.000 1.000 0.429 0.667 0.333

D 1.000 0.833 1.000 0.000 1.000 0.800 0.857

E 0.250 0.667 0.429 1.000 0.000 0.778 0.375

F 0.625 0.200 0.667 0.800 0.778 0.000 0.750

G 0.375 0.778 0.333 0.857 0.375 0.750 0.000

1 Recall what this value means: fi ve species occurred in at least one of the samples B and F, four occurred in 
both, while one was present in B but not in F, so the Jaccard index of dissimilarity is 1/50.2.
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Exhibit 7.2:
Dissimilarities calculated 
after B and F are merged, 
using the “maximum” 
method to recompute the 
values in the row and 
column labelled (B,F)

Exhibit 7.3:
First two steps of 
hierarchical clustering 
of Exhibit 7.1, using the 
“maximum” (or “complete 
linkage”) method

Exhibit 7.4:
Dissimilarities calculated 
after A and E are merged, 
using the “maximum” 
method to recompute the 
values in the row and 
column labelled (A,E)

In the next step the lowest dissimilarity in Exhibit 7.4 is 0.333, for C and G – these 
are merged, as shown in the fi rst diagram of Exhibit 7.6, to obtain Exhibit 7.5. 
Now the smallest dissimilarity is 0.429, between the pair (A,E) and (B,G), and 
they are shown merged in the second diagram of Exhibit 7.6. Exhibit 7.7 shows 
the last two dissimilarity matrices in this process, and Exhibit 7.8 the fi nal two 
steps of the construction of the dendrogram, also called a binary tree because at 
each step two objects (or clusters of objects) are merged. Because there are 7 
objects to be clustered, 6 nodes are formed in the sequential process (i.e., one 

Samples A (B,F) C D E G

A 0.000 0.625 0.429 1.000 0.250 0.375

(B,F) 0.625 0.000 0.714 0.833 0.778 0.778

C 0.429 0.714 0.000 1.000 0.429 0.333

D 1.000 0.833 1.000 0.000 1.000 0.857

E 0.250 0.778 0.429 1.000 0.000 0.375

G 0.375 0.778 0.333 0.857 0.375 0.000

1.0

0.5

0.0
B F B F A E

1.0

0.5

0.0

Samples (A,E) (B,F) C D G

(A,E) 0.000 0.778 0.429 1.000 0.375

(B,F) 0.778 0.000 0.714 0.833 0.778

C 0.429 0.714 0.000 1.000 0.333

D 1.000 0.833 1.000 0.000 0.857

G 0.375 0.778 0.333 0.857 0.000
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Exhibit 7.5:
Dissimilarities calculated 

after C and G are merged, 
using the “maximum” 

method to recompute the 
values in the row and 

column labelled (C,G)

Exhibit 7.6:
The third and fourth steps 
of hierarchical clustering 
of Exhibit 7.1, using the 

“maximum” (or “complete 
linkage”) method. The point 

at which objects (or clusters 
of objects) are joined is 

called a node

Exhibit 7.7:
Dissimilarities calculated 

after C and G are merged, 
using the “maximum” 

method to recompute the 
values in the row and 

column labelled (C,G)

Cutting the tree

less than the number of objects) to arrive at the fi nal tree where all objects are 
in a single cluster.

The fi nal dendrogram on the right of Exhibit 7.8 is a compact visualization 
of the dissimilarity matrix in Exhibit 7.1, computed on the presence-absence 
data of Exhibit 5.6. Interpretation of the structure of data is made much easier 
now – we can see that there are three pairs of samples that are fairly close, two 
of these pairs (A,E) and (C,G) are in turn close to each other, while the sin-

Samples (A,E) (B,F) (C,G) D

(A,E) 0.000 0.778 0.429 1.000

(B,F) 0.778 0.000 0.778 0.833

(C,G) 0.429 0.778 0.000 1.000

D 1.000 0.833 1.000 0.000

1.0

0.5

0.0
B F B F A E

1.0

0.5

0.0
C GA E C G

Samples (A,E,C,G) (B,F) D

(A,E,C,G) 0.000 0.778 1.000

(B,F) 0.778 0.000 0.833

D 1.000 0.833 0.000

Samples (A,E,C,G,B,F) D

(A,E,C,G,B,F) 0.000 1.000

D 1.000 0.000
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Exhibit 7.8:
The fifth and sixth steps 
of hierarchical clustering 
of Exhibit 7.1, using the 
“maximum” (or “complete 
linkage”) method. The 
dendrogram on the right 
is the final result of the 
cluster analysis 

Maximum, minimum and 
average clustering

gle sample D separates itself entirely from all the others. Because we used the 
“maximum” method, all samples clustered below a particular level of dissimi-
larity will have inter-sample dissimilarities less than that level. For example, 
0.5 is the point at which samples are exactly as similar to one another as they 
are dissimilar, so if we look at the clusters of samples below 0.5 – i.e., (B,F), 
(A,E,C,G) and (D) – then within each cluster the samples have more than 50% 
similarity, in other words more than 50% co-presences of species. The level of 
0.5 also happens to coincide in the fi nal dendrogram with a large jump in the 
clustering levels: the node where (A,E) and (C,G) are clustered is at level of 
0.429, while the next node where (B,F) is merged is at a level of 0.778. This is 
thus a very convenient level to cut the tree to defi ne clusters. If the branches 
are cut at 0.5, we are left with the three clusters of samples (B,F), (A,E,C,G) 
and (D), which can be labelled types 1, 2 and 3 respectively. In other words, 
we have created a categorical variable, with three categories, and the samples 
are classifi ed as follows:

A B C D E F G 

2 1 2 3 2 1 2

Checking back to Chapter 2, this is exactly the objective which we described 
in the lower right hand corner of the multivariate analysis scheme (Exhib-
it 2.2) – to reveal a categorical latent variable which underlies the structure 
of a data set.

Two crucial choices are necessary when deciding on a cluster analysis algo-
rithm. The first is to decide how to quantify dissimilarities between two clus-
ters: in the above illustration the Jaccard index was used. The second choice 
is how to update the matrix of dissimilarities at each step of the clustering: 

1.0

0.5

0.0
B F B F A E

1.0

0.5

0.0
C GA E C G D
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Validity of the clusters

in the algorithm described above the maximum value of the between-cluster 
dissimilarities was chosen. This is called the maximum method, also known 
as complete linkage cluster analysis, because a cluster is formed when all the 
dissimilarities (“links”) between pairs of objects in the cluster are less then 
a particular level. There are several alternatives to complete linkage as a 
clustering criterion, and we only discuss two of these: minimum and average 
clustering.

The minimum method goes to the other extreme and forms a cluster when 
only one pair of dissimilarities (not all) is less than a particular level – this is 
known as single linkage cluster analysis. So at every updating step we choose the 
minimum of the two distances and two clusters of objects can be merged when 
there is a single close link between them, irrespective of the other inter-object 
distances. In general, this is not a suitable choice for most applications, because 
it can lead to clusters that are quite heterogeneous internally, and the usual 
object of clustering is to obtain homogeneous clusters.

The average method is an attractive compromise where at each step the dis-
similarity between two clusters is the average of all the pairwise dissimilarities 
between the clusters. This is also dubbed UPGMA clustering in the literature, a 
rather laborious abbreviation for “Unweighted Pair-Group Method using Aver-
ages”. Notice that this is not merely taking the arithmetic average of the two 
dissimilarity values available at each step for the updating, but rather taking 
into account the size of each cluster as well. For example, if one cluster con-
tains two cases and another three, then there are six dissimilarities on which 
the (unweighted) arithmetic average needs to be computed – this is equivalent 
to weighting the clusters by their sample sizes in the updating of the average 
dissimilarity.

If a cluster analysis is performed on a data matrix, a set of clusters can always 
be obtained, even if there is no actual grouping of the objects, in this case the 
samples. So how can we evaluate whether the three clusters in this example 
are not just any three groups which we might have obtained on random data 
with no underlying structure? We shall consider this question more closely 
in Chapter 17 when we deal with statistical inference and give one possible 
answer to this problem using a permutation test. Apart from this statistical 
issue there is also the substantive issue of where to cut the tree. In this exam-
ple, the three clusters established by complete linkage were such that within 
each cluster all inter-sample dissimilarities were all less than 0.5. It would be 
diffi cult to justify cutting the tree at a higher level, because that would mean 
that some pairs of samples in a cluster would be more dissimilar than similar. 
But this substantive cut-off level of 0.5 is particular to the Jaccard index and 
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Clustering correlations 
on variables

Clustering a large data 
set

to measures like the Bray-Curtis that have scales with a clear interpretation. 
If one uses an Euclidean distance, or chi-square distance, for example, their 
scales are not clearly interpretable and we have to resort to deciding on the 
number of clusters by an inspection of the tree, cutting the branches where 
there is a big jump in the level of successive nodes, or by a statistical criterion 
described in Chapter 17. 

Just like we clustered samples, so we can cluster variables in terms of their 
correlations. In this case it may be more intuitive to show cluster levels as the 
correlation, the measure of similarity, rather than the reverse measure of dis-
similarity. The similarity based on the Jaccard index can also be used to meas-
ure association between species – the index counts the number of samples 
that have both species of the pair, relative to the number of samples that have 
at least one of the pair. Exhibit 7.9 shows the cluster analyses based on these 
two alternatives, for the columns of Exhibit 5.6. There are two differences 
here compared to previous dendrograms: fi rst, the vertical scale is descend-
ing as the tree is being constructed from the bottom up, since the clustering 
is on similarities, and second, the R function hclust used to perform the 
clustering places the species labels at a constant distance below their initial 
clustering levels. The fact that these two trees are so different is no surprise: 
the fi rst one based on the correlation coeffi cient takes into account the co-
absences, which strengthens the correlation, while the second does not. Both 
have the pairs (sp2,sp5) and (sp3,sp8) at maximum similarity of 1 because 
these are identically present and absent across the samples. Species sp1 and 
sp7 are similar in terms of correlation, due to co-absences – sp7 only occurs 
in one sample, sample E, which also has sp1, a species which is absent in four 
other samples. Notice in Exhibit 7.9(b) how species sp10 and sp1 both join 
the cluster (sp2,sp5) at the same level (0.5).

The more objects there are to cluster, the more complex becomes the result, and 
we would not generally apply this method to a set of more than 100 objects, say. 
In Exhibit 4.5 we showed part of the matrix of standardized Euclidean distances 
between the 30 sites of Exhibit 1.1, and Exhibit 7.10 shows the hierarchical clus-
tering of this distance matrix, using compete linkage. There are two obvious 
places where we can cut the tree, at about level 3.4, which gives four clusters, 
or about 2.7, which gives six clusters. Which one we should choose depends on 
substantive as well as statistical grounds. For example, the six-cluster solution 
splits a large group on the right hand side of the dendrogram into two; if this is 
usefully interpreted as two different sets of sites in the context of the study, then 
the six-cluster solution would be preferred. But there is also the statistical issue 
about whether that split can be considered random or not, which is what we will 
deal with in Chapter 17.
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Exhibit 7.9:
Complete linkage cluster 

analyses of similarities 
between species: (a) r, 

the correlation coefficient 
between species); 

(b) Jaccard similarity
 index between species. 

The R function hclust 
which calculates the 

dendrograms places the 
object (species) labels at a 
constant distance below its  

clustering level
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Exhibit 7.10:
Complete linkage cluster 
analyses of the standardized 
Euclidean distances of 
Exhibit 4.5

SUMMARY:
Hierarchical cluster 
analysis

If the data set consists of a very large set of objects, say in the thousands, then 
nonhierarchical clustering can be used, as described in the next chapter, but the 
number of clusters desired has to be specifi ed in advance. A hybrid approach 
could be to initially reduce (using nonhierarchical clustering) the very large 
set into a large number of very compact clusters, for example reducing a set of 
1,000 objects to about 100 clusters with an average of 10 objects each, and then 
performing hierarchical clustering on the 100 clusters.

1.  Hierarchical cluster analysis of n objects is defi ned by a stepwise algorithm 
performed on a matrix of appropriately chosen dissimilarities or distances pre-
viously computed between the objects. Two objects are merged at each step, 
the two which have the least dissimilarity or distance.

2.  As the algorithm proceeds, objects become clusters of objects, so we need to 
decide how to measure dissimilarity/distance between clusters. Some standard 
options are the maximum dissimilarity (complete linkage) between the objects 
of each cluster, the minimum dissimilarity (single linkage) or the average dis-
similarity (average linkage).

3.  The results of a hierarchical clustering are graphically displayed in the form of 
a dendrogram (or binary tree), with n1 nodes.
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4.  In order to form discrete groups, the branches of this tree are cut at a level 
where there is a lot of “space”, that is where there is a relatively large jump in 
levels of two consecutive nodes.

5.  Either rows or columns of a matrix can be clustered – in each case we choose 
the appropriate dissimilarity measure. It is more intuitive to show the results 
of clustering of variables in terms of their similarity measure, for example their 
correlations.
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Analysis of variance 
(ANOVA)

Chapter 

Ward Clustering and k-means Clustering

This chapter continues the theme of cluster analysis, fi rst with a popular alterna-
tive to the hierarchical clustering methods presented in Chapter 7 – Ward cluster-
ing. This method is based on the same concepts as analysis of variance (ANOVA), 
so we shall give a brief introduction to ANOVA, specifi cally to the defi nitions of 
between-group and within-group variance, to motivate Ward clustering. Exactly 
the same concepts are used in a different clustering algorithm called k-means 
clustering. This form of clustering, which is an example of “nonhierarchical” 
clustering, is particularly useful when a very large number of objects need to be 
clustered, where the dendrogram would be so big that it becomes too burden-
some to visualize and interpret. In this situation, all we really want is a partitioning 
of the objects into a set of groups. Nonhierarchical clustering algorithms such as 
k -means do not result in a dendrogram – the user specifi es in advance how many 
groups are being sought (the k of k -means) and the fi nal result is the allocation 
of each object to a group so that the groups are as internally homogeneous as 
possible. This measure of internal homogeneity is the same as in Ward clustering, 
hence our treatment of these two methods together in this chapter.

Contents

Analysis of variance (ANOVA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  99
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SUMMARY: Ward clustering and k-means clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  106

To introduce the concepts inherent in Ward and nonhierarchical cluster-
ing, it is worthwhile to recall analysis of variance, abbreviated as ANOVA. 
ANOVA is concerned with testing the difference between means of a con-
tinuous variable observed in different groups. As an example, we can use 

8
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Exhibit 8.1:
Representation of the 30 

values of pollution (see 
Exhibit 1.1), coded for the 
three sediment types. The 

means (to one decimal 
place) of the three subsets 

of data are indicated, as 
well as the overall mean 
(compare this graphical 

representation with that of 
the middle plot of Exhibit 

1.5, where the medians and 
quartiles are displayed)

the continuous variable “pollution” and the categorical variable “sediment” 
from Exhibit 1.1, where sediment divides the sample into three groups: clay 
(11 sites), sand (11 sites) and gravel (8 sites). In the middle of Exhibit 1.5 
the box-and-whisker plot for pollution shows the medians of the three 
groups, or subsamples, and their dispersions between first and third quar-
tiles – here we shall be concerned with the means and variances in each sub-
sample. Exhibit 8.1 shows an alternative graphical display of the same data, 
where each value is shown on the pollution scale and is coded according to 
its respective sedimentary group. The means of each group are indicated as 
well as the mean pollution of all 30 sites. In ANOVA, the separateness of the 
three groups is measured by how far the means are away from the overall 
mean, taking into account the size of the groups, the so-called between-group 
sum of squares BSS:

 ∑n x xg
g

G

g
1

2BSS = −
=

( )  (8.1)

where Gnumber of groups, ngthe sample size in the g -th group,xg is the 
g -th group mean andx is the overall mean. In this particular case the calcula-
tion gives a value of BSS37.6. In isolation this value tells nothing about how 
separate the groups are, because if the three groups of points were more tightly 
dispersed about their respective means, we would get the same value of BSS 
even though the groups appear more separate. The dispersion of the observa-
tions around their respective group means thus needs to be taken into account, 
and this is calculated by the within-group sum of squares WSS:

 ∑∑
g

G

1=
x xig g

i
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2

1
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=

( )  (8.2)

x x
x

x
x

x x x x x
••• ••• • •

Clay
Sand
Gravel

x

2.7
Gravel
mean

4.5
Overall
mean

4.9
Clay
mean

5.4
Sand
mean

x 1 x 2x 3

x

x

•



101

WARD CLUSTERING AND K-MEANS CLUSTERING 

Looking for the optimal 
solution

which in this example is equal to WSS95.4. The beauty of using sums of squares 
is that BSS and WSS add up to the total sum of squares, TSS:

 ∑∑
g

G

1= i

ng

1=
xigTSS −= ( xx )2  (8.3)

that is, 

  BSSWSSTSS (8.4)

in this case: 37.695.4133.0. TSS in (8.3) is the sum of squared deviations 
of all the observations from the overall mean, which measures the dispersion of 
all the data points around the overall mean. WSS in (8.2), on the other hand, is 
measuring the dispersion of the observations in the groups around their own 
respective group means, so WSS must be less than TSS. Notice that TSS divided 
by n1 ( 29) is the usual sample variance (of all the observations), while each 
of the G summations in (8.2), divided by its respective ng1, is the variance of the 
g -th group. Furthermore, (8.1) divided by G1 is the variance of the G3 means 
weighted by their respective group sizes. The term analysis of variance derives from 
the fact that (8.4) implies this decomposition of variance into parts between and 
within the groups. In order to test whether there is signifi cant separation of the 
groups, or whether the observed separation is compatible with random variation 
in the data, the values of BSS and WSS are combined into the classic F -statistic.1 
This F -test gives a p -value of 0.0112, indicating signifi cant differences between the 
sediment groups in terms of pollution. We could also perform a permutation test, 
to be described in Chapter 17, which estimates the p -value as 0.0106, very close 
to that of the F -test. 

In ANOVA the grouping variable is prescribed (sediment type in the above ex-
ample), but in cluster analysis we are looking for a grouping variable in the data. 
In the one-dimensional example of Exhibit 8.1, suppose we have no classifi cation 
of the 30 values, what would be the optimal clustering of the data into three 
groups? Optimality could be defi ned as maximizing the ratio BSS/TSS, which is 
equivalent to optimizing any increasing function of that ratio, for example BSS 
itself (since TSS is fi xed), or BSS/WSS, or the F -statistic defi ned in the footnote. 
Because there is only one variable and a fairly small sample size, we can investi-
gate every pair of cutpoints that separates the data set into three groups (clearly, 

1 The classical test in ANOVA for testing differences between means is the F -test, where F BSS G
WSS n G

( )
( )

1= −
−

 has the

F -distribution with G1 and nG “degrees of freedom”. The observed value F(37.6/2)/(95.4/27)5.32 
has an associated p -value of 0.0112, which is very close to the p -value of 0.0106 of the permutation test.
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Ward clustering in one 
dimension

Exhibit 8.2:
Ward clustering of the 
30 sites in Exhibit 1.1 

according to the single 
variable “pollution”, 

showing the cutpoint 
for a 3-cluster solution 

(partitioning of 9; 14 and 
7 values, shown by vertical 

dashed lines), with between-
to-total sum of squares 

ratio, BSS/TSS0.825. The 
sites are labelled by their 
pollution values. The curly 
brackets show the globally 
optimal 3-cluster solution 

(partitioning of 14; 13 and 
3 values) for which 

BSS/TSS0.867

for maximal separation of the three groups, each group is defi ned as a contiguous 
interval on the pollution scale). There are 2928/2406 pairs of cutpoints, and 
the maximum BSS/TSS turns out to be 0.867 obtained when the three groups 
are defi ned as (i) the fi rst 14 values; (ii) the next 13 values; (iii) the last 3 values, 
as shown in green in the lower part of Exhibit 8.2. This exhaustive way of looking 
for a given number of clusters is actually the nonhierarchical clustering treated 
in a later section, but we do it here to contrast with Ward clustering, which is the 
hierarchical version of this search.

Ward clustering also tries to maximize BSS (or, equivalently, minimize WSS) 
but does it at each step of a hierarchical clustering like the ones described in 
Chapter 7. So we start with single objects and look for the pair that are the 
“closest”, in terms of keeping the WSS as small as possible (and thus the BSS 
as large as possible), and proceed stepwise in this way until a dendrogram 
is constructed. Exhibit 8.2 shows the dendrogram constructed by Ward clus-
tering, and the associated three-cluster solution using a cutting of the tree 
at about level 10, giving clusters of 9, 14 and 7 sites. Notice that the Ward 
procedure does not necessarily find the optimal solution – this is because 
the hierarchical clustering is stepwise and every merging of clusters depends 
on what has happened previously. For example, the values 6.0; 6.4; 6.5 and 
6.7 join the smaller cluster on the right formed by the three top values 8.2; 
9.4 and 10.0, whereas in the optimal solution these three top values form a 
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Ward clustering in 
several dimensions

Exhibit 8.3:
Ward clustering of the 
30 sites in Exhibit 1.1 
according to the three 
variables depth, pollution 
and temperature, using 
standardized Euclidean 
distances (Exhibit 4.5). Cuts 
are shown which give three 
and four clusters

cluster alone. The Ward clustering solution, with BSS/TSS0.825, is actually 
quite far from the optimal partitioning of the 30 sites, where BSS/TSS0.867, 
computed above.

The type of exhaustive search that we could do above in one dimension, 
looking at all possible cutpoints, becomes much more diffi cult when the data 
are multidimensional: for example, for the three-dimensional (continuous) 
environmental data of Exhibit 1.1, we would have to consider all pairs of 
planes dividing the sample into three subsamples. Hierarchical Ward cluster-
ing, however, is still very simple to execute, even though it is unlikely to fi nd 
the optimal solution. The algorithm proceeds in the same way as for the uni-
dimensional case, with the BSS and TSS measures using squared distances in 
multidimensional space, which are the natural generalizations of the squared 
differences in one dimension. For example, BSS in (8.1) becomes, in the 
multidimensional version: 

 ∑
g

G

1=
n dg g( , )2=BSS x x  (8.5)

where gx  and x are now the g -th mean vector and overall mean vector, respec-
tively. When there are more than one variable, then the issue of standardization 
becomes important when defi ning the distance, as explained in Chapter 4. Ex-
hibit 8.3 shows the Ward clustering of the 30 samples based on Euclidean distance 
using the three standardized variables (depth, pollution and temperature) – part 
of the distance matrix has been given in Exhibit 4.5.
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Comparing cluster 
solutions

Nonhierarchical 
clustering by k -means

Notice how different this result is in appearance from the complete linkage clus-
tering of Exhibit 7.10, although on the left in both dendrograms we can see that 
the cluster of three sites (s13,s4,s10) corresponding to the three highest pollu-
tion values remains a separate cluster in both analyses. In the next section we shall 
show that the cluster solutions are, in fact, very similar. We can again perform a 
permutation test for clusteredness, to be described more fully in Chapter 17. For 
example, for the four-cluster solution, the permutation test estimates a p -value of 
0.465, so there is no evidence of clustering in these data, and the analysis simply 
serves to partition the sites into four groups in their three-dimensional spatial 
continuum.

One cluster analysis, which yields p clusters, can be compared to another 
cluster analysis on the same data, giving q clusters, by cross-tabulating the cat-
egories from the two solutions. For example, let us compare the four-category 
complete linkage solution from Exhibit 7.10 (p4) with the four-cluster Ward 
solution from Exhibit 8.3 (q4), leading to the following cross-tabulation of 
the 30 sites:

Ward clustering

Cluster 1 Cluster 2 Cluster 3 Cluster 4

Complete 
linkage 
clustering

Cluster 1 2  0 11 0

Cluster 2 0 10  0 0

Cluster 3 0  0  0 3

Cluster 4 4  0  0 0

Apart from the two sites in the fi rst cell of the table, all the sites fall into the same 
clusters in both solutions – the two solutions would agree perfectly if these two 
(identifi ed as sites s1 and s9) were either in cluster 4 of the complete linkage so-
lution, or in cluster 3 of the Ward solution. There are several ways to measure the 
agreement between the two solutions, as summarized in such a cross-tabulation; 
for example, Cramer’s V statistic given in (6.3) – which is equal to 1 for perfect 
agreement, is equal to 0.925 in this example.

Instead of constructing a dendrogram, nonhierarchical clustering searches for 
a prescribed number of clusters in the data. We shall describe the most popular 
of the nonhierarchical algorithms, called k-means clustering. The k refers to the 
specifi ed number of groups we are looking for in the data set, and means refers to 
the fact that in each iteration of the algorithm objects are allocated to the closest 
group mean. The k -means algorithm proceeds as follows, where n objects need to 
be clustered into k groups, and we have a distance function between any pair of 
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objects (which should be of the Euclidean type, weighted or unweighted, for the 
decomposition (8.4) to be valid):

1.  Choose k objects at random as starting seeds; or use k prespecifi ed objects as 
seeds. 

2.  Calculate the distances of all n objects to the k seeds, and allocate each object 
to its closest seed – this gives a fi rst clustering of the objects into k groups.

3.  Calculate the means of the k clusters, used as seeds for the next iteration.

4.  Repeat steps 2. and 3. until convergence, that is when there is no change in 
the group allocation from one iteration to the next.

It can be proved that when the distance function is of the Euclidean type, option-
ally weighted, then the value of the between-groups sum of squares (BSS) must 
increase from one iteration to the next. Since BSS cannot be higher than TSS, 
the algorithm must converge, but there is no guarantee that the convergence is 
at the global optimum – we say that the algorithm converges at a local optimum, 
which could be the global one, we simply do not know. 

The k -means algorithm is very fast and is generally used for very large data sets, 
typically found in the social sciences, for example looking for clusters of attitudes 
in a political survey of thousands of people. If a large ecological data set is en-
countered, this is a way to fi nd some simple structure in the sample units. In the 
clustering of the 30 sites described previously, in terms of the single variable pol-
lution, we did know the global optimum (BSS/TSS0.867, which is the highest 
possible value for this example – see Exhibit 8.2) because we could do an exhaus-
tive search of all three-cluster solutions. We already saw that Ward clustering gave 
a nonoptimal solution, with BSS/TSS0.825. Even though k -means is usually 
used for much bigger data sets and many variables, we applied it to the same 
example, specifying three clusters as before. The result was BSS/TSS0.845, 
which is an improvement over the hierarchical clustering solution, but still not 
the global optimum. In k -means clustering the starting set of seeds is quite crucial 
to the result – unless we have some prior information on what constitutes good 
seeds to start growing clusters, the initial seeds are chosen randomly. So it is rec-
ommended to use several random sets of starting seeds and then take the best 
result. When we repeated k -means clustering using 10 different random starts, we 
did indeed fi nd the optimal solution with BSS/TSS0.867.

Similarly, we can compare the k -means result, after several random starts, with 
the Ward clustering on the three-dimensional data. The four-cluster solution 
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Weighting the objects 
in Ward and k -means 

clustering

SUMMARY:
Ward clustering and 
k -means clustering

obtained in the latter result, shown in Exhibit 8.3, gives a BSS/TSS ratio of 0.637. 
The best k -means solution, after 10 random starts, has an improved BSS/TSS 
equal to 0.648. So it seems, just after these few examples, that if one is interested 
in obtaining only a partition of the objects, then k -means clustering with several 
random starts does perform better than hierarchical Ward clustering. It does no 
harm, however, to do both and check which gives the better solution.

The central concepts of Ward and k -means clustering are the measures BSS, WSS 
and TSS, where the objective is to maximize BSS, or equivalently minimize WSS 
because they add up to TSS, which is a constant. In the defi nitions (8.1), (8.2) 
and (8.3) of these measures, each object is counted, or weighted, equally. But in 
some situations (we shall see one of these when we treat correspondence analysis) 
we would like to count some objects differently from others, that is weight the 
objects differentially. If w1, w2, …, wn denote positive weights assigned to the n 
objects, then (8.1)(8.3) can be generalized as:

 ∑
g

G

1=
BSSS = −w x xg g

2( )  (8.6)

where wg is the total weight of the objects in the g -th group: w w∑
i

ng

1=
.=g i

 ∑∑
g

G

1= i

ng

1=
WSS −= w x xi ig

2( )g  (8.7)

 ∑∑
g

G

1= i

ng

1=
TSS == −w x xi ig( )2  (8.8)

The equally weighted versions used before are thus a simple case when wi1. 
The multidimensional equivalents – for example, BSS in (8.5) – are generalized 
in a similar fashion. 

1.  Ward clustering is a hierarchical cluster analysis where the criterion for merg-
ing two clusters at each node of the tree is to maximize the separation of the 
new cluster’s mean from the means of the other clusters. The separation be-
tween clusters is measured by the between-group sum of squares (BSS). 

2.  Equivalently, the criterion is based on minimizing the dispersion within the 
newly combined cluster. The dispersion within clusters is measured by the 
within-group sum of squares (WSS). 

3.  BSS and WSS sum to a constant, the total sum of squares (TSS). Thus, maxi-
mization of BSS is equivalent to minimization of WSS.
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4.  k -means clustering is a nonhierarchical cluster analysis based on exactly the 
same criteria as Ward clustering, with the difference that a solution is sought 
by an iterative procedure which successively allocates the set of observations to 
a set of k seeds, where k is the number of clusters specifi ed by the user.

5.  The initial seeds are k observations randomly chosen, or specifi ed by the user, 
from which the algorithm can start to allocate observations to their nearest 
seed, providing a fi rst clustering of the observations. Mean points in each 
cluster are calculated, which provide the seeds for the next iteration, and this 
process is repeated until there is no change in the clustering from one itera-
tion to the next.

6.  If interest is just in fi nding a set of clusters rather than visualizing the complete 
clustering process, then k -means clustering seems to fi nd better solutions, but 
the analysis should be repeated several times with different random sets of 
initial seeds.

7.  Both Ward clustering and k -means can be generalized to include observation 
weights, which give observations varying importance in the cluster analysis.



 MULTIVARIATE ANALYSIS OF ECOLOGICAL DATA

108



109

A simple exact distance 
matrix

Chapter 

Multidimensional Scaling

In Chapter 7 a square matrix of distances or dissimilarities was visualized in the 
form of a dendrogram, trying to establish groups of points with relatively small 
within-group distances but relatively large between-group distances. Samples are 
not usually clustered naturally but are more often spread around continuously in 
the multidimensional space of the variables. Strongly correlated variables imply 
a certain amount of redundancy in the data, which means that less dimensions 
than the number of variables are required to describe the sample positions. 
Multidimensional scaling (MDS) is an alternative way of visualizing a distance 
or dissimilarity matrix, with the objective of representing the samples in a low-
dimensional space, usually two- or three-dimensional, reproducing as closely as 
possible the inter-sample proximities (either distances or dissimilarities). The 
method is thus attempting to make a spatial map of the data to facilitate interpre-
tation of the positions of the samples relative to one another. Since our intuitive 
understanding of a map is through the physical concept of a Euclidean distance, 
it will be an issue whether the sample proximities are Euclidean or not. Usually 
Euclidean-type distances will be mapped by so-called metric scaling methods, for 
example classical (metric) MDS, while non-Euclidean ones will be mapped by 
nonmetric methods.

Contents
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To introduce how MDS works in a simple way, consider the following matrix D of 
distances between fi ve samples, numbered s1 to s5:

9
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Exhibit 9.1:
Classical multidimensional 

scaling solution in 
two dimensions of the 

matrix D, using the R 
function cmdscale
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s1 s2 s3 s4 s5

s1 0 4.24 13.23 9.33 10.58

s2 4.24 0 9.11 7.94 11.05

D  s3 13.23 9.11 0 9.59 14.39

s4 9.33 7.94 9.59 0 4.80

s5 10.58 11.05 14.39 4.80 0

 (9.1)

First, we do not have an immediate way of telling whether this is a true distance 
matrix, but we can easily check the fi rst two properties of a distance see the 
properties in (5.1), so at least we know that this is a dissimilarity matrix. A more 
laborious exercise would be to go through all triplets of samples (and there are 
10 of these) to satisfy ourselves that the triangular inequality is indeed satisfi ed, 
for example, for samples s1, s2 and s3, with inter-sample values of 4.24; 13.23 
and 9.11, the sum of any two is always greater than the third. In fact, we will see 
now that these fi ve samples can be perfectly displayed in a two-dimensional map, 
reproducing exactly the above distance matrix.

Performing a so-called classical MDS (to be explained below) on the matrix D, the 
following map of the fi ve samples in Exhibit 9.1 is obtained.
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Classical MDS

It can be verifi ed that the distances between the samples are exactly those 
in the distance matrix D. Putting this another way, if we were given the co-
ordinates of the fi ve points in Exhibit 9.1 we could quite easily compute the 
distance matrix D, but MDS does the reverse, it starts with a distance matrix 
and constructs the map. The output of the MDS analysis is (1) the set of co-
ordinates of the points i on each of the dimensions k of the solution, which 
we denote by fi k, gathered in a matrix F; and (2) the parts of variance on each 
dimension, denoted by k for the k -th dimension. For this example here are 
those results:

 

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

dim1 dim2

s1 1.618 −6.042

s2 −1.955 −3.755

F  s3 −7.880 3.166

s4 1.711 3.285

s5 6.506 3.345

dim1 dim2

[1 2] = [11.380 8.260]
 (9.2)

Computing the Euclidean distances between the rows of F will lead to exactly the 
same matrix of distances in D.

The classical MDS procedure used to pass from the distance matrix D to 
the map in Exhibit 9.1 works as follows. For n points, the maximum di-
mensionality is one less, n1. For example, two points lie on a line (one-
dimensional), three points lie in a plane (two-dimensional), but the three 
points could also lie on a line and be one-dimensional, and so on. In their 
(n1)dimensional space, using an eigenvalue-eigenvector routine, we 
can identify the principal dimensions of the set of points, in descending 
order of importance. This order is determined by the eigenvalues, with 
the highest eigenvalue and associated eigenvector indicating dimension 
1, the second dimension 2 and so on. In fact, the eigenvalues quantify 
the variance explained by each dimension. In the above example of five 
points, the dimensionality is at most 4, but it turns out that the third and 
fourth eigenvalues are zero, which means that the points are exactly two-
dimensional. The total variance of the points, that is the quantification 
of their dispersion in the two-dimensional space, is the sum of the two 
eigenvalues, 11.388.2619.64, with the first dimension accounting for 
11.38/19.640.579, or 57.9%, of the total, and the second dimension the 
remaining 42.1%.
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In practice: more 
complex proximity 

matrices

Exhibit 9.2:
Classical multidimensional 

scaling solution in two 
dimensions of the matrix 

of chi-square distances of 
Exhibit 4.7. The percentages 
of variance on the horizontal 
and vertical axes are 52.4% 

and 22.0% respectively

From now on we shall often call distance and dissimilarity matrices collectively 
as proximity matrices, and distinguish between them where necessary. In prac-
tice, you will never have a proximity matrix that is so simple as to be exactly 
two-dimensional. Let’s take two examples of matrices we have encountered 
already, fi rst the matrix of chi-square distances between the 30 samples in 
Chapter 4 – see Exhibit 4.7. Applying classical MDS to this matrix, the follow-
ing eigenvalues are obtained: 12.37; 5.20; 3.83; 2.23, and all the remaining 
ones are zeros. This indicates that the distances are four-dimensional,1 while 
in theory they could have any dimensionality up to 29. Exhibit 9.2 shows the 
MDS map of the chi-square distances between the 30 samples with respect to 
the fi rst two dimensions. According to the eigenvalues, the total variance is 
12.375.203.832.2323.63, of which 12.37/23.37, or 52.4%, is accounted 
for by dimension 1 and 5.20/23.63, or 22.0%, is accounted for by dimension 
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1 The chi-square distances were computed on only fi ve abundance values per sample, and Euclidean-type dis-
tances in this situation would usually be of dimensionality 5. So then why is the dimensionality equal to 4? This 
is because the chi-square distances are based on the relative abundances and since the relative abundances for 
each sample always add up to fi xed value, 1, only four values are free and the fi fth is one minus the sum of the 
other four. This is one of the properties inherent in correspondence analysis, treated in Chapter 13.
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2, totalling 74.4% for the map as a whole. It can be seen in Exhibit 9.2 that 
the fi rst dimension shows more variance than the second.

Exhibit 9.2 is an approximate display of the matrix of chi-square distances, but 
it is the best one can do in a two-dimensional display according to the optimi-
zation criterion inherent in classical scaling, namely to maximize explained 
distance variance. Each dimension of the display can be thought of as a vari-
able trying to explain the variance in the distance matrix, like independent 
variables in a regression. These dimensions are uncorrelated, so their separate 
percentages of variance can be simply added to give the cumulative percent-
age of variance explained for by the set of dimensions. Hence, the percentage 
74.4% of variance explained can be interpreted just like an R 2 in regression 
analysis.

Now as a second example we apply the same procedure to the matrix of Jacca-
rd proximity values in Exhibit 7.1 between seven samples, which in theory has 
a dimensionality no higher than 6. The eigenvalues that emerge are: 0.786; 
0.452; 0.148; 0.037; 0.000; 0.002; 0.030. Indeed, six of them are nonzero, 
but there are two negative eigenvalues, indicating that this proximity matrix 
is not Euclidean (hence the inclusion of the Jaccard index in Chapter 5 on 
non-Euclidean dissimilarity functions). So in this case it is impossible to rep-
resent these proximities in any Euclidean space, and the negative eigenvalues 
give an idea of how much of the variance cannot be displayed. The part that 
is Euclidean is the sum of the positive eigenvalues: 0.7860.4520.148
0.0371.423, while the part that cannot be displayed is the sum of the abso-
lute values of the negative eigenvalues: 0.0020.0300.032, which is quite 
small compared to 1.423. Exhibit 9.3 shows the classical MDS display in two 
dimensions of the samples.

Before interpreting this display, how do we quantify the variance explained 
in this case? There are two ways to do it, depending on whether the non-
Euclidean part is included in the total variance or not. The fi rst two eigen-
values, 0.786 and 0.452, can be expressed relative to the sum of the positive 
eigenvalues, 1.423, or the sum of the absolute values of all the eigenvalues, 
1.4230.0321.455. In the former case the percentages would be 56.5% 
and 32.5%, totalling 89.0%, while in the latter case they would be slightly 
lower, 55.3% and 31.8%, totalling 87.1%. The non-Euclidean part is quite 
small in this case, hence the small differences between the two options. 
An acceptable way of reporting the results would be to say that 2.1% (i.e., 
0.032/1.4550.021) of the total variance, is non-Euclidean, and that, of the 
Euclidean part of the variance, 89.0% (i.e., (0.7860.452)/1.4230.890) is 
displayed in Exhibit 9.3.
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Exhibit 9.3:
Classical multidimensional 

scaling solution in two 
dimensions of the matrix of 

Jaccard dissimilarities of 
Exhibit 7.1.The percentages 

of variance on the horizontal 
and vertical axes are 56.5% 

and 32.5% respectively 
(expressed relative to the 

four-dimensional Euclidean 
part of the variance)

Nonmetric MDS

Comparing the MDS map in Exhibit 9.3 with the dendrogram in Exhibit 7.8, 
the separation of the groups {B,F}, {A,C,E,G} and {D} is verifi ed here. The only 
noticeable difference between the two results is that in the clustering A was 
joined with E and C with G before they all joined together in a cluster of four, 
whereas in Exhibit 9.3 C and E look like they should have been clustered fi rst. 
This is because C and E are, in fact, quite far apart in the third dimension, with 
coordinates of 0.24 and 0.18 respectively. This large difference in the third 
dimension can not be seen in Exhibit 9.3 but the original data in Exhibit 7.1 
show C indeed further from E compared to the dissimilarity between A and E 
or C and G. 

The type of MDS described above is included in the family of metric MDS meth-
ods, since the observed proximities are accepted as quantitative measures of 
difference between the samples, and the error in the solution is quantifi ed by 
calculating actual differences between the observed values and those that are 
displayed in the solution map. Especially when it is known that the proximity ma-
trix is non-Euclidean, an alternative form of MDS may be used, called nonmetric 
MDS, which has a more relaxed way of measuring the quality of the solution. In 
nonmetric MDS we are not interested in reproducing the proximities themselves, 
but rather their ordering, that is if we sorted all the observed proximities from 
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Exhibit 9.4:
Ordering of the original 
Jaccard dissimilarities, 
from lowest to highest, and 
ordering of the interpoint 
distances in the metric MDS 
of Exhibit 9.3

smallest to largest, and we did the same for all the interpoint distances in the 
solution, then a perfect solution would be if the two orderings were identical. In 
the matrix of Jaccard dissimilarities of Exhibit 7.1 there are ½7621 values, 
ordered in the fi rst set of columns of Exhibit 9.4 (notice the tied ranks). In the 
second set of columns, the distances between points in Exhibit 9.3 are ordered 
(there are usually no tied ranks in such fi tted distances). Corresponding pairs of 
samples are linked: if all these links were horizontal, then the distances would be 
perfectly in order.

The objective of nonmetric MDS would be to get a better correspondence in the 
orderings of the points. The result for this small data set is surprising, because of 
the inherent clustering of the samples, shown in Exhibit 9.5.

A comparison of the observed and fitted distances in Exhibits 9.3 and 9.5 
clarifies what has happened – see the two plots in Exhibit 9.6. The objective 
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Exhibit 9.5:
Nonmetric MDS of the 

Jaccard dissimilarities of 
Exhibit 7.1. The samples 

agglomerate into three 
groups, identical to the 
clustering in Exhibit 7.8

of the nonmetric MDS is to find a configuration of the points such that the 
interpoint distances are close to the ordering of the original distances. In 
each plot a monotonically increasing function is shown (i.e., a function that 
never decreases) which best fits the interpoint distances in the map – this 
function is obtained by a procedure called monotonic regression. The error 
is quantified by the sum of squared deviations between the fitted distances 
(green circles) and the monotonic regression line. If the sequence of fitted 
points were always ascending then the monotonic regression line would sim-
ply join the points and the error would be zero. Clearly, the upper plot of 
Exhibit 9.6 shows that there are relatively large deviations of the points from 
the best-fitting monotonic regression line compared to the near zero devia-
tions in the lower plot. In the lower plot it looks like a perfect fit, but the 
enlargement of the first seven points shows that there are indeed very small 
deviations). To explain what has happened there, notice that the interpoint 
distances between B and F and among all pairs of points in the set {A,C,E,G} 
are the smallest in the original dissimilarity matrix. Hence, the nonmetric 
approach puts them all at near-zero distance from one another, and all their 
values can thereby be reduced to near zero. This maintains their ordering, 
with very little error from a monotonically increasing relationship, as shown 
in the enlargement.
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Exhibit 9.6:
The horizontal axis shows 
the observed dissimilarities 
from Exhibit 7.1, and 
the vertical axes show 
the fitted interpoint 
distances from Exhibits 
9.3 and 9.5 respectively. 
In both plots the closest 
fitting monotonically 
increasing function is 
shown. The vertical scale 
of the first seven points 
in the nonmetric MDS (see 
lower plot) is expanded 
considerably to show the 
small lack of fit for those 
points
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Adding variables 
to MDS maps

MDS of Bray-Curtis 
dissimilarities

The actual measure of error in a nonmetric MDS is a normalized version of the 
sum of squared errors, called stress. The most popular one is known as Kruskal’s 
stress formula 1:

 ∑
∑ d d

d

ij iji j

iji j

2

2
=

−⎛

⎝
<

<

stress
( )⎜⎜⎜

⎞

⎠
⎟⎟

1 2/

ˆ
 (9.1)

where dij is the distance between points i and j in the MDS map and dij
ˆ  is the cor-

responding value on the monotonic regression line (hence the values dij
ˆ dij are 

the vertical discrepancies between points and the line in Exhibit 9.6). This stress 
measure is often multiplied by 100 and considered as a percentage error: using 
this convention the metric MDS in Exhibit 9.3 would have a stress of 8.3% while 
the nonmetric MDS in Exhibit 9.5 would have a stress near zero equal to 0.008% 
(very low stress values are typical for small data sets like this one – later we will 
show the result for a larger data set).

The MDS maps in Exhibits 9.3 and 9.5 show the samples only, but the Jaccard 
dissimilarity matrix was constructed on a samples-by-species data matrix (Ex-
hibit 5.6). Since this is simple presence-absence data, the species can be shown 
in the MDS maps at positions near the samples that contain them. Usually, they 
would be situated at the average spatial position of the corresponding samples, 
shown in Exhibit 9.7 for the two MDS maps. For example, species sp6 is present in 
samples D and G, so is at an average position halfway between them, while species 
sp4 is present in samples B, D and F, and is thus positioned at an average position 
of these three samples.

In Chapter 5 we computed the Bray-Curtis dissimilarities between 30 samples, s1 
to s30, based on the abundances of fi ve species, a to e – see Exhibit 5.2, where 
we also pointed out that this measure violated the triangle inequality and was 
therefore not a metric. For this reason, nonmetric MDS is usually used to map 
Bray-Curtis indices, but fi rst let us see how metric MDS would handle the display 
of Exhibit 5.2. The maximum dimensionality of this set of 30 samples is 29, and, 
as expected, we obtain several negative eigenvalues in the classical MDS: in fact, 
14 eigenvalues are positive, with a sum of 57,729, while 15 are negative, with a sum 
of absolute values equal to 8,176 (Exhibit 9.8). This latter amount quantifi es how 
much variance is impossible to display in a Euclidean space. The fi rst two eigen-
values are 19,102 and 14,825, so the variance explained by the two-dimensional 
solution, relative to the Euclidean part, is (19,10214,825)/57,729, or 58.8%, 
that is an error of 41.2%. Computing the stress on this solution, however, gives a 
value of 16.3%, showing again that the stress criterion always appears more opti-
mistic than the explained variance one.
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Exhibit 9.7:
The MDS maps of Exhibits 
9.3 and 9.5 with the species 
added at the average 
positions of the samples 
that contain them
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Exhibit 9.8:
The eigenvalues in the 

classical MDS of the Bray-
Curtis dissimilarity indices 

of Exhibit 5.2, showing 
positive eigenvalues in 

green and negative ones 
in brown

Adding count variables 
to MDS maps

Performing nonmetric MDS on the same data gives a stress value of 13.5%, which 
is not a big improvement on the 16.3%, suggesting that the two resulting maps 
will not be as different as we found for the smaller data set of Jaccard indices. This 
is indeed the case, as shown by the quite similar maps in Exhibit 9.9.

In our experience, when there is a large number of samples (and by “large” we 
mean, as most statisticians do, 30 or more, as in this example), the metric and 
nonmetric approaches generally agree in their solutions. Where they disagree is 
in the quantifi cation of the success of their results, with the stress measure always 
giving a more optimistic value because it does not measure the recovery of the 
proximities themselves, but their ordering in the map.

The maps in Exhibit 9.9 emanate originally from abundance data on fi ve species, 
so the question now is how to include these species on the map. We shall consider 
alternative ways of doing this in future chapters, but for the moment let us use the 
same approach as in Exhibit 9.7 when the species were positioned at the averages 
of the samples that contained them. The difference here is that we have abun-
dance counts for the species across the samples, so what we can do is to position 
each species at their weighted average across the samples. For example, species a 
has abundances of 0, 26, 0, 0, 13, etc., and a total abundance of 02600
13...404, so the position of a is at a weighted average position of the 30 spe-
cies, with weights 26/4040.064 on sample s2, 13/4040.032 on sample s5, and 

0 5,000 10,000 15,000
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Exhibit 9.9:
Classical MDS map (upper) 
and nonmetric MDS map 
(lower) of the Bray-Curtis 
dissimilarities of Exhibit 5.2
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Exhibit 9.10:
Nonmetric MDS solution 

(right hand map in Exhibit 
9.9) with species a to 
e added by weighted 

averaging of sample points, 
and sediment types C, S 

and G by averaging

SUMMARY:
Multidimensional scaling

so on. Exhibit 9.10 shows the species positions on the nonmetric MDS solution, 
showing, for example, that species a and b are relatively more abundant in the 
samples at lower left, while c is more associated with samples on the right. Simi-
larly, even though the ordinal sediment types C (clay), S (sand) and G (gravel) 
have not been used in the mapping, they can be depicted at the averages of the 
subsets of samples corresponding to them. The samples thus appear to follow a 
trend from top right (more clay) to bottom left (more gravel).

1.  Multidimensional scaling (MDS) is a method that attempts to make a spatial 
map of a matrix of proximities, either distances or dissimilarities defi ned be-
tween sample units, so that the interpoint distances in the map come as close 
as possible to the given proximities according to the chosen fi t criterion. 

2.  The fi t criterion in metric MDS involves approximating the actual proximity 
values by the mapped distances, for example by least-squares.
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3.  Classical MDS is a particular form of metric MDS that relies on the eigenvalue-
eigenvector decomposition of a square matrix. The eigenvalues give conveni-
ent measures of variance explained on each axis, and the dimensions of the 
solution are uncorrelated.

4.  Nonmetric MDS has a more relaxed fi t criterion in that it strives to match only 
the ordering of the proximities to the ordering of the mapped distances. 

5.  The error in classical MDS is quantifi ed by the percentage of unexplained vari-
ance, while in nonmetric MDS the error is quantifi ed by the stress.

6.  The stress measure always gives a more optimistic result, because of the relaxa-
tion of approximating the proximity values in the map in favour of their rank 
ordering.

7.  In most cases, however, when the size of the proximity data matrix is quite 
large, say for at least 30 sample units, the results of the two approaches will be 
essentially the same.

8.  When the proximities are of a Euclidean type, it will be more useful to use the 
metric scaling approach because of the connection with methods such as prin-
cipal component analysis (Chapter 12) and correspondence analysis (Chapter 
13). There would be little advantage, for example, in applying nonmetric scal-
ing to a matrix of chi-square distances.

9.  When the proximities are non-Euclidean, the nonmetric approach avoids the 
dilemma that the triangle inequality is violated by concentrating on ordering 
of proximities rather than their actual values.
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Algebra of multiple linear 
regression

Chapter

Regression Biplots

In the previous chapter, displays of samples were obtained in a scatterplot with 
spatial properties (hence often called a map), approximating given distance or 
dissimilarity matrices. Then some types of variables were added to the display, 
specifi cally zero/one categorical variables (e.g., presences of species, sediment 
categories) and count variables (e.g., species abundances). In this chapter we 
continue with this theme of adding variables to a plot of samples, including con-
tinuous variables in their original form or in fuzzy-coded form. When samples 
and variables are displayed jointly in such a scatterplot, it is often called a biplot. 
This designation implies that a certain property holds between the two sets of 
points in the display in terms of the scalar products between the samples and 
variables. In this chapter we consider the simplest form of biplot, the regres-
sion biplot, which will serve two purposes: fi rst, to give a different geometric 
interpretation of multiple regression; and second, to give a basic understanding 
of all the joint displays of samples and variables that will appear in the rest of 
this book.

Contents

Algebra of multiple linear regression   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  127
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The multiple linear regression model postulates that the expected value of a re-
sponse variable Y (i.e., the mean of Y) is a linear combination of several explana-
tory variables x1, x2, …, xp:

 Y x x xp p1 1 2 2E( )= + + +α β β β�  (10.1)

10
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Geometry of multiple 
linear regression

For example, using the data of Exhibit 1.1, consider the regression of species 
labelled d on depth, pollution and temperature. The model is estimated as:

 E(d)6.2710.148depth1.388pollution0.043temperature (10.2)

Notice that, for the moment, we do not comment on whether this type of linear 
model of a count variable on three environmental variables would be sensible 
or not, because d is not an interval variable – we will return to this point later. 

Since the coeffi cients in (10.2) depend on the units of the variables, we prefer 
to consider the regression using all variables in comparable units. Usually this is 
done by standardization of the variables, so that they are all in units of standard 
deviation. Let us denote these standardized variables (i.e., centred and normal-
ized) with an asterisk, then the regression model becomes:

 E(d*)0.347depth*0.446pollution*0.002temperature* (10.3)

The constant term now vanishes and the coefficients, called standardized re-
gression coefficients, can be compared with one another. Thus it seems that 
pollution has the strongest influence on the average level of species d, re-
ducing it by 0.446 of a standard deviation for every increase of one standard 
deviation of pollution. The effect of temperature is minimal and, in fact, is 
nonsignificant statistically (p0.99), while depth and pollution are both sig-
nificant (p0.039 and p0.010, respectively), so we drop temperature and 
consider just the regression on the other two variables, which maintains the 
value of the coefficients, but slightly smaller p -values: p0.035 and p0.008, 
respectively:

 E(d*)0.347depth*0.446pollution* (10.4)

When referring to the multiple regression model, it is often said that a hyper-
plane is being fi tted to the data. For a single explanatory variable this reduces to 
a straight line in the familiar case of simple linear regression. When there are 
two explanatory variables, as in (10.4), the model is a two-dimensional plane 
in three dimensions, the third dimension being the response variable d* – a 
view of this plane in three dimensions is given in Exhibit 10.1, with standard-
ized depth* and pollution* forming the two horizontal dimensions and d* the 
vertical one. Notice how the plane is going down in the direction of pollution, 
but going up in the direction of depth, according to the regression coeffi cients 
(see the web site of the book which shows a video of this three-dimensional im-
age). Notice too the lack of fi t of the points to the plane – the value of R 2 for 
the regression is 0.442, which means that 44.2% of the variance of d is being 
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Exhibit 10.1:
Regression plane defined 
by Equation (10.4) for 
standardized response 
d* and standardized 
explanatory variables 
pollution* and depth*. The 
view is from above the plane

explained, and 55.8% of the variance unexplained and considered residual, or 
error, variance.

The linearity of the plane means that predictions of the same mean values form 
parallel straight lines in the plane. From a mountaineer’s point of view, if you are 
standing on the plane and want to stay at the same height, you need to walk in 
a straight line. Projecting these parallel straight lines onto the depthpollution 
plane gives the contours, also called isolines, as shown in Exhibit 10.2. Finally, the 
vector in the depthpollution plane with coordinates equal to the regression co-
effi cients, 0.347 0.446, called the gradient, indicates the direction of steepest 
ascent in the regression plane, and is perpendicular to the contours. Given the 
geometry of the regression plane in Exhibit 10.2, it follows that we can do away 
with the d* dimension, just like cartographers do, and consider just the depth
pollution plane and the contours of the regression plane, which are perpendicu-
lar to the gradient vector. Exhibit 10.3 shows this “ground view” of the model.

The short arrow labelled d is the gradient vector. The dashed line through this 
vector is called the biplot axis for the variable d. Contour lines are perpendicular 
to the biplot axis. Exhibit 10.3(a) corresponds to the darker “shadow” in Exhib-
it 10.2 in the depthpollution plane, where the contours are in units of standard 
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Exhibit 10.2:
Another view of the 

regression plane, showing 
lines of equal height 

(dashed white lines in the 
plane) and their projection 
onto the depth−pollution 
plane (brown dashed lines 
in the darker “shadow” of 

the plane). The view is now 
from below the regression 

plane but above the 
depth−pollution plane. 

The short solid white line 
in the regression plane 
shows the direction of 

steepest ascent, and its 
projection down onto the 

depth−pollution plane is 
the gradient vector

deviation (sd) of species d (sd of d6.7). The mean of d, equal to 10.9, corre-
sponds to the contour line through the origin. Calibrating the biplot axis in the 
original abundance units of d, Exhibit 10.3(b) is obtained.

Now the expected abundance, according to the regression model, can be estimat-
ed for any sample by seeing on what contour line it lies, which is achieved by pro-
jecting the point perpendicularly onto the biplot axis. For example, the sample 
shown in Exhibit 10.3(b), with standardized coordinates 0.668 and 1.720, is on a 
contour line with value 4.2. The observed value for this sample is 3, so this means 
that the regression plane lies above the sample point and thus over-estimates its 
value. The action of projecting the sample point perpendicularly onto the biplot 
axis is a scalar product operation – just the regression model (10.4), in fact. The 
scalar product of the gradient vector 0.347 0.446 with the sample point vector 
0.668 1.720 is:

0.3470.668(0.446)1.7200.999

which means that the prediction is almost exactly one standard deviation be-
low the mean of d (in Exhibit 10.3(a) it is on the contour line 1sd), that is 
10.90.9996.74.2.
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Exhibit 10.3:
Regression plane shown as 
contour lines in the plane 
of the two explanatory 
variables, depth and 
pollution, both standardized. 
In (a) the contours are 
shown of the standardized 
response variable d*, where 
the units are standard 
deviations (sd’s) and the 
contour through the origin 
corresponds to mean 0 on 
the standardized scale, i.e. 
the mean on the original 
abundance scale. In (b) 
the contours are shown 
after unstandardizing to the 
original abundance scale of 
d. The sample shown in (b) 
corresponds to a height of 
4.2 on the regression plane
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Regression biplot

Exhibit 10.4:
Regression biplot of the 

five species with respect to 
the predictors depth and 

pollution

We have given a different geometric view of multiple regression, for the case of 
two predictor variables, reducing the regression model to the gradient vector of 
regression coeffi cients in the plane of the predictors (we will come to the case of 
more predictor variables later). The contours of the plane are perpendicular to 
the gradient vector. We can now perform the regressions of the other four spe-
cies with the same two predictors. Each species has a different pair of regression 
coeffi cients defi ning its gradient vector and all fi ve of these are plotted together 
in Exhibit 10.4. The fact that b and d point in similar directions means that they 
have similar regression relationships with the two predictors, and the samples will 
have similar projections onto the two biplot axes through b and d. Species a and 
c point in opposite directions and thus have opposite relationships, a negative 
with pollution and c positive. While samples high in the vertical direction such 
as s10 and s13 have high (modelled) abundances of c, they also have the lowest 
abundances of a. 
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Generalized linear model 
biplots with categorical 
variables

Each regression has an associated R 2 value: for the fi ve species these are (as 
percentages) (a) 52.9%, (b) 39.8%, (c) 21.8%, (d) 44.2%, (e) 23.5%. An overall 
measure of variance explained for all fi ve regressions in the biplot is the ratio of 
the sum of the explained variances in each and the sum of the total variances, 
which gives a value of 41.5%. As far as statistical signifi cance is concerned, all 
species have signifi cant linear relationship with pollution, but only d and e are 
signifi cantly related to depth as well (these have the highest standardized regres-
sion coeffi cients on the horizontal axis in Exhibit 10.4). 

In Chapter 9 we have already shown how the environmental variable sediment 
(Exhibit 1.1), which is categorical, can be added to a MDS display. Each category 
is placed at the average of the samples in which it is contained – we call these 
supplementary points. Similarly, we situated species in an MDS map as supplemen-
tary points by positioning them at their weighted averages of the sample points, 
with weights equal to the relative abundances. This approach can be used here as 
well, but their positions do not refl ect any formal relationship between the species 
and the predictors. Logistic regression can be used in this case to give gradient vec-
tors to represent these categories.

Logistic regression models the logarithm of the odds of being in a given category, 
in this case a particular sediment category. Modelling the log-odds (i.e., the logit) 
for each sediment category as a function of (standardized) depth and pollution 
using logistic regression leads to three sets of regression coeffi cients in the linear 
part of the model. For example, for gravel (G), the model is:

pG
p

p
G

G1
logit( ) log= =

−
⎛

⎝
⎜

⎞

⎠
⎟  3.3222.672depth*2.811pollution*

The three sediment categories are shown according to their logistic regression 
coeffi cients in Exhibit 10.5(a), connected to the origin. In fact, the above logistic 
regression is the only one that is statistically signifi cant, those for clay (C) and 
sand (S) are not. The categories as supplementary points are also shown in Ex-
hibit 10.5(a) by smaller labels in parentheses. 

Rather than use linear regression to display the species in a regression biplot, as 
in Exhibit 10.4, there are two other alternatives: Poisson regression, which may be 
considered more appropriate because it applies to count response data, or fuzzy 
coding. The Poisson regressions lead to the coeffi cients displayed as vectors in Ex-
hibit 10.5(b). Signifi cance with respect to the two predictors is the same as for the 
linear regression (see above), with in addition species b being signifi cantly related to 
depth. Both Poisson and logistic regression are treated in more detail in Chapter 18.
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Exhibit 10.5:
(a) Logistic regression 

biplot of the three sediment 
categories and (b) Poisson 

regression biplot of the five 
species as predicted by 

depth and pollution. In each 
biplot the gradient vectors 

are shown connected to 
the origin. In addition, the 
positions of the sediment 

categories and the species 
as supplementary points 

are given in their respective 
biplots by their labels in 
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Fuzzy-coded species 
abundances

More than two predictors

For the fuzzy coding, because there are several zeros in the abundance data, we 
can set up fuzzy codes for the species with a “crisp” code just for zeros and then 
three fuzzy categories for the nonzero values. Thus, for species a, for example, 
the code a0 refers to zero abundance and a1, a2 and a3 refer to low, medium 
and high positive abundances. Exhibit 10.6 shows the two ways of representing 
the fuzzy categories, fi rst in terms of their (linear) regressions on depth and pol-
lution, and second, in terms of their supplementary point positions as weighted 
averages of the samples. Overall, 10.6(a) and (b) tell the same story: most of the 
variation is in a vertical direction, along the pollution direction, with high values 
of species e (i.e., category e3) ending up bottom left, while the corresponding 
categories for species b and d end up bottom right. The trajectories of each 
species contain features that are not possible to see in the previous biplots. For 
example, species d has an interesting nonlinear trajectory, with low positive values 
(d1) pulled out towards the shallowest depths. Since the sample size is small, this 
feature may not be statistically signifi cant – we shall return to this aspect later, the 
point we are making here is that fuzzy coding can reveal more information in the 
relationships than linear models.

The two predictor variables depth and pollution form what is called the support 
of the biplot. With the aid of three-dimensional graphics we could have a third 
variable, in which case the gradient vectors would be three-dimensional. But if 
we only have a two-dimensional “palette” on which to explore the relationships, 
multivariate analysis can provide the solution, at the expense of losing some infor-
mation. As in the case of MDS, however, we are assured that a minimum amount 
of information is lost. 

Without entering into all the details of a multivariate method called canonical 
correlation analysis, which is a form of linear regression analysis between two sets 
of variables, we simply show its results in Exhibit 10.7, which visualizes all the 
(linear) relationships between the fi ve species and the three predictor variables 
depth, pollution and temperature. The confi guration of the samples looks very 
similar to a 90 degree counter-clockwise rotation of the scatterplots in previous 
biplots. However, the support dimensions are no longer identifi ed with single 
predictors but are rather linear combinations of predictors. The two canonical 
axes are defi ned as follows:

canonical dimension 10.203depth*0.906pollution*0.009temperature*

canonical dimension 21.057depth*0.607pollution*0.102temperature*

These dimensions are established to maximize the correlation between the spe-
cies and the environmental variables. The fi rst dimension is principally pollution 
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Exhibit 10.6:
Fuzzy coding of the 

species, showing for 
the fuzzy categories (a) 

their regressions on 
(standardized) depth and 

pollution, and (b) their 
weighted average positions 

with respect to the samples 
(i.e., supplementary points)
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Exhibit 10.7:
Canonical correlation biplot 
of the five species with 
respect to the predictors 
depth, pollution and 
temperature

but to a lesser extent depth, while the second is mainly depth but to a lesser ex-
tent pollution. The fi rst dimension is the most important, accounting for 73.1% 
of the correlation between the two sets, while the second accounts for 20.9%, that 
is 94.0% for the two-dimensional solution. Temperature plays a very minor role 
in the defi nition of these dimensions. The canonical dimensions are standard-
ized, hence the support has all the properties of previous biplots except that the 
dimensions are combinations of the variables, chiefl y depth and pollution. In ad-
dition, the canonical axes have zero correlation, unlike the depthpollution sup-
port where the two variables had a correlation of 0.396. Now that the support is 
defi ned, the species can be regressed on these two dimensions, as before, to show 
their regressions in the form of gradient vectors. The three environmental vari-
ables can be regressed on the dimensions as well, and their relationship shown 
using their gradient vectors, as in Exhibit 10.7. Notice that the angle between pol-
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SUMMARY:
Regression biplots

lution and depth suggests the negative correlation between them – see Chapter 
6. In fact, the cosine of the angle between these two vectors is 0.391, very close 
to the actual sample value of 0.396. Notice as well the absence of relationship of 
temperature with the canonical dimensions. 

Exhibit 10.7 is two biplots in one, often called a triplot. We shall return to the 
subject of triplots in later chapters – they are one of the most powerful tools 
that we have in multivariate analysis of ecological data because they combine the 
samples, responses (e.g., the species) and the predictors (e.g., the environmental 
variables) in a single graphical display, always optimizing some measure of vari-
ance explained.

1.  When there are two predictor variables and a single response variable in a 
multiple regression, the modelled regression plane can be visualized by its 
contours in the plane of the predictors (usually standardized). The contours, 
which are parallel straight lines, show the predicted values on the regression 
plane. 

2.  A regression biplot is built on a scatterplot of the samples in terms of the 
two predictors, called the support of the biplot. The gradient of the response 
variable is the vector of its regression coeffi cients, indicating the direction of 
steepest ascent on the regression plane. The gradient is perpendicular to the 
contour lines. 

3.  Several (continuous) response variables can be depicted by their gradient 
vectors in the support space, giving a biplot axis for each variable, and sample 
points can be projected perpendicularly onto the biplot axes to obtain pre-
dicted values according to the respective regression models.

4.  When response variables are categorical, their gradient vectors can be ob-
tained by performing a logistic regression on the predictors. Alternatively, the 
categories can be displayed at the averages of the sample points that contain 
them.

5.  When response variables are counts (e.g., abundances), their gradient vectors 
can be obtained by Poisson regression. Again, there is the alternative of dis-
playing them at the weighted averages of the sample points that contain them, 
where weights are the relative abundances of each variable across the samples. 

6.  For more than two predictor variables the support space of low dimensionality 
can be obtained by a dimension-reducing method such as canonical correla-
tion analysis. Dimension reduction is the main topic of the rest of this book.
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The “Barents fish” 
data set

Chapter 

Multidimensional Scaling Biplots

The ecological literature abounds with different measures of distance and dis-
similarity between samples, computed on species abundance data, biomass data, 
presence/absence data, compositional data, and so on. We have seen that we 
can perform cluster analyses on such proximity measures but also can map the 
samples in a spatial display using MDS. We have also seen how the variables 
themselves can be added, through regression or through averaging, to a support 
space that is usually two-dimensional for ease of interpretation. In this chapter we 
unite the idea of an MDS display with that of the regression biplot, to obtain joint 
displays of samples and variables. This step is a precursor to the many methods 
of multivariate analysis that are used in practice, notably principal component 
analysis, log-ratio analysis and correspondence analysis, which are the subjects of 
future chapters. 

Contents

The “Barents fish” data set   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  139
Relating MDS map to geography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  141
Adding continuous variables to a MDS map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  143
Nonlinear contours in a MDS map   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  144
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This data set consists of the abundances of 30 fi sh species at 89 sampling stations 
from the shrimp survey in the Barents Sea in the period April-May 1997. These 
data are part of a much larger data set for the Barents Sea over several years.1 
The locations of the samples are shown in Exhibit 11.1. Apart from the abun-
dances, available environmental covariates include bottom depth, temperature 

11

1 Data were collected during the former annual shrimp surveys in the Barents Sea, by the Norwegian Institute 
of Fisheries and Aquaculture (NIFA) and the Institute of Marine Research (IMR), Norway.
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Exhibit 11.1:
Locations of samples in 
“Barents fish” data set. 
At each sampling point 
the data consist of the 
abundances of 30 fish 

species, the bottom depth, 
the temperature and the 
spatial position (latitude 

and longitude). The stations 
have been colour coded into 
approximately neighbouring 

groups, using great circle 
distances, for comparison 

with the MDS map based on 
the abundances (coming in 

Exhibit 11.3)

Exhibit 11.2:
Part of the “Barents fish” 

data set: 89 samples (rows), 
4 environmental variables 

and 30 fish species 
(columns)

and the latitude/longitude coordinates for each sample. A small part of the data 
set is shown in Exhibit 11.2, showing that the species abundances differ widely 
both among samples and among species (see the sums of the rows and columns 
shown). Nevertheless, the samples come from equal volume sampling, a 20-min-
ute bottom trawl in each case.

Barents 
Sea

Svalbard

Norway

Russia

Station Environmental data  Species abundance data

ID No Latitude Longitude Depth Temp. Re_hi An_de An_mi Hi_pl An_lu Me_ae Ra_ra ··· Ca_re Tr_spp Sum  

356 71.10 22.43 349 3.95 0 0 0 31 0 108 0 ··· 0 0 845

357 71.32 23.68 382 3.75 0 0 0 4 0 110 0 ··· 0 0 1,740

358 71.60 24.90 294 3.45 0 0 0 27 0 788 0 ··· 0 0 1,763

359 71.27 25.88 304 3.65 0 0 1 13 0 295 0 ··· 0 0 767

363 71.52 28.12 384 3.35 0 0 0 23 0 13 2 ··· 0 0 1,347

364 71.48 29.10 344 3.65 1 0 0 20 0 97 0 ··· 0 0 801

···
···

···
···

···
···

···
···

···
···

···
···

···
···

···
···

462 70.83 21.32 167 4.45 0 0 0 10 2 50 0 ··· 0 0 232

465 73.38 17.37 462 1.95 0 0 0 0 0 0 0 ··· 0 0 36

Sum 316 135 45 8,564 9 6,141 305 ··· 62 653 63,896
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Relating MDS map to 
geography

Exhibit 11.3:
Nonmetric MDS of the 
Bray-Curtis dissimilarities 
in community structure 
between the 89 samples, 
with the same colour coding 
as in the map of Exhibit 
11.1

In order to perform MDS on these data, either Bray-Curtis or chi-square can 
be computed, bearing in mind the differences between them when they are ap-
plied in their usual forms: Bray-Curtis is computed on the original abundances, 
whereas chi-square is applied to the relative abundances in each sample. There 
is also the issue about whether abundances should be transformed before 
applying Bray-Curtis, for example a square root or even fourth root trans-
formation. We fi rst compute Bray-Curtis on the raw data and then consider 
transformations later in this chapter. Exhibit 11.3 shows the nonmetric MDS 
solution in two dimensions of the Bray-Curtis dissimilarities, with the same 
colour coding as in the geographical map of Exhibit 11.1. The MDS solution 
is interpreted spatially as the similarity between the samples in terms of their 
species abundances, while Exhibit 11.1 represents the geographical proximi-
ties between the sampling locations. Already we can see in Exhibit 11.3 that 
points in the same spatial group (colour-coded) are often close together. So 
we can consider here the interesting question of measuring how similar the 
biologically determined map is to the geographical map. A simple approach 
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Exhibit 11.4:
Scatterplot of inter-sample 
geographical (great circle) 
distances and distances in 

Exhibit 11.3. Spearman rank 
correlation0.378

is to plot the two sets of inter-sample distances against one another (there are 
½89883,916 of them), shown in Exhibit 11.4. The Spearman rank cor-
relation between the two sets of distances, which measures how similar the two 
sets of distances are, is equal to 0.378.

An alternative approach is to use Procrustes analysis, a method that is specifi cally 
designed to measure the similarity between two maps. One of the maps, in this 
case the geographical map, is used as a target matrix and the other one, the 
MDS map, is rotated, translated and rescaled to best fi t the target. One possible 
problem here is that the Euclidean distances between the latitude/longitude 
coordinates do not give the great circle distances. This can be solved by using a 
map projection in R (see Appendix C) to get coordinates for which Euclidean 
distances are approximate great circle distances. The Procrustes correlation be-
tween Exhibits 11.1 (using projected coordinates) and 11.3 turns out to be 0.549 
and highly signifi cant (p < 0.0001), hence there is a relationship between the 
geography and the fi sh community structure.
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Adding continuous 
variables to a MDS map

Exhibit 11.5:
Gradient vectors of the 
species (from Poisson 
regressions) and of the 
environmental variables 
(from linear regressions) 
when regression is 
performed on the 
dimensions of Exhibit 11.3

As presented in Chapter 10, we use the regression biplot to add species 
and environmental variables to an MDS map such as Exhibit 11.3. A Pois-
son regression of every species can be performed on the two dimensions of 
the map, and the species depicted by the gradient vector of its regression 
coefficients. For every environmental variable (here we have two, but we 
can include latitude and longitude as well for the moment) a linear regres-
sion can be performed on the two dimensions of the map, again providing 
a gradient vector in each case. The result is shown as a separate display in 
Exhibit 11.5.

Notice several technical aspects of this display. First, each Poisson regression 
models the logarithm of the mean species abundance, so that biplot axes 
through the species vectors, if calibrated, would have logarithmic scales. On 
the other hand, the biplot axes indicated by the environmental variables would 
be calibrated linearly – see Chapter 10. Second, to equalize the scales of the 
environmental variables, they were standardized. Third, because of the dispar-
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Nonlinear contours 
in a MDS map 

Fuzzy coding of 
environmental variables 

ity in scale between the set of species (on a logarithmic scale) and the set of 
environmental variables (standardized), one can only compare vectors’ lengths 
within a group, and not between groups. For example, the percentage of vari-
ance explained in the regression of the species Mi_po (Micromesistius poutassou, 
blue whiting) and of the variable temperature (Temp), both negative on the 
vertical axis, is of the order of 40%, yet Mi_po has a vector about twice as long 
as temperature.

The interpretation of the environmental variables in Exhibit 11.5 is quite clear, 
and has a strong relationship to the spatial distribution of the samples. Increasing 
latitude points conveniently “north” in the solution and longitude points “east”.2 
Temperature points “south”, sea water getting warmer with decreasing latitudes, 
and depth points “west”, so the samples are deeper as longitude decreases. The 
directions of the species, especially those with longer gradient vectors, give the 
biological interpretation of the ordination. In cold waters in the “north”, species 
typical of Arctic water masses tend to dominate, whereas more Atlantic species 
characterize samples in the “south”.

The vectors in Exhibit 11.5 are assuming that the relationships between the en-
vironmental variables and the dimensions of the MDS map are linear, in which 
case all we need to know is each variable’s gradient vector. To check this, an al-
ternative way to depict the changing nature of the environmental variables in the 
MDS map is to plot their contours nonlinearly, as shown in Exhibit 11.6. Here 
we can see the changes in the values of each variable: depth, for example, does 
look like it is increasing more or less linearly to the west, and longitude linearly 
to the upper right (see the directions of linear change of these variables in Ex-
hibit 11.5). Latitude and temperature have the same but less linear pattern, and 
notice that the contours are in inverse directions: as the contours of latitude go 
up, the contours of temperature go down. For these two variables, the assumption 
of linearity may be rather too simple, but nevertheless Exhibit 11.5 did show that 
their correlation was negative. We could also add contours like these for selected 
species of interest.

To capture possible nonlinear relationships between continuous variables and 
the MDS ordination, fuzzy coding offers an interesting alternative display. Let us 
code each of the environmental variables into four fuzzy categories, as described 
in Chapter 3. Then each category is placed on the ordination at its weighted av-
erage position, shown in Exhibit 11.7. Latitude and temperature can be seen to 

2 Notice that the signs of the MDS dimensions are random, so the axes can be reversed at will to facilitate the 
interpretation.
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Exhibit 11.6:
Nonlinear contours of 
the four environmental 
variables showing their 
relationship with the two 
MDS dimensions

Fuzzy coding of 
interactions and spatial 
coordinates

have curved trajectories and going in the opposite sense, whereas longitude and 
depth have more straight-line trajectories, in directions similar to their gradient 
vectors in Exhibit 11.5. 

Each variable was regressed separately on the ordination axes, but there are 
situations when interactions are important (but they are not included here). 
For example, in Exhibit 11.7 it is clear that there is a nonlinear relationship 
between temperature and depth since “shallower” samples (categories d1 and 
d2) are on the side of both high and low temperatures. However, this is not 
necessarily an interaction effect, which would be that the trajectory of depth 
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Exhibit 11.7:
Fuzzy categories of the 

four environmental 
variables, positioned at 

their respective weighted 
averages of the samples. 
The sample ordination is 

given in Exhibit 11.3, and 
linear relationships of 

species and variables in 
Exhibit 11.5

categories differs depending on the temperature category. Another example 
is the pair of variables latitude and longitude: in both Exhibits 11.5 and 11.7, 
it is not possible to determine if the effect of longitude is contingent on 
latitude. In regular statistical modelling involving continuous variables, an 
interaction is coded by the product of the two variables and this product is 
included in the model as well as the linear terms. But for our purpose, show-
ing gradient vectors in an MDS ordination for the linear terms of latitude and 
longitude and for their product is very diffi cult to interpret (the same prob-
lem occurs if one codes polynomial terms of latitude and longitude, which 
is often recommended to account for a nonlinear spatial component – the 
biplot representation of powers and cross-products of latitude and longitude 
coordinates is hard to interpret).
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Exhibit 11.8:
Coding the latitude–
longitude interaction 
into fuzzy categories: for 
example, each is coded into 
three fuzzy categories and 
then all pairwise products 
of the categories are 
computed to give nine 
categories coding the 
interaction. For example, 
the point with latitude 
71.8ºN and longitude 
41ºE has fuzzy coding 
[0.28 0.72 0] and 
[0 0.6 0.4] respectively. 
The first set is reversed 
to give values from north to 
south, and all combinations 
of the fuzzy values give 
nine categories coding the 
eight compass points and a 
central location

Fuzzy coding offers a better alternative, shown in Exhibit 11.8. The fuzzy coding 
of latitude and longitude (or any other pair of variables whose interaction needs 
to be explored) is computed, giving two sets of three numbers as shown, and 
then all pairs of these numbers give nine fuzzy categories coding the eight com-
pass points and a central category. For two continuous variables such as depth 
and temperature, the eight outer categories would code, for example, depth 
and temperature high (“north-eastern” category), temperature near the centre, 
depth high (“eastern” category, if depth is considered on the horizontal axis of 
the scheme in Exhibit 11.8), temperature low and depth high (“south-eastern” 
category), and so on. Finally, for the spatial variables, Exhibit 11.9 shows the 
positions of the nine categories. The points are connected by lines which would 
form a square grid if no interaction were present. There is a clear interaction, 
with the eastern regions having less difference than the western regions. This is 
a richer result than showing latitude and longitude by two simple vectors, and 
refl ects the more complex nature of the relationship of fi sh abundances to the 
geography.
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Exhibit 11.9:
The positions of the nine 

fuzzy categories coding the 
interaction between latitude 

and longitude. Labels are 
the eight compass points, 

and C for central position

SUMMARY:
Multidimensional scaling 

biplots

1.  Multidimensional scaling (MDS) makes an ordination map of a matrix of 
proximities within a set of samples, based on variables observed in each sam-
ple, for example species abundances, environmental or geographical variables, 
and so on.

2.  Once this ordination map is achieved, the variables on which it was originally 
based can be related to the dimensions of the map using the regression biplot 
approach, whereby regression models are fi tted to each variable as a response 
and the ordination dimensions as predictors.

3.  When the spatial coordinates of the samples are known, it is relevant to relate 
the ordination map to the spatial map. This can be done either by comparing 
inter-sample spatial distance with inter-sample distance in the ordination map, 
or by performing Procrustes analysis on the two confi gurations.
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4.  The nonlinear contours of a concomitant continuous variable observed on all 
the samples can also be visualized, one at a time, and compared to the straight-
line contours implied by the regression biplot. 

5.  Fuzzy coding is useful for visualizing these nonlinear contours in a simple way 
that allows several variables to be visualized simultaneously.

6.  Fuzzy coding can also be used to code interactions between continuous vari-
ables, such as latitude and longitude, and thus enrich the interpretation of the 
MDS result.
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The “climate” data set

Chapter

Principal Component Analysis

In the biplots shown so far, there has been a two-step process in their con-
struction. First, a scatterplot of the samples is made, using as support axes 
either two observed variables or two dimensions from an MDS. In the latter 
case the display has been optimized according to the objective function in 
the MDS, either to come as close as possible to reproducing the proximities 
(metric MDS) or to come as close to reproducing their ordering (nonmetric 
MDS). Given the MDS ordination, we have shown how different variables can 
be added using regression coeffi cients from various types of linear models or 
as weighted averages of sample points. The visualization of these variables is 
optimized conditional on the ordination – that is, the ordination is not neces-
sarily the best ordination for explaining the variance of the added variables. 
In this chapter we present the fi rst method that simultaneously optimizes both 
the ordination of the samples and the explained variance of the variables. The 
method, principal component analysis, applies to matrices of interval-scale 
continuous measurements. 

Contents
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Climate data are important in many ecological research projects, since they form 
part of the body of environmental indicators that can help to explain biologi-
cal patterns. In a marine research project in Kotzbehue, Alaska, a set of annual 
climate variables were gathered together in a table, part of which is shown in Ex-
hibit 12.1. These are annual data over 23 years, from 1981 to 2003. The variables 

12
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Exhibit 12.1:
Annual climate data for 

years 1981-2003, consisting 
of 17 climate indices and 
meteorological variables. 
Part of the 2317 data 

matrix is shown

MDS of the sample points 

form three sets: climate indices such as the Arctic Oscillation (AO) and North 
Pacifi c Index (NPI),1 meteorological variables such as temperature and rainfall, 
and various measures relating to Arctic ice such as ice coverage and number of 
ice-free days in the year.

Each year is described by a set of 17 variables – each variable is assumed to be 
on an interval scale: this means that to compare two values of any particular 
variable it is the difference between two values that is important rather than the 
ratio or percentage difference. There are many different scales amongst the 
variables, some are pure indices without any scale, others are in units of degrees 
centigrade or centimetres of precipitation, and another is a count of days. To 
measure overall differences between the years based on this disparate set of 
variables, we need to equalize their scales in some way so that large values do 
not count more just because they are on a different scale – notice, for example, 
in the last two columns of Exhibit 12.1 the large differences across years in the 
IceFreeDays column (i.e., high variance) compared to the small differences in 
the IceCover column (i.e., low variance). As explained in Chapters 3 and 4, the 
most common way of equalizing the scales is to express each variable relative to 
its standard deviation so that all variables have equal variance. But, depending 
on the nature of the data, some other way may be preferred – see the discussion 
in Chapter 3 for alternatives. In some other situations, when all the variables 
are measured on the same scale, standardization might not be necessary, so that 

1 The Atlantic Oscillation Index, based on sea-level pressure differences, is positive when there is low pressure 
over the North Pole, keeping the cold air there, while it is negative when cold air is released southwards. The 
North Pacifi c Index measures interannual to decadal variations in the atmospheric circulation, which antici-
pate changes in sea surface temperatures.

Year AO AO_winter AO_summer NPI NPI_spring NPI_winter Temp ··· IceCover IceFreeDays 

1981 −0.4346 −0.1683 −0.2410 −2.09 −0.15 −4.46 −3.9 ··· −0.64 140

1982 0.2977 −0.3750 0.3083 0.75 0.13 1.70 −4.7 ··· −1.65 144

1983 0.0319 0.1733 0.4653 −2.54 0.30 −5.44 −4.4 ··· −0.34 116

1984 −0.1917 0.2627 0.0240 −1.20 −0.23 −2.62 −7.0 ··· 0.15 134

1985 −0.5192 −1.2667 0.2678 0.52 −0.43 1.11 −5.9 ··· −0.21 120

···
···

···
···

···
···

···
···

···
···

···

2002 0.0717 0.4543 0.0187 0.13 −0.18 0.30 −3.3 ··· 0.78 203

2003 0.1521 −0.6453 0.0399 −1.67 −0.40 −3.84 −3.8 ··· −1.60 179

mean 0.0466 0.0587 0.1652 −0.440 0.023 −0.950 −5.15 −0.317 151.8

variance 0.1699 1.1687 1.0505 1.166 0.491 5.603 1.08 0.888 398.5



153

PRINCIPAL COMPONENT ANALYSIS 

Adding the variables to 
make a biplot

the natural variances of the variables come into play and are not equalized in 
any way.

Once the variables are standardized, there are several possibilities for comput-
ing an overall measure of difference, i.e. distance or dissimilarity, between any 
two years. The most obvious choices are the sum (or average) of the absolute 
differences between the 18 variables (city-block distance) or the Euclidean dis-
tance. In principal component analysis the Euclidean distance is used, followed 
by classical MDS. We will use a very slight adaptation of the Euclidean distance, 
averaging the squared distances between the variables rather than summing 
them, so that the measure of distance is unaffected by the number of variables 
included. For the fi rst two years in Exhibit 12.1, the distance between them is 
computed as follows:

d1981 1982
1
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The denominators 0.1699, 1.1687, …, 398.5 are the variances of the variables 
AO, AO_Winter, …, IceFreeDays, so that the values inside the square of each 
numerator are divided by the corresponding variable’s standard deviation. As 
described in Chapter 4, this distance function is called the standardized Euclidean 
distance. 

Applying classical MDS to these distances, Exhibit 12.2 is obtained, explaining 
45.6% of the variance. The years have been connected in sequence and there 
seem to be big changes in the climate variables from 1988 to 1989 and from 1994 
to 1995, shown by dashed lines. Thus three groups of climate “regimes” are ap-
parent, from 1982 to 1988 bottom left, then 1989 to 1994 on the right and fi nally 
from 1995 to 2003 in the upper section of the map. Next, adding the variables to 
the map will give the interpretation for these groupings.

The 17 standardized variables are now regressed on the MDS dimensions, and 
their gradient vectors of regression coeffi cients are shown in Exhibit 12.3. The 
reason why the three groups of years separate is now apparent. The fi rst period 
from 1982 to 1988 is characterized by high ice at all times of the year and to a 
lesser extent low winter temperatures (remember that the longer vectors here, 
corresponding to higher regression coeffi cients, will be the more important 
variables to interpret). In this period the climate indices, which are pointing to 
the right, will generally be below average. The period from 1989 to 1994, espe-
cially 1989, show a relatively sharp increase in all the climate indices. Then for 
the period 1995 to 2003, the climate indices move generally to average values 
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Exhibit 12.2:
MDS map of the 23 

years according to the 
standardized Euclidean 

distances between them, 
across 17 climate variables. 

Variance explained by the 
two dimensions is 27.8% 

and 17.8%, totalling 45.6%

Principal component 
analysis

again but the annual temperature is generally higher, total ice is lower and the 
number of ice-free days higher. 

The MDS solution for the years and the addition of the variables by regression once 
again looks like a two-step process, but what we have done is in fact the principal 
component analysis (PCA) solution of the climate data set, which is a one-step 
process. The difference between this analysis and all the other two-step analyses 
described before in this book is that here both the display of the cases and the 
display of the variables are simultaneously optimized. If one computes the overall 
variance explained of the 17 variables by the two MDS dimensions in this case, one 
gets exactly the same percentage of variance, 45.6%: 27.8% by the fi rst dimension 
and 17.8% by the second. To summarize, PCA of a cases-by-variables data matrix 
can be thought of as an MDS of the Euclidean distances between the cases plus the 
regressions of the variables on the dimensions of the MDS solution.
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Exhibit 12.3:
Regression relationships 
of the variables with 
the two dimensions of 
the MDS map in Exhibit 
12.2. Superimposing this 
configuration on Exhibit 
12.2 would give a biplot of 
the years and the variables. 
This would be the so-called 
row-principal biplot, 
explained on the following 
page

To compute a PCA it is not necessary to do these two consecutive steps: they 
can be done in a single step using a famous theorem in mathematics called 
the singular value decomposition, or SVD. This result is similar to the eigenvalue-
eigenvector theorem for square matrices but applies to rectangular matrices. 
Applying the SVD to a matrix results in a least-squares approximation of 
the matrix of a lower rank, where rank is the algebraic equivalent of dimen-
sionality. In the application to the climate data, the SVD provides a rank 2 
approximation to the 17-dimensional standardized data matrix, and it is this 
two-dimensional approximation that is represented in Exhibits 12.2 and 12.3. 
The approximation explains 45.6% of the variance in the original matrix, and 
this is the same if one thinks of the explanation of the row points (i.e., the 
years as displayed in Exhibit 12.2) or the variables (i.e., the climate variables as 
displayed in Exhibit 12.3). Thus, Exhibit 12.2 explains 45.6% of the (squared) 
Euclidean distances between the rows, and at the same time the two dimen-
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Scaling of the solution

sions of the solution are predictors of the 17 variables, also explaining 45.6% 
of their total variance.

There is one subtle but important difference, not discussed before, between the 
regression biplots of Chapter 10 and the MDS and PCA biplots in Chapter 11 
and in Exhibits 12.2 and 12.3. In the regression biplots of Chapter 10 the support 
space of the sample points was constructed using standardized variables, with vari-
ance one on both axes, whereas in Chapter 11 and this chapter so far, the samples 
had different variances on the axes. In Exhibit 12.2, for example, the variances 
along dimensions 1 and 2 were 6.12 and 3.90 respectively, explaining 27.8% and 
17.8% of the total variance of the sampled years. This means that the year points 
are more spread out horizontally than vertically, although this may not appear 
obvious in Exhibit 12.2. In other examples there may be a much greater dispar-
ity between the horizontal and vertical spread of points in the distance map, in 
which case the discussion in this section is more of an issue.

To mimic the regression biplots of Chapter 10, we could rescale the coordinates 
of the sample points (i.e., year points here) in the MDS map to have unit variance 
on both dimensions, and then add the variables by regression. This will not af-
fect the variance explained in the regression analyses but has some advantage in 
that the gradient vectors are then standardized regression coeffi cients and more 
easily compared.

Let us introduce some terminology that will be essential in future descriptions 
of different types of biplot. If a set of points, row or column points, has equal 
sum of squares on each dimension (usually equal to 1, but not necessarily), we 
call their coordinates on the dimensions standard coordinates. If they have sum 
of squares equal to (or proportional to) the variance explained by the dimen-
sions, then their coordinates are called principal coordinates. In the case of PCA, 
the Exhibit 12.2 displays the year points (rows) in principal coordinates, and 
Exhibit 12.3 displays the variables (columns) in standard coordinates. The 
superimposition of these two displays is a true biplot, called the row-principal 
biplot. The other possibility, given in Exhibit 12.4, is the column-principal biplot, 
where the years are in standard coordinates, and the variables in principal 
coordinates. In this case it may seem hardly different to the combination in 
Exhibits 12.2 and 12.3, apart from the scale on the axes, so we should clarify the 
difference in interpretations of the two alternatives. In the row-principal biplot 
obtained by superimposing Exhibits 12.2 and 12.3, the year points are a spatial 
approximation of the inter-year Euclidean distances. In the column principal 
biplot of Exhibit 12.4 where the year coordinates have been standardized, this 
distance approximation property is not true any more. In Exhibit 12.4 the focus 
is on the climate variables and their spatial properties, in particular the angles 
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Exhibit 12.4:
Column-principal biplot of 
the climate data. Here the 
year points have coordinates 
that are standardized, while 
the sum of squares of the 
variable points on each 
dimension is proportional to 
the variance explained

between them, which have cosines that are approximately equal to the pairwise 
inter-correlations (see Chapter 6).

However, in Exhibit 12.4 the coordinates of the columns are standardized 
regression coefficients. In addition, because the two support dimensions are 
uncorrelated, the standardized regression coefficients are identical to the 
correlation coefficients of the column variables with the dimensions. For 
example, in Exhibit 12.4, the variable IceFreeDays can be seen to have a cor-
relation with the first and second dimensions of approximately 0.3 and 0.7, 
respectively. In the same display sample points lie more or less within plus/minus 
two units, that is two standard deviations (because they are standardized), 
whereas the column points all have absolute values less than one (because 
their coordinates are correlations). One final remark: the sample points have 
means equal to zero, but the variable points are not centred. This is why, for 
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The circle of correlations

the biplot in Exhibit 12.4, the legend says that the sample coordinates are 
standardized (mean zero, variance one), whereas the sum of squares of the 
variable points on each dimension is proportional to the respective variance 
explained.

In the classical MDS of the Euclidean distances of this 17 variable problem, 
there are a maximum of 17 dimensions in the MDS solution, of which Ex-
hibit 12.2 shows the best two corresponding to the two largest eigenvalues. (If 
there were 17 or fewer samples the maximum dimensionality of the solution 
would be one less than the number of samples.) Because the 17 “response” 
variables are standardized, a property of the standardized regression coef-
fi cients computed on standardized dimensions (where the coeffi cients are, 
we repeat, the correlations of the variables with the ordination axes) is that 
their sum of squares over all the dimensions for a particular variable is equal 
to 1, in other words the variable is fully explained by the complete set of MDS 
dimensions. In Exhibit 12.4, which shows the standardized regression coeffi -
cients with respect to the fi rst two dimensions only, the sum of squares of the 
two coordinates for each variable, in other words the squared length of each 
vector shown, is equal to the proportion of variance explained for the respec-
tive variable. So we can draw a unit circle around the variable vectors and the 
variables that are better explained by the dimensions will be longer and closer 
to the unit circle. Exhibit 12.5 shows this circle. For example, the variable Ice, 
which lies close to the unit circle, has a very large part of its variance explained 
by the dimensions – the percentage is actually 88% – whereas Temp has only 
21.2% (the length of the Temp vector is just under 0.5, and the length squared 
is the part of variance explained).

Having explained this relationship between the squared coordinates and the 
parts of variance explained for each variable, it follows that the average of the 
squared coordinates on each axis is equal to the part of variance (for all variables) 
explained by the axis: these averages are computed to be 0.278 and 0.178 respec-
tively – see the caption of Exhibit 12.2.

In addition, as mentioned before, the cosines of the angles between the variables 
in Exhibit 12.5 are approximations of the correlations between the variables, 
and the approximation is improved when the variables are well explained, that 
is close to the unit circle. Thus we can be pretty sure that IceFreeDays and Ice are 
negatively correlated – the actual correlation is 0.57, the second most negative 
correlation amongst the variables. However, look at Exhibit 6.2 again – in order 
to see the correlation exactly as the angle cosine, we would need to see the two 
vectors IceFreeDays and Ice in their actual positions, not projected down onto this 
approximate MDS map. 
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Exhibit 12.5:
Plot of the variables as 
in Exhibit 12.4, that is as 
standardized regression 
coefficients (i.e., principal 
coordinates in this PCA, 
which are the correlations 
between the variables and 
the dimensions), all lying 
within the unit circle. The 
closer the variable vector 
is to the unit circle, the 
better it is explained by 
the dimensions. The angle 
cosines between the vectors 
also approximate the 
correlations between the 
variables

Deciding on the 
dimensionality of the 
solution 

Mostly for convenience of plotting, the biplots from PCA and MDS are shown 
with respect to the best two principal axes. But are these axes “signifi cant” in the 
statistical sense? And what about other dimensions? If the third dimension of 
the solution were also “important”, we could try to use three-dimensional graph-
ics to visualize the biplots. But before going to these lengths we need a way 
of deciding how many dimensions are worth interpreting. One of the simplest 
ways of judging this, albeit quite informal, is to make a so-called scree plot, that 
is a bar graph of all the eigenvalues, or parts of variance, of the solution and 
then look for the so-called elbow in the plot. In Exhibit 12.6 on the left we show 
the scree plot of the eigenvalues of the present 2317 example of climate data, 
whereas the scree plot on the right is of a 2317 matrix of normally distributed 
random variables. Both PCAs have the same total variance of 17, equal to the 
number of variables, since each standardized variable has variance 1. Notice 
how for the random data the eigenvalues fall off gradually in value, whereas for 
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Exhibit 12.6:
Scree plots of the 

eigenvalues for (a) the 
climate data matrix; (b) a 

random data matrix

the climate data the fi rst two stand out from the rest. From eigenvalue 3 on-
wards the values in Exhibit 12.6(b) are similar or greater than those in Exhibit 
12.6(a), so it does seem that the fi rst two dimensions of the climate data are 
nonrandom. Later in Chapter 17 we will make formal tests for dimensionality, 
based on the same method of comparing eigenvalues obtained in a PCA with 
those from PCAs of randomly generated data.
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SUMMARY:
Principal component 
analysis

1.  Principal component analysis (PCA) can be thought of as a multidimensional 
scaling (MDS) of a sample of multivariate observations, followed by the addi-
tion of the variables to the MDS map by linear regression on the dimensions, 
to give a biplot. Proximities between the multivariate sample points are de-
fi ned using Euclidean or weighted Euclidean distance.

2.  The special feature of PCA is that the visualization of both the sample points 
and the variables is optimized simultaneously: that is, the MDS optimally dis-
plays the sample points by least-squares and the dimensions are at the same 
time the best ones for predicting the variables by least-squares regression. In 
fact, the PCA solution is obtained in a single computational step, rather than 
a two-step MDS and regression approach. 

3.  There are two ways of displaying the results of PCA in the form of a biplot, 
differing only by scale factors of the sample (row) and variable (column) coor-
dinates: the row-principal biplot and the column-principal biplot.

4.  In the row-principal biplot the sample points are scaled in principal coordi-
nates, as they would be from the MDS solution: they have mean 0 on each prin-
cipal axis and their variances on each axis are the parts of variance explained. 
The variables added by regression will have equal variance on the axes (usually 
equal to 1) and their coordinates are thus called standard coordinates. Visu-
ally, the sample points will be spread out more on the fi rst (horizontal) axis 
than on the second (vertical) axis, whereas the variables will be equally spread 
out on the two axes.

5.  In the column-principal biplot the sample points are standardized on each 
principal axis, usually to have variance 1, in which case the regressions of the 
(standardized) variables on the principal axes are standardized regression 
coeffi cients, identical to the correlations between the variables and the axes. 
Now the variables, which are in principal coordinates, will be more spread out 
on the fi rst axis than the second, whereas the sample points are equally spread 
out on the axes.

6.  In the column-principal biplot the variables can be depicted as vectors inside 
a unit circle: the closer they lie to the circle the better they are explained by 
the principal dimensions. Also the angle cosines between the vectors are ap-
proximations of the correlations between them.

7.  PCA is a dimension-reduction technique that attempts to separate “signal” 
(i.e., true structure) in the data, from “noise” (i.e., random variation), con-
centrating the signal in the fi rst principal axes. Choosing how many axes are 
nonrandom can be performed informally by inspection of the scree plot of 
the eigenvalues in descending order, observing which eigenvalues stand out 
from the rest.
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Chapter 

Correspondence Analysis

Correspondence analysis is one of the methods of choice for constructing 
ordinations of multivariate ecological data. Ecological data are often col-
lected as counts, for example abundances, or other positive amounts such 
as biomasses, on a set of species at different sampling sites. Correspondence 
analysis is similar to PCA, but applies to data such as these rather than inter-
val-scale data. It analyses differences between relative values: for example, if at 
a sampling site there is an overall abundance count of 320 individuals across 
all the species, and if a particular species is counted to be 55, then what is 
relevant for the analysis is the relative value of the abundance, 55/320 (17%). 
Furthermore, to measure inter-sample difference in such relative abundances 
across the species, the chi-square distance described in Chapter 4 is used to 
normalize species with different overall abundances. Classical MDS is applied 
to the chi-square distances to obtain an ordination of the sample points, with 
one important difference compared to PCA: each sample point is weighted 
proportionally to its total abundance (e.g., the value 320 mentioned above 
as an example), so that samples with higher overall abundance are weighted 
proportionally higher. These sample weights are also used in regressing the 
species on the dimensions to obtain a biplot. Finally, correspondence analysis 
has the special property that the analysis can be equivalently defi ned, and 
thought of, as the analysis of the rows (e.g., samples) or the analysis of the 
columns (e.g., species). 

Contents

Weighted MDS of chi-square distances   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  166
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Barycentric (weighted average) relationship . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  169
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Weighted MDS 
of chi-square distances

In Chapter 11 we made a two-step analysis of the “Barents fish” abundance 
data: first, the Bray-Curtis dissimilarities between sampling sites were com-
puted and a nonmetric MDS performed, and second, the species counts 
were regressed on the ordination dimensions using Poisson regression to 
obtain a biplot of the samples and species. These regressions were optimal 
conditional on the ordination obtained in the first step, so the question to 
consider now is what the ordination should be in two dimensions, say, in 
order that the regressions are the best that one can get using the two ordi-
nation axes as predictors. Like PCA, correspondence analysis, abbreviated 
as CA from now on, is going to be doubly optimal: the display of the sample 
points will be optimal and the biplot of the samples and species will be opti-
mal in that the species regressions will explain maximum variance. One ma-
jor difference in the CA approach is that it measures distance between the 
profiles of the abundances (i.e., vectors of relative abundances), described 
in Chapter 4 – see Exhibit 4.6 and the surrounding description. Then it uses 
the chi-square distance function between the profiles – see Exhibit 4.7 and 
its surrounding description. Furthermore, the sense of the optimality is by 
weighted least-squares in both the MDS of the sample profiles and in the re-
gressions of species on the ordination axes – the sample weights are propor-
tional to the abundance totals at the different sampling points. For example, 
the abundance totals at the 89 sites (see Exhibit 11.2) are 845, 1,740, 1,763, 
767,…, 232, 36, with a grand total of 63,896. The weights, which are positive 
and add up to 1, will be 845/ 63,8960.0132, 1,740/63,8960.0272, and so 
on, until 232/63,8960.0036 and 36/63,8960.0006. Thus sites with high-
er abundances will be weighted more than those with lower abundances: for 
example, the profile of the second site will get a weight of 0.0272 (2.72%) 
whereas the last site, where overall abundance was low, will get a weight of 
0.0006 (0.06%).

In the previous description of MDS methods there was no question of weight-
ing the points, in other words all were weighted equally. It is a fairly simple 
adaptation of the methodology to accommodate different weights, which 
means that points with higher weight will tend to be better displayed than 
points with lower weight. This reweighting can make a big difference to the 
fi nal MDS solution, as illustrated for this particular data set in Exhibit 13.1. In 
the unweighted MDS there is a curve of points from the left across to the top 
and then down to the three red points. This curve is essentially reproduced on 
the right hand side of the weighted MDS, following the vertical axis from top 
to bottom, but two samples have separated out on the left. These latter sam-
ples have high abundances, and so have high weights and become much more 
prominent in the weighted analysis. The ordination map in Exhibit 13.1(b) is 
based on the CA solution.
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Exhibit 13.1:
Unweighted MDS (a) and 
weighted MDS (b) of the chi-
square distances between 
sampling sites, for the 
“Barents fish” data. Colour 
coding as in Chapter 11
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Display of unit profiles

Exhibit 13.2:
Row-principal CA biplot 

(asymmetric map) of 
“Barents fish” data. The 

sample profiles are shown 
as well as unit profiles 

for the species. There is 
a barycentric (weighted 

average) relationship 
between the samples and 
species points. Explained 

variance is 47.4% 

CA has some special features that are not present in PCA, chiefl y because the 
displayed profi les consist of nonnegative values that add up to 1. These are also 
called compositional data, the proportions of the species in each sample. One of 
the classic ways of displaying the species in CA is to show where the so-called 
unit profi les are in the ordination space: these are vectors of zeros except for a 1 
in the position corresponding to a species, as if there were a sample with only 
that species observed in it. The unit profi les for the species are shown as supple-
mentary points in Exhibit 13.2. Thus the unit point of the species Bo_sa (Boreog-
adus saida, polar cod) is on the extreme left, and species points Tr_spp (Triglops 
species) and Le_ma (Leptoclinus maculatus, spotted snake blenny) are also sepa-
rate from the others on the left hand side. It turns out that the sample on the 
extreme left has very high relative abundances of these three species, and this 
explains its outlying position in the direction of these species. These high dis-
tances are not apparent in Exhibit 13.1(a) because all the points are weighted 
equally, whereas CA gives prominence to the samples with higher weight, and 
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Barycentric (weighted 
average) relationship

Dimensionality of CA 
solution

Bo_sa is a species with high overall abundance. The CA solution in Exhibit 13.2 
is sometimes called an asymmetric map: the sample (row) points are in principal 
coordinates and it turns out that the species (column) points are in standard 
coordinates in the CA sense. To make this more precise, each species also has 
a weight in CA, its total abundance relative to the grand total. In Exhibit 11.2 
the last species Tr_spp, for example, has an abundance of 653, which gives it a 
weight of 653/63,896 (1.02%). With these weights the species points in Exhibit 
13.2, representing unit profi les, have weighted sum of squares equal to 1 on 
each dimension, and thus have coordinates referred to as standard coordinates.

Before continuing let us start to call the sample and species weights masses, 
which is the preferred term in CA. This also distinguishes these masses from 
other sets of weights which we discuss now. For example, the masses of the 30 
species in the “Barents fi sh” data are the relative abundances of the species in 
the whole data set. So the masses refl ect the expected, or average, relative abun-
dances in a sample if there were no differences in species distribution across 
the study region.

The joint display of samples and species in Exhibit 13.2 has an additional prop-
erty that is particular to CA and is, in fact, one of the reasons for its relevance in 
ecology. Each sample point, originally the profi le of the sample across the spe-
cies, is at the weighted average of the species points, where weights are defi ned 
here as the elements of the profi le. Let us take the sample on the extreme left of 
Exhibit 13.2 as an example. This sample has a total abundance of 4,399 and its 
profi le across the 30 species consists of 19 zeros and 11 positive values, of which 
a few are extremely high compared to the species masses. For example, 82.9% 
is in the species Bo_sa (3,647 out of 4,399), whereas the relative abundance 
(i.e., mass) of Bo_sa in the whole data set is only 8.3% (5,297 out of 63,896). 
The sample is situated at the weighted average of the species points, and 82.9% 
of its weight is on Bo_sa, hence its position close to it. It has also much higher 
than average relative abundances of Tr_spp and Le_ma. For the same reason, 
the three sample points at bottom right must have high values in their profi les 
on the species Tr_es and Mi_po in order to be situated so close to them in that 
direction. Weighted averages are also called barycentres and this relationship 
between sample and species points in this version of the CA solution is called 
the barycentric relationship. 

CA also leads to an eigenvalue measure of the part of variance on each dimen-
sion, as in PCA, and these eigenvalues can be viewed in a scree plot, shown in 
Exhibit 13.3. Here we introduce some terminology particular to CA: the total 
variance is called the total inertia of the data set, and is equal to 2.781 in this 
case. The eigenvalues, or principal inertias, decompose this total along the prin-
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Exhibit 13.3:
Scree plot of eigenvalues 
in the CA of the “Barents 

fish” data 

Contribution biplots

cipal axes. Notice that there are only 29 eigenvalues – the dimensionality of 
the full space is not 30, the number of species, but one less because the profi le 
matrix analysed has constant row sums of 1. To decide on how many dimensions 
are worth interpreting we proceed as in PCA: it looks like there may be at most 
four dimensions distinguishing themselves from the others that tend to fall off 
in a pattern typical of random data. Later in Chapter 17 we will show more for-
mally by a permutation test that in fact there are only three highly signifi cant 
dimensions. So we should be looking at the third dimension as well. This poses 
a technological challenge, but it is now fairly easy to observe three-dimensional 
displays. In Exhibit 13.4 is a snapshot of the three-dimensional view of the 
points, and if you click on the image in the electronic version of this book it will 
revolve around the vertical axis.

The caption of Exhibit 13.2 refers to the display as a row-principal biplot, but this 
is not exactly the same as the regression biplots discussed before. In Chapters 11 
and 12 the standardized variables were regressed onto the axes using ordinary 
least squares. Here there are two differences: fi rstly, the fact that the chi-square 
distances between profi les are being displayed, and secondly, the fact that each 
sample is weighted differently according to its corresponding mass. Thus it 
should be the columns of the standardized profi le matrix that are regressed on 
the axes, standardized by centring with respect to the average profi le (in this case, 
the set of species masses) and dividing columns by the square root of the cor-
responding masses, i.e. the standardization inherent in the chi-square distance. 
This gives another version of the biplot which we call the contribution biplot, shown 
in Exhibit 13.5 – just the species vectors are shown, the sample points are identi-
cal to those of Exhibit 13.2. With this scaling the species that are the most outly-
ing on the axes are the ones contributing mostly to the CA solution, and thus the 
important ones for interpretation.
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Exhibit 13.4:
Three-dimensional view of 
the samples and species, 
row principal biplot scaling. 
For readers of the electronic 
version: To see the rotation 
of these points around the 
vertical (second) axis, click 
on the display

Notice fi rst the technical difference between the scalings of the species in Exhib-
its 13.2 and 13.5. In Exhibit 13.2 the standard coordinates have weighted average 
sum of squares equal to 1 on each ordination axis, using the species masses. In 
Exhibit 13.5 the contribution coordinates have unweighted sum of squared coordi-
nates equal to 1 on each axis. These squared coordinates are the part contributions 
to the respective axes and are thus called contribution coordinates. In Exhibit 13.5 the 
species are shown as gradient vectors, and are oriented in the exact same directions 
as the unit profi les in Exhibit 13.2, but each species point has been pulled in by dif-
ferent amounts, with the rarer species being pulled in more than the more abun-
dant ones. The exact relationship between the two types of species coordinates is 
that the contribution coordinates in Exhibit 13.5 are the standard coordinates 
in Exhibit 13.2 multiplied by the square roots of the respective species masses. 
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Exhibit 13.5:
Species in contribution 
coordinates. Combining 
this configuration with 

the sample points in 
Exhibit 13.2 would give 

the two-dimensional 
contribution biplot. The 
species that contribute 

more than average to an 
axis are shown in larger 
font (contributions to all 

three significant dimensions 
are taken into account 

here – the species Hi_pl 
contributes highly to the 

third dimension). Those near 
the origin in tiny font are 

very low contributors to the 
CA solution

When it comes to the interpretation, the species No_rk and Se_me are ones that ex-
emplify the difference between Exhibits 13.2 and 13.5. No_rk is a quite rare species 
in the data set, only 83 counted out of the total of 63,896, whereas the overall count 
of Se_me is 12,103. Thus No_rk is pulled in very strongly from its unit profi le position 
in Exhibit 13.2 to its inlying position in Exhibit 13.5 – whereas it looked like it was 
the most important point before, it is now one of the species near the origin that 
are shown with tiny labels. By contrast, Se_me is not pulled in so strongly because of 
its high mass and in Exhibit 13.5 is confi rmed to be the most important contributor 
to that spread of the samples upwards on the second axis. Both versions of the CA 
ordination are useful: from Exhibit 13.5 we know that Se_me is a strong contribu-
tor while Exhibit 13.2 tells us that the much sparser data for No_rk still correlates 
with that of Se_me. Another way of thinking about the high contributors, nine 
species in all in Exhibit 13.5, is that we could remove the other 21 species from 
the data set and get more or less the same result. To illustrate this, Exhibit 13.6 

Dimension 1

D
im

en
si

on
 2

–0.8 –0.6 –0.4 –0.2 0.0 0.2

0
.6

0
.4

0
.2

0
.0

–0
.2

–0
.4

Re_hi

An_de
An_mi

Hi_pl

An_lu

Me_ae

Ra_ra

Mi_po

Ar_at

No_rk

Lu_la
Ma_viBo_sa

Cy_lu
Cl_ha

Se_me

Le_de

Ga_mo

Le_ma
Se_ma

Tr_es

Ly_paLy_euLy_reLy_seLy_esLy_vaBe_glCa_reTr_spp



173

CORRESPONDENCE ANALYSIS 

Exhibit 13.6:
Contribution biplot 
of the “Barents fish” 
data, retaining only the 
nine species with high 
contributions to the three-
dimensional solution. The 
sample and species points 
are shown separately. The 
Procrustes correlations 
with the configurations 
obtained in Exhibits 13.2 
(sample points) and 13.5 
(species points), using all 
30 species, are 0.993 and 
0.997 respectively
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Symmetric analysis of 
rows and columns

shows the contribution biplot of this reduced data set of nine species. The result 
is almost identical – the Procrustes correlations with the previous results are 
almost 1.

In all the above we have considered the case of the row profi les, the relative abun-
dances of the species in each sample, with chi-square distances between them, 
mapped into a space using (weighted) classical MDS, with columns (i.e., species) 
displayed either as unit profi les or in contribution coordinates. We could turn this 
problem around by interchanging rows and columns and repeating everything as 
before. The matrix of column profi les is thus considered – these are the relative 
abundances across the samples of each species (i.e., the columns of Exhibit 11.1 
divided by the column totals). Chi-square distances between these species pro-
fi les would be visualized (i.e., columns in principal coordinates), and the sample 
points added either as unit points (i.e., rows in standard coordinates) or as stand-
ardized regression coeffi cients (i.e., rows in contribution coordinates). In CA 
the row and column profi le matrices, analysed in this similar and symmetric way, 
lead to exactly the same fi nal solution, and all the sets of coordinates are related 
by simple scalar multipliers. The following are the basic results to remember, for 
both row and column points:

 principal coordinatesstandard coordinates(principal inertias)½ (13.1)

 contribution coordinates(masses)½standard coordinates (13.2)

For example, suppose we had all the results from the analysis of the sample 
profi les, as discussed up to now and as shown in Exhibits 13.2, 13.4 and 13.5, 
and we wanted the equivalent results for the analysis of the species profi les. 
The species principal coordinates would be the species standard coordinates 
(shown in Exhibit 13.2) multiplied by the square roots of the principal inertias 
(eigenvalues) on respective axes: (0.777)½ on fi rst axis, (0.541)½ on the sec-
ond, (0.485)½ on the third – notice that the principal inertias in CA are always 
less than one, so the principal coordinates are always contracted towards the 
centre compared to the standard coordinates. To obtain the sample standard 
coordinates we have to do the reverse operation by taking the sample princi-
pal coordinates (also in Exhibit 13.2) and divide by the corresponding square 
roots of the principal inertias, given above. Finally, to obtain sample contribu-
tion coordinates in order to see which are the highly contributing samples to 
the solution, the standard coordinates for each sample are multiplied by the 
corresponding square root of the sample mass.

A popular way of showing the results of a CA is to show the simultaneous display 
of the row and column profi les, that is both in principal coordinates. For the 



175

CORRESPONDENCE ANALYSIS 

Exhibit 13.7:
Symmetric map of “Barents 
fish” data set, both samples 
and species in principal 
coordinates, with higher 
than average contributing 
samples and species in 
larger symbols and font 
sizes

“Barents fi sh” data set, this so-called symmetric map of the points, where both 
rows and columns are visualizing their inter-point chi-square distances, is shown 
in Exhibit 13.7. Because contributions are not directly visualized in the points’ 
coordinates, we can introduce larger and smaller symbols or labels to give an 
indication of the important points to concentrate on in the interpretation. An 
advantage of this display is that the row and column points have the same iner-
tias (parts of variance) along the dimensions, so they are spread out the same 
amount horizontally and vertically, which uses the plotting space better. Strictly 
speaking, however, the symmetric map is not a biplot as described before. 
However, when the square roots of the principal inertias along axes are not too 
different, so that principal and standard coordinates are approximately pro-
portional to one another in the two-dimensional solution (see formula (13.1)), 
then the map comes close to a true biplot. In this example, (0.777)½0.881 
and (0.541)½0.736, which are indeed quite close, so Exhibit 13.7 can be inter-
preted as an approximate biplot.
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SUMMARY:
Correspondence analysis

1.  Correspondence analysis (CA) is the analogue of principal component analysis 
(PCA) for data that are nonnegative such as abundance counts, biomasses and 
percentages. All the data must be measured on the same scale, so that it makes 
sense to compute row sums and column sums.

2.  CA analyses the row profi les and/or the column profi les of the data matrix: 
these are the rows of data divided by their respective row sums or the columns 
divided by their respective column sums. 

3.  Each row and each column is weighted by its respective mass: the masses are 
the row and columns sums relative to the grand total of the data.

4.  Distances between row profi les or between column profi les are defi ned by the 
chi-square distance.

5.  For a samples-by-species data matrix, CA is generally thought of asymmetrically 
as an analysis of the sample (row) profi les, visualizing the inter-profi le chi-
square distances in a low-dimensional map (i.e., samples displayed in principal 
coordinates).

6.  The species can then be visualized in two alternative ways as a biplot: as unit 
profi les, showing fi ctitious samples consisting of just one species (i.e., species 
in standard coordinates), or as gradient vectors showing the regression rela-
tionships between the species and the principal axes (i.e., species in contribu-
tion coordinates). These alternatives indicate identical orientations of biplot 
axes, but the latter alternative has the advantage that the more outlying species 
are the higher contributors to the solution. 

7.  Thinking of the analysis from the column profi le point of view gives another 
way of interpreting the CA solution, as distances between species. The solution 
of this problem is identical to the row profi le problem, with simple scaling fac-
tors linking the two solutions.

8.  A popular way of showing the CA result is the symmetric map, where both 
row and column profi les are visualized simultaneously, that is both in princi-
pal coordinates. The row and column points have the same spread along the 
dimensions, and they can each be interpreted in terms of approximate chi-
square distances.
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Compositional data and 
subcompositions

Chapter 

Compositional Data and Log-ratio Analysis 

We have already met compositional data in the form of row or column profi les 
in CA: these are sets of nonnegative values that add up to a constant, usually 1 
or 100%. In CA the profi les are computed on data matrices of abundances or 
biomasses, for example by dividing by their respective row and column totals. 
In other contexts the original data are compositional, for example chemical or 
geological data where the total size of the sample, measured in units of weight 
or volume, is not relevant, just its decomposition into a set of components. An-
other example of compositional data in biology is that of fatty acid compositions 
in studies of marine food webs. Compositional data are special because in their 
original form they have the property of closure, that is the compositional values 
of each sample have a constant sum. There are particular methodological issues 
when analysing compositional data, such as subcompositional coherence and the 
log-ratio transformation, which we shall consider in this chapter. Although this 
chapter is specifi c to compositional data, the wider issue of rare observations is 
discussed and the value of the contribution biplot is again demonstrated.
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To illustrate the main reason why compositional data are a special case, consider 
the data in Exhibit 14.1. First, there is composition consisting of four fatty acids 
measured in six samples, with their components adding up to 1. Second, the last 
component is eliminated and the composition is closed again, that is re-expressed 
as proportions that sum to 1: this is called a subcomposition of the original com-

14
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Exhibit 14.1:
Compositional data matrix 
(a) and a subcomposition 
(b), after eliminating the 

last component

Exhibit 14.2:
Correlations between 

the columns of the 
compositional data matrices 

in Exhibit 14.1

position. If researcher A works with the data in Exhibit 14.1(a) and researcher 
B with the data in Exhibit 14.1(b) and they consider it interesting to compute 
correlations as a way of measuring association between the components, they will 
obtain the results in Exhibit 14.2(a) and 14.2(b) respectively. While researcher 
A fi nds that the correlations between fatty acid 18:4(n-3) and the pair 16:1(n-7) 
and 20:5(n-3) are 0.671 and 0.357 respectively, researcher B fi nds that they are 
0.952 and 0.139. There is clearly a paradox here – the relationship between two 

 16:1(n-7) 20:5(n-3) 18:4(n-3) 18:00 Sum

B6 0.343 0.217 0.054 0.387 1

B7 0.240 0.196 0.050 0.515 1

D4 0.642 0.294 0.039 0.025 1

D5 0.713 0.228 0.020 0.040 1

H5 0.177 0.351 0.423 0.050 1

H6 0.209 0.221 0.511 0.059 1

 16:1(n-7) 20:5(n-3) 18:4(n-3) Sum

B6 0.559 0.353 0.088 1

B7 0.494 0.403 0.103 1

D4 0.658 0.302 0.040 1

D5 0.742 0.237 0.021 1

H5 0.186 0.369 0.445 1

H6 0.222 0.235 0.543 1

(a)

(b)

 16:1(n-7) 20:5(n-3) 18:4(n-3) 18:00

16:1(n-7) 1 −0.038 −0.671 −0.379

20:5(n-3) −0.038 1 0.357 −0.604

18:4(n-3) −0.671 0.357 1 −0.407

18:00 −0.379 −0.604 −0.407 1

 16:1(n-7) 20:5(n-3) 18:4(n-3)

16:1(n-7) 1 −0.171 −0.952

20:5(n-3) −0.171 1 −0.139

18:4(n-3) −0.952 −0.139 1

(a)

(b)
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The log-ratio 
transformation

Exhibit 14.3:
Logarithms of ratios 
between all pairs of 
components and the root 
mean sum of squares of the 
log-ratios as a measure of 
proximity

components should be the same and not depend on whether another component 
(18:00) is present or not. We say that the correlation does not have the property 
of subcompositional coherence – it is incoherent.

Values that are constant in a composition and any of its subcompositions are 
the ratios between components. For example, consider the four-part compo-
sition a,b,c,d with abcd1, and a three-part closed subcomposition 
a,b,c/ (abc). Then the ratio a/b in the composition is identical to the ra-
tio a/(abc) / b/(abc) in the subcomposition. Since ratios are gen-
erally compared multiplicatively rather than additively, the logarithms of the 
ratios provide a justifi able transformation of the compositional data and have 
subcompositional coherence. Exhibit 14.3(a) shows the log-ratios log(a/b) for 
all six pairs of components a and b in Exhibit 14.1(a), as well as their means 
and standard deviations. In addition, a distance da b between the two compo-
nents a and b is calculated as the square root of the average sum of squares of 
log-ratios across the samples:

 d ( / =1∑ a b n a bab i ii

n
i i

2

1

2=
=

)[log( / )] ( / )[log( ) log( )]n ∑i

n

1=
−1  (14.1)

Log-ratios

 
16:1(n-7) / 
20:5(n-3)

16:1(n-7) / 
18:4(n-3)

16:1(n-7) / 
18:00

20:5(n-3) / 
18:4(n-3)

20:5(n-3) / 
18:00

18:4(n-3) / 
18:00

B6 0.458 1.849 −0.121 1.391 −0.579 −1.969

B7 0.203 1.569 −0.764 1.366 −0.966 −2.332

D4 0.781 2.801 3.246 2.020 2.465 0.445

D5 1.140 3.574 2.881 2.434 1.740 −0.693

H5 −0.685 −0.871 1.264 −0.187 1.949 2.135

H6 −0.056 −0.894 1.265 −0.838 1.321 2.159

mean 0.307 1.338 1.295 1.031 0.988 −0.043

sd 0.643 1.861 1.585 1.278 1.418 1.960

distance 0.662 2.162 1.942 1.557 1.629 1.790

Distance(log-ratios)

 16:1(n-7) 20:5(n-3) 18:4(n-3) 18:00

16:1(n-7) 0 0.662 2.162 1.942

20:5(n-3) 0.662 0 1.557 1.629

18:4(n-3) 2.162 1.557 0 1.790

18:00 1.942 1.629 1.790 0

(a)

(b)
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The “fatty acid” data set

Log-ratio analysis

Exhibit 14.4:
Part of 4225 data matrix 

of fatty acid compositions, 
expressed as percentages: 

each set of 25 values in 
the rows sums to 100%. 
The mean and standard 

deviation of each column is 
given, as well as the mean 
of the squares of log-ratios 

for pairs of samples in each 
column

Defi nition (14.1) shows that this distance function is simply a Euclidean distance 
between the log-transformed components. In Exhibit 14.3(b) the distances have 
been gathered into a square matrix, which can be used in a cluster analysis or 
an MDS. If fatty acid 18:00 is removed and the distance function is applied to 
Exhibit 14.1(b), the distances between the three components of the subcomposi-
tion remain identical, hence this measure of distance between the components is 
subcompositionally coherent. 

Exhibit 14.4 shows a part of the data set “fatty acid”, compositional data on 25 fatty 
acids from 42 copepods of the species Calanus glacialis. The copepods were sampled 
in three different seasons and the objective is to see how the fatty acid compositions 
relate to these different seasons. Notice that the components with higher means 
also have higher standard deviations, which is typical of such data, as it is for count 
data. In the case of CA, the chi-square distance compensates for this disparity in 
variances. There is a similar issue in log-ratio analysis, which we describe now.

Log-ratio analysis (LRA) is the analogue of PCA that visualizes the compositional 
variables (also called components) transformed to log-ratios – hence it has the 
property of subcompositional coherence, which neither PCA nor CA have. It is a 
simple adaptation of PCA and has two forms: an unweighted form and a weighted 
form. We restrict our discussion to weighted LRA since the weighting has a num-
ber of benefi ts. 

Notice in the last line of Exhibit 14.4 “mean(LR)^2”, the mean of the squares of 
the log-ratios in each column. Just as we did for each row of the mini-example 

 14:00 i-15:0 15:00 16:00 16:1(n-7) ··· 22:5(n-3) 22:6(n-3) Total

B5 14.229 1.223 0.870 12.204  6.567 ··· 0.543 0.446 100

B6 12.153 1.270 1.085 12.318  7.406 ··· 0.353 0.469 100

B7  6.640 0.790 0.529 12.272  6.804 ··· 0.656 0.231 100

B8 12.410 1.167 0.822 11.543  7.668 ··· 0.425 0.436 100

H5  6.764 0.338 0.272  8.056  6.207 ··· 0.298 0.464 100

H6  6.896 0.324 0.262  8.046  6.494 ··· 0.313 0.520 100

···
···

···
···

···
··· ··· ···

···
···

E5  5.410 0.407 0.273 12.321  6.622 ··· 0.273 0.257 100

E6  9.200 0.813 0.606  9.741 19.193 ··· 0.542 0.601 100

mean  8.366 0.678 0.546  9.196 12.818 ··· 0.640 9.100 100

sd  2.131 0.277 0.181  1.816  8.263 ··· 0.251 2.715

mean(LR)^2  0.114 0.321 0.252  0.080  0.664 0.811 0.142
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Interpretation of log-ratio 
analysis

in Exhibit 14.3, so we can compute log-ratios between all the 42 values in each 
column (there will be ½42  41861 ratios in total), which would be the basis 
for a distance calculation between pairs of samples. The mean square of these 
log-ratios has the property that it will be higher for rarer components, which can 
have bigger ratios than those between components at a higher level. For example, 
a rare component with mean 0.03% could easily have two values of 0.05% and 
0.01%, which gives a ratio of 5, whereas such a large ratio would hardly ever 
occur for a component with values of the order of 10%, varying between 6% and 
14%, say. In weighted log-ratio analysis this effect is compensated for by assigning 
weights to each component proportional to its mean, so that rarer components 
get smaller weights. This is exactly the same idea as in CA.

Technically, weighted LRA can also be thought of as a two-step procedure, per-
forming MDS on inter-sample distances based on the log-ratios, where the com-
ponents have been weighted as just described, and then adding the component 
variables by regression on the MDS dimensions. But more simply, it reduces to 
a PCA of the log-transformed data matrix which is centred row-wise, that is each 
row of the logged data is centred to have mean zero. This centred matrix is 
then subject to PCA, incorporating the column weights. Because PCA will then 
automatically centre the data column-wise, it follows that the log-transformed 
compositional data matrix is actually double-centered, row-wise and column-wise. 
Notice that the actual log-ratios for all pairs of components do not have to be 
calculated, thanks to the double-centering. LRA is thus a weighted PCA of the 
previously log-transformed and row-centered data, with some special features of 
the interpretation.

Exhibit 14.5 shows the weighted LRA of the “fatty acid” data set, with samples in 
principal coordinates (thus approximating the log-ratio distances between them) 
and fatty acids in standard coordinates. Separately, we have verifi ed that only the 
fi rst two dimensions are signifi cant. There are three clearly separated groups of 
samples, which we have labelled A, B and C, coinciding exactly with the three sea-
sons in which they were sampled. As in Exhibit 13.5 we have separated the higher 
than average contributors to the fi rst two dimensions from the others: these 
seven fatty acids are thus indicated with larger labels, and account for 90% of the 
variance in this biplot. A novelty of the log-ratio biplot is that it is not the vectors 
from the origin that defi ne the biplot axes, but the vectors linking the component 
variables – these vectors are called links. For example, the link from 16:1(n-7) at 
bottom left to 18:00 top left represents the log-ratio log(18:00/16:1(n-7)), and 
the direction of this link is exactly lining up with group A at the top and group C 
at the bottom. Similarly, the link from 18:00 to 18:4(n-3), as well as several others 
made by the group of three high-contributing fatty acids in-between, separates 
group A from group B. And the link from 16:1(n-7) and 18:4(n-3) is one that 
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Exhibit 14.5:
Row-principal LRA biplot 
of “fatty acid” data set. 

84.7% of the log-ratio 
variance is explained. The 
seven higher-than-average 

contributing fatty acids are 
shown in larger font.

Notice the different scales 
for sample points and fatty 

acid points

Relationship between CA 
and LRA 

separates group C from group B. Exhibit 14.6 illustrates the group separation in 
a simpler scatterplot of two of these log-ratios that are suggested by these results. 
Since the third log-ratio log18:4(n-3)/18:00 separating groups A and B is the 
horizontal axis of the scatterplot minus the vertical one, it can be depicted by a 
45 degrees descending line, shown by the dashed arrow, perfectly coinciding with 
the separation of the A and B samples. 

An interesting feature of the log-ratio biplot is that if components fall on straight 
lines (as, for example, 18:00, 18:4(n-3) and the group of three fatty acids inbetween, 
18:1(n-9), 22:1(n-11) and 20:1(n-9) in Exhibit 14.5) then a model can be deduced 
between them. The Bibliographical Appendix gives a reference to this way of 
diagnosing models in biplots.

CA also analyses compositions, albeit compositions (i.e., profi les) computed 
on a matrix of counts or abundances. In fact, CA can be used to analyse purely 
compositional data, and likewise, LRA can be used to analyse count data or other 
strictly positive ratio-scale data. There is an interesting relationship between the 
two methods: leaving out some technical details, the main result is that if one ap-

A

B

C

–0.5 0 0.5 1 1.5

–1
–0

.5
0

0
.5

0.1375 (60.8%)

0.0539 (23.9%)

Dimension 1

D
im

en
si

on
 2

16:1(n-7)

18:00

18:1(n-9)

18:4(n-3)

20:1(n-9)22:1(n-11)

–1 0 1 2 3

–2
–1

0
1

14:00

i-15:0

15:00

16:00

16:1(n-5)

16:2(n-4) 16:3(n-4)

18:2(n-6)

18:3(n-3)

20:00

20:3(n-6)
20:4(n-3)

20:5(n-3)

22:1(n-9)

22:1(n-7)

22:5(n-3)

22:6(n-3)

18:1(n-7)

20:1(n-7)



183

COMPOSITIONAL DATA AND LOG-RATIO ANALYSIS 

Exhibit 14.6:
Scatterplot of two log-ratios 
suggested by the biplot 
in Exhibit 14.5, perfectly 
separating the three 
groups of copepods. A third 
log-ratio combining the two 
describes a diagonal axis 
in the plot

plies the Box-Cox power transformation to the data (see Chapter 3 and defi nition 
(3.4)), with increasingly stronger power (for example, square root, then cube 
root, then fourth root, etc.), then the CA of the transformed data tends to LRA 
in the limit. Moreover, if the variance in the data is small, then the CA solution 
will be close to the LRA solution anyway. This means that CA is close to being 
subcompositionally coherent, and perhaps close enough for practical purposes. 
The CA biplot comparable to Exhibit 14.5 is given in Exhibit 14.7, and is indeed 
very similar. Here are some statistics comparing the two results:

(Weighted) LRA CA

Total variance (or inertia) 0.2260 0.1913

Variance, dimension 1 0.1375 (60.8%) 0.0882 (46.1%)

Variance, dimension 2 0.0539 (23.9%) 0.0635 (33.2%)

Percentage in two dimensions 84.7% 79.3%

Procrustes correlation between rows      0.950

Procrustes correlation between columns      0.930
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Exhibit 14.7:
Row-principal CA biplot 

(asymmetric map) of “fatty 
acid” data. Explained 

variance is 79.3% 

Four out of the seven fatty acids previously highlighted in the LRA are singled 
out as high contributors in the CA. The three groups of copepods are separated 
in the same way, but the interpretation of the joint plot is different. Here, as 
for most biplots, the biplot axes are considered through the origin to each vari-
able point. For example, if we draw a straight line from the bottom through 
the origin and up to fatty acid 18:00, then the projections of the copepods on 
this axis should reproduce approximately the compositional values on this fatty 
acid. Exhibit 14.8 verifi es this and also shows how close these projections are 
to the actual values. In fact, the original values show some overlap between the 
A group and the others, whereas the estimated values perfectly separate the A 
group. This is due to the fact that other fatty acids are operating in the biplot 
to separate the groups – so group A is separated not only because it is high on 
18:00 but also low on 16:1(n-7), which brings us right back to the idea in LRA 
to work with ratios. 
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Exhibit 14.8:
Actual compositional 
value (as a percentage) 
of fatty acid 18:00 and 
estimated values from the 
CA biplot of Exhibit 14.7. 
The dashed line represents 
perfect reconstruction. 
The correlation is 0.928, 
thus the variance 
explained in 18:00 by 
the two dimensions is 
0.928 20.861, i.e. 86.1%

Zeros in compositional 
data

Since LRA visualizes ratios, there should be no zero values in the data, as has been 
the case for the fatty acid data set used in this chapter so far. In fact, this data set, 
with 25 fatty acids, is a subset of a bigger one that does have an additional 15 fatty 
acids with some observed zeros. Collectively these 15 additional fatty acids account 
for between 3 and 4 percent of each sample, so they are rare fatty acids and thus 
sometimes observed as zeros. Let us call this data set with all 40 fatty acids the 
“complete fatty acid” data set, and consider how to analyse it. Zeros can arise for 
various reasons, one being that the presence of the fatty acid is below the detection 
limit of the measuring instrument. If one knows what this detection limit is, a value 
of half the detection limit, say, could be substituted for the zeros. This will create 
large log-ratios, and thus large variances, but because fatty acids are weighted in the 
analysis proportionally to their mean values, this will reduce the effect of these large 
variances in the rare fatty acids. Another option is to treat the zeros as missing val-
ues – there are ways for handling missing data by estimating values in the data table 
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Exhibit 14.9:
CA of the “complete fatty 

acid” data set of 42 
copepods and 40 fatty 

acids. The row-principal 
biplot is shown and the 

explained variance in this 
two-dimensional solution is 
74.2%. Compared to Exhibit 
14.7, the additional 15 fatty 

acids are coloured in gray 

from the biplot. An easier solution is to recognize that CA is a good approximation 
to LRA and close to having subcompositional coherence, and also has no problem 
with zeros in the data. Exhibit 14.9 is the CA of the complete data set of 40 fatty 
acids, and it is clear that the extra data have not changed the results that much. 
The samples are in an almost identical confi guration, whereas the additional fatty 
acids are all low contributors. This biplot illustrates what often happens with low 
frequency variables, such as rare species or in this case fatty acids with low propor-
tions. Some of these are in outlying positions in the biplot, for example i-16:0 at 
the top and 16:1(n-9) at bottom left. If one does not take into account the contribu-
tions, then one might think that 16:1(n-9), for example, is the most important fatty 
acid separating out group C, whereas it is in fact 16:1(n-7). This can be easily cor-
roborated by making a scatterplot of these two fatty acids, shown in Exhibit 14.10.

A better way of showing the CA results in this case is in the form of a contribution 
biplot (Exhibit 14.11), where the low contributing variables shrink to the centre 
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Exhibit 14.10:
Scatterplot of fatty acids 
16:1(n-7) and 
16:1(n-9) of the 
“complete fatty acids” 
data set, showing that 
16:1(n-7) is the more 
important one for separating 
out group C of copepods. 
The rare fatty acid 
16:1(n-9) has only three 
small positive percentages, 
coinciding with three 
copepods in group C

Exhibit 14.11:
CA contribution biplot 
of “complete fatty acid” 
data set. The six high 
contributing fatty acids 
stand out from the rest
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SUMMARY:
Compositional data and 

log-ratio analysis

and the high contributors stand out according to their contribution. Notice too 
that only one scale is necessary in the contribution biplot (cf. Exhibits 14.5, 14.7 
and 14.9 where there were separate scales for row and column points).

1.  Compositional data have the property that for each sample its set of values, 
called components, sum to a constant, usually 1 (for proportions) or 100 (for 
percentages). 

2.  Because of this constant sum property, called the property of closure, many 
conventional statistics calculated on the components, such as the correlation 
coeffi cient, are inappropriate because they change when subcompositions are 
formed from a subset of components. Measures that do not change are said to 
have the property of subcompositional coherence. 

3.  The log-ratio transformation implies analysing all the pairwise ratios between 
components on a logarithmic scale. Ratios do not change in subcompositions 
and are thus subcompositionally coherent.

4.  Log-ratio analysis (LRA) is a dimension reduction technique like PCA and 
CA that visualizes all the pairwise log-ratios in a biplot along with the sample 
points. Links between pairs of components in the biplot give directions of the 
log-ratio biplot axes, onto which samples can be projected to estimate the cor-
responding log-ratios. 

5.  CA turns out to have a strong theoretical link to LRA and, although not sub-
compositionally coherent, is close to being so. It provides a good alternative 
to LRA, especially when there are zero values in the data and the log-ratio ap-
proach can not be applied unless the zeros are substituted with positive values.

6.  The contribution biplot is a valuable way to separate out components in the 
log-ratio analysis that are important for the interpretation.
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Chapter 

Canonical Correspondence Analysis

PCA, CA and LRA operate on a single data matrix, and have similar ways of 
reducing the high dimensionality of the data to a low-dimensional approxima-
tion for ease of interpretation. The low-dimensional views of the data are the 
best in terms of the least-squares criterion in each case, accounting for a maxi-
mum amount of variance while simultaneously minimizing the unexplained 
variance. Often additional data are available, which can be related afterwards 
to an existing ordination. One of the most common situations in ecology is 
when the data consist of biological measurements (e.g., species abundances) 
at different locations, and in addition there are various environmental vari-
ables observed at the locations. We have shown how biological data can be 
optimally displayed with respect to ordination axes and then how the environ-
mental variables can be related to these dimensions. The reverse can also be 
done, fi rst optimally displaying the environmental data and then fi tting the 
biological data to the results. In either case these relationships might be weak. 
Ecologists may be more interested in that part of the biological information 
that is more directly related to the environmental information. This environ-
mentally related part of the biological variance is also multidimensional, so we 
again resort to ordination to interpret it through dimension reduction. Meth-
ods that relate two sets of data are often described as canonical in statistics, and 
this chapter deals mainly with one of the most popular in ecology, canonical 
correspondence analysis.
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Response and 
explanatory variables

Indirect gradient analysis

In Chapter 10 we looked at the introductory data set “bioenv” in detail and made 
regression biplots using two of the environmental variables, pollution and depth, 
as the support of the biplot, or two so-called canonical dimensions that were obtained 
by maximizing the correlation between the biological and environmental data sets. 
Since then we have learned a bit more about analysing abundance data using CA, so 
in this chapter we will introduce a variant of CA, called canonical correspondence analy-
sis (CCA), which is appropriate for this particular combination of biological and 
environmental measurements on the same samples. Recalling Exhibit 1.1, there 
were 30 samples and the fi ve biological variables, regarded as response variables, 
accompanied by four environmental variables, of which three are on continuous 
scales and one on a categorical scale. The objective is to fi nd out how much of the 
variance (in the CA sense, in other words, inertia) is accounted for by the environ-
mental variables and to interpret the relationship. In this approach the two sets of 
variables are considered asymmetrically: the biological data are the responses (like 
the “Y” variables in a regression) and the environmental variables are the explanatory 
variables, or predictors (like the “X” variables). This is different from the canonical 
correlation analysis of Chapter 10, which treated the two sets of data symmetrically 
and would have been the same if the two sets of variables were interchanged.

Before explaining CCA, let us fi rst consider the CA of the 305 matrix of bio-
logical data and, as before, the ways of displaying the environmental variables on 
the CA biplot. Exhibit 15.1 shows the row-principal contribution biplot of the 
samples and species, which means that the distances between the samples are 
approximate chi-square distances between their profi les, and the standardized 
species (standardized in the CA sense – see Chapter 13) have been regressed by 
weighted least-squares on the two CA dimensions and are depicted by their re-
gression coeffi cients. The total inertia of the biological data is equal to 0.544 and 
the axes account for 0.288 (53.0%) and 0.121 (22.2%) respectively, that is 75.2% 
of the total. Both 75.2% of the variance of the sample points and 75.2% of the 
variance of the species is explained by this solution.

While the variance explained for the species abundance data is the best possible 
according to the optimization criterion in CA, the regressions of the environmen-
tal variables are much lower and can vary a lot in terms of variance explained:

Depth 30.4%

Pollution 69.5%

Temperature 2.1%

C (clay) 3.4%

S (sand) 9.9%

G (gravel) 18.7%
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Exhibit 15.1:
CA biplot of the biological 
data in the “bioenv” 
data set, with samples in 
principal coordinates and 
species in contribution 
coordinates. The one 
discrete and three 
continuous environmental 
variables are shown 
according to their regression 
coefficients and the discrete 
variable’s categories are 
additionally shown (in 
black) at the centroids 
of the samples in the 
corresponding categories

Notice that dummy variables such as the sediment categories C, S and G (the 
gray points in Exhibit 15.1), with values of 0 and 1, will always have low variance 
explained. The other way of showing the categories is as centroids of the samples 
(the black points in Exhibit 15.1) – this can be achieved by adding three extra 
rows to the data matrix where the abundances of the species are aggregated 
across the samples for each sediment type, and declaring these additional rows as 
supplementary points. These additional rows are as follows:

 a b c d e 

C 105  46  73  81 27

S 103  70 115 104 32

G 196 146  64 142 30

The (row) profi les of the sediment categories are exactly the centroids shown in 
Exhibit 15.1. These centroids do not lie on the same vector as the dummy vari-
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Direct gradient analysis

ables, but there is a close mathematical relationship between these alternative sets 
of coordinates for category points added to the display, which depends on the 
mass of each category and the parts of inertia on each axis. In any case, what we 
are assured of is that the corresponding categories always lie in the same quadrant 
(one of the four regions defi ned by the two ordination axes), and if the parts of 
inertia are similar, then the centroids will lie very close to the dummy variable 
biplot axis.

This type of analysis in Exhibit 15.1 is called indirect gradient analysis: fi rst an ordi-
nation is obtained optimally displaying the samples and response variables (here, 
the species), and then the explanatory variables are related to the ordination 
axes. 

In indirect gradient analysis the relationship between the explanatory variables 
and the response variables is conditioned on the ordination of the response 
variables. One could imagine a situation in which the main dimensions of the 
responses have little relationship with the explanatory variables, because this re-
lationship is to be found on less important dimensions of the response data. So, 
in order to focus specifi cally on the relationship between biological and environ-
mental variables in this example, we fi rst make a projection of the biological vari-
ables into the space of the environmental variables. This is also called constrained 
or restricted ordination, because a condition is introduced that the ordination axes 
must be linear functions of the environmental variables. 

There are three continuous variables and three dummy variables, but – as in 
regression analysis – the dummy variables count for one less because of their 
interdependency, so there are fi ve dimensions in the explanatory variable space. 
The fi rst step then is to project the species response data into this space, which 
also means we eliminate all variance in the response data that is not correlated 
linearly with the explanatory variables – we are only interested in that part of 
the variance that is correlated with the environmental variables. The total iner-
tia of the species data was, as we reported earlier, 0.544, and it turns out that the 
amount 0.249 of this inertia is linearly related to the environmental variables, 
i.e. 45.8% of the total. So from now on we are only interested in this constrained 
part of the inertia. 

The analysis then continues as a regular CA in this restricted fi ve-dimensional 
space, to fi nd the axes that explain a maximum of this constrained inertia – 
Exhibit 15.2 shows the result of what is now a canonical correspondence analysis 
(CCA), in the form of a triplot of samples, species and environmental variables. 
Almost all (96.3%) of this constrained inertia of 0.249 is explained in the new 
ordination map. Pollution is the most important variable on the fi rst axis, 
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Exhibit 15.2:
Canonical correspondence 
analysis triplot of “bioenv” 
data. The row-principal 
scaling with species in 
contribution coordinates 
is again shown, as well 
as the environmental 
variables regressed onto the 
ordination axes. Percentages 
of inertia explained are with 
respect to the restricted 
inertia

whereas depth is the most important on the second. Because the regressions 
of the environmental variables are performed on the sample principal coor-
dinates that have much less variance on the second axis, depth’s regression 
coeffi cient on the second axis is large and the variable gives the impression 
that it is more important than pollution. If we wanted comparability between 
the coordinates of the gradient vectors of the environmental variables, the bi-
plot should be made using the standard coordinates of the samples, as in the 
regression biplots of Chapter 10. 

The variances explained by the CCA axes of the environmental variables are now 
much higher than before, due to the constraining of the solution:
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Restricted ordination 
in PCA and LRA

CCA as the analysis 
of weighted averages

Depth 85.3%

Pollution 99.1%

Temperature 3.3%

C (clay) 8.8%

S (sand) 14.8%

G (gravel) 33.5%

Notice again that the dummy variables, by their very nature of having only values 
of 0 and 1, cannot attain a high percentage of variance explained – this issue is 
dealt with in the next chapter.

In the CCA described above, we have analysed the inertia of the abun-
dance data in the space constrained by the environmental variables. The 
constrained space is formed by axes that are predictions based on linear 
regression on the environmental variables. In other applications research-
ers might be more interested in the inertia not correlated with a particular 
environmental variable or variables – for example, it may be of interest to 
partial out a known effect such as a latitudinal gradient. Exploring this uncon-
strained part is called partial CCA, which will be illustrated in the case study 
of Chapter 19.

The constrained version of CA illustrated above is similarly applicable to PCA 
and LRA. When the responses are continuous variables on an interval scale, then 
the version of PCA restricted in terms of a separate set of explanatory variables is 
called redundancy analysis. Similarly, when the responses are compositional data 
and LRA is applicable, it is possible to restrict the solution to be linearly related 
to predictor variables. The idea is the same in each case: project the data, with 
its particular distance function, into the space of the explanatory variables, and 
then carry on as before. We continue with CCA, which is the most popular of 
these options.

There is another way of thinking about CCA, in terms of the weighted aver-
ages of the explanatory variables, using the relative abundances of the species as 
weights. Exhibit 15.3 shows this variables-by-species table, computed as follows. 
Take species a and variable Depth as an example. The relative frequencies of spe-
cies a (i.e., the column profi le) are 0, 26/4040.0644, 0, 0, 13/4040.0322, 
31/4040.0767, and so on (see Exhibit 1.1). These are used to compute a 
weighted average of the depth values at each site:

0720.0644750590640.0322610.076794···78.77
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Exhibit 15.3:
Weighted averages of the 
environmental variables, 
using the relative 
abundances of each species 
across the samples as 
weights

Coding of explanatory 
variables

So if the species tends to occur with higher abundance in deeper samples, then 
the weighted average will be high. Species c, for example, must be occurring in 
higher abundances in samples with high pollution, and species e in samples of 
lower depths, which can be verifi ed in Exhibit 15.2. In the case of the dummy 
variables for sediment, the three values for each species sum to 1 and code the 
proportion of total abundance of that species in each category.

To obtain the equivalent result as a CCA by analysing the matrix in Exhibit 15.3 
needs some technical explanation, since it involves the covariance matrix of the 
explanatory variables, but the point is that, once the appropriate transforma-
tions are made, the inertia in this table is identical to the restricted inertia of 
0.249. Knowing this equivalence gives an extra way of thinking about the con-
nection between the species abundances and environmental variables in the 
triplot. 

CCA (or the equivalent constrained methods in PCA and LRA) adds the con-
dition that the ordination axes should be linearly related to the explanatory 
variables. Linearity of the relationship might not be realistic in most circum-
stances, so just like in regression analysis we can contemplate introducing 
transformations of the variables, for example, logarithmic transformation, or 
including polynomial terms, or fuzzy coding. In Chapter 11 we discussed an 
indirect gradient analysis of the “Barents fi sh” data set, coding the environ-
mental variables either linearly or fuzzily, and also the geographical position 
of the samples either in a crisp way in terms of their regional location, or in 
a fuzzy way based on fuzzy latitude and longitude coordinates. In Chapter 13 
various CAs of this same data set were considered. So now we can see how CCA 
performs on these data, and we will contrast the different ways of coding the 
environmental variables. Exhibit 15.4 shows the CCA triplot based on linear 
constraints on the two environmental variables and the 10 dummy variables 
for the spatial position. Of the total inertia of 2.781 in the abundance data, the 
environmental variables account for 1.618, that is 58.2%. Of this latter amount, 
61.9% is displayed in Exhibit 15.4.

 a b c d e 

Depth 78.77 81.16 72.58 79.27 70.17

Pollution 3.11 3.24 5.49 3.78 3.64

Temperature 3.03 3.06 3.04 3.06 3.11

C 0.26 0.18 0.29 0.25 0.30

S 0.26 0.27 0.46 0.32 0.36

G 0.49 0.56 0.25 0.43 0.34
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Exhibit 15.4:
CCA of “Barents fish” 
data, showing highly 

contributing species in 
larger font and the two 

continuous environmental 
variables according to their 

regressions on the axes. 
The 89 sampling sites 

are not shown, but their 
averages in the eight 

regional groupings are

As a contrast, we try the CCA using depth and temperature coded into four fuzzy 
categories each, and the spatial position into nine fuzzy categories as explained 
in Chapter 11, leading to Exhibit 15.5. This time slightly more of the biological-
environmental relationship is captured in the restricted space (1.700, i.e. 61.1%, 
compared to 58.2% previously), which is understandable since nonlinearities 
in depth and temperature can be picked up thanks to the fuzzy coding. In fact, 
temperature does appear to have a nonlinear pattern in the triplot, with low and 
high temperatures being associated with lower values of depth. 60.4% of this con-
strained ordination is explained in the triplot. 

A distinct advantage of Exhibit 15.5 over Exhibit 15.4 is that all the environmen-
tal variables, including spatial ones, are displayed in the same way, in this case as 
weighted averages of the sample positions. To explain this weighted averaging 
more specifi cally, Exhibit 15.6 shows the positions of the 89 sample sites cor-
responding to the CCA result of Exhibit 15.5. Every station has associated with 
it the values of each fuzzy category, that is 17 values between 0 and 1 inclusive 
for the 4 fuzzy values of depth, 4 fuzzy values for temperature and 9 fuzzy values 
for spatial position. For example, for the fuzzy category d4 the 89 samples have 
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Exhibit 15.5:
CCA triplot of “Barents fish” 
data, with environmental 
variables coded into fuzzy 
categories. Again, sample 
sites are not shown (see 
Exhibit 15.6) but the 
weighted averages of all 
the fuzzy coded categories 
are, including the nine fuzzy 
spatial categories (eight 
compass points and central 
category)

CCA as a discriminant 
analysis

59 values equal to 0 and 30 positive values varying from 0.020 to 1.000. These 30 
values are shown in Exhibit 15.6 marking their corresponding sample positions, 
the remaining samples all having zero weights. These 30 samples are almost all 
in the upper and especially upper left of the ordination and the position of d4 
is at the weighted average of the positions of these 30 samples using those fuzzy 
values as weights. Especially in the upper left, those marked stations have high 
values of depth and thus high fuzzy values on category d4 (the maximum depth 
is indicated by the value 1), and this leads to d4 being where it is. In a similar 
way, all the other fuzzy categories have positions according to the weights placed 
on the sample points by the respective positive values in the fuzzy coding of the 
categories. 

The difference between CA of a table of abundances, say, and CCA of the same 
table constrained by some environmental variables, is that CCA tries to separate 
the samples on dimensions coinciding with the environmental variation. Thus, 
in Exhibits 15.5 and 15.6, which one can imagine overlaid to give the triplot of 
samples, species and variables, separation of the samples is achieved so that the 
categories of depth, temperature and spatial position are optimally separated in 

CCA dimension 1

C
C

A
 d

im
en

si
on

 2

–1.0 –0.5 0.0 0.5 1.0

–1
.0

–0
.5

0
.0

0
.5

1
.0

–0.5 0 0.5

–0
.5

0
0
.5

Re_hi
An_deAn_mi

Hi_pl

An_lu

Me_ae

Ra_ra

Mi_po

Ar_at

No_rk

Lu_laMa_vi

Bo_sa

Cy_lu
Cl_ha

Se_me

Le_de

Ga_mo
Le_maSe_ma

Tr_es

Ly_paLy_euLy_reLy_seLy_esLy_vaBe_glCa_re Tr_spp

d1

d2

d3

d4

t1

t2
t3

t4

SW

W

NW

S

C

N

SE

NE

0.4415 (26.0%)

0.5843 (34.4%)
E



 MULTIVARIATE ANALYSIS OF ECOLOGICAL DATA

198

Exhibit 15.6:
Positions of 89 samples 

in the CCA of Exhibit 15.5. 
Each category is at the 

weighted average of the 
sample positions, using the 
fuzzy values as weights. The 
positive values for category 
d4 are shown numerically 

at the respective sample 
positions

the ordination. If there is a single environmental categorical variable, coded as 
a set of (crisp) dummy variables, then CCA with that variable as the constrain-
ing variable simplifi es to a CA that can be thought of as a discriminant analysis 
between the categories. For example, suppose in the same data set we had a 
sediment type associated with each sample. Then all the abundances could be 
aggregated into each sediment type to obtain a sediment-by-species table where 
the (i,j)-th element would be the total abundance of species j in the sample with 
sediment type i. The CA of this aggregated table, with all the individual samples 
as supplementary points, is identical to the CCA with sediment as a categorical 
constraining variable.
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CANONICAL CORRESPONDENCE ANALYSIS 

SUMMARY:
Canonical 
correspondence analysis

1.  PCA, LRA and CA all have their constrained versions when additional informa-
tion is available on each biological sample, and these additional variables are 
considered as predictors of the biological variation. 

2.  Canonical correspondence analysis (CCA) is the CA of an appropriate table 
regarded as responses (for example, an abundance matrix) where the dimen-
sions of the result are constrained to be linear combinations of the predictor 
variables (for example, environmental variables). These predictor variables 
can be continuous or discrete.

3.  CCA projects the response data onto the space of the predictors, and performs 
a CA in this restricted space. There is thus a splitting of the response inertia 
into two parts: the part related linearly to the predictors and the part unrelated 
to the predictors. The inertia of the former part becomes the new total inertia 
that is decomposed along ordination axes of the CCA. The biological variation 
that is unrelated to chosen predictors can also be of interest, especially when 
the variation due to a predictor variable needs to be partialled out of the analy-
sis – this is then called partial CCA. 

4.  There are several advantages of coding the predictor variables fuzzily: non-
linear relationships between the ordination axes and the predictors can be 
handled, more of the response variable variance is usually explained, and 
the interpretation of the triplot is unifi ed since all predictors are coded in a 
categorical way.

5.  When there is just one predictor that is discrete, then the CCA constrained by 
this predictor is equivalent to a CA of the table of response data aggregated 
into the predictor categories, which in turn is a type of discriminant analysis 
between these categories.
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Total variance or inertia

Chapter 

Variance Partitioning in PCA, LRA, CA and CCA

Principal component analysis (PCA, log-ratio analysis (LRA) and correspondence 
analysis (CA) form one family of methods, all based on the same mathematics 
of matrix decomposition and approximation by weighted least-squares. The dif-
ference between them is the type of data they are applied to, which dictates the 
way distances are defi ned between samples and between variables. In all methods 
there is a measure of total variance as a weighted sum of squares of the elements 
of a matrix that is centred or double-centred – equivalently this total variance 
can be defi ned as a weighted sum of squared distances. This total variance can 
be broken down into various parts, parts for each row and for each column, parts 
along dimensions, and parts for each row and each column along the dimensions. 
This neat decomposition of variance provides several diagnostics to assist in the 
interpretation of the solution. The same idea applies to constrained analyses such 
as canonical correspondence analysis (CCA), where similar decompositions take 
place in the constrained space.

Contents

Total variance or inertia   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  203
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PCA, LRA and CA all involve the decomposition of a matrix into parts across 
dimensions, from the most important dimension to the least important. Each 
method has a concept of total variance, also called total inertia when there are 
weighting factors. This measure of total variation in the data set is equal to the 
(weighted) sum of squared elements of the matrix being decomposed, and this 
total is split into parts on each ordination dimension. Let us look again at the 
matrix being decomposed as well as the total variance in each case.

16
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The simplest case is that of PCA on unstandardized data, applicable to interval-
level variables that are all measured on the same scale, for example the growths in 
millimetres of a sample of plants during the 12 months of the year (i.e., a matrix 
with 12 columns), or ratio-scale positive variables that have all been log-trans-
formed. Suppose that the nm cases-by-variables data matrix is X, with elements 
xi j , then the total variance of the data set, as usually computed by most software 
packages, is the sum of the variances of the variables:

 ( )= ∑∑ x x
n ij jij

1
1

2sum of variances
−

⎡

⎣
⎢

⎤

⎦
⎥−  (16.1)

Inside the square brackets is the variance of the j -th column variable of X, and 
these variances are summed over the columns. Since we have introduced the con-
cept of possible row and column weightings, we often prefer to use the following 
defi nition of total variance:

 (∑∑total variance sum of variances)= = −1 12

mn
n
mn

x xij jji
( )−  (16.2)

That is, we divide by n and not n1 in the variance computation, thus allocating 
an equal weight of 1/n to each row, and then average (rather than sum) the vari-
ances, thus allocating a weight of 1/m to each variable. So “total variance” here 
could rather be called average variance. This defi nition can easily be generalized 
to differential weighting of the rows and columns, so if the rows are weighted by 
r1, …, rn and the columns by c1, …, cm, where weights are nonnegative and sum to 
1 in each case, then the total variance would be:

 ∑∑ji
total variance = rr c x xi j ij j( )− 2

 (16.3)

where the variable means x j are now computed as weighted averages ∑i
r xi ij .

When continuous variables on different scales are standardized to have variance 
1, then (16.1) would simply be equal to m, the number of variables. For our aver-
aged versions (16.2) and (16.3) would be equal to (n1)/n, or 1 if variance is 
defi ned using 1/n times the squared deviations, rather than 1/(n1).

In the case of LRA of a matrix N of positive values, all measured on the same 
scale (usually proportions or percentages) and assuming the most general case of 
row- and column-weighting, the data are fi rst log-transformed to obtain a matrix 
Llog(N), and then double-centred using these weights. The total variance is 
then the weighted sum of squares of this double-centred matrix:
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 ∑∑ji
r ci j(=total log-ratio variance ll l l lij i j− − +• • ••)

2
 (16.4)

where a subscript  indicates weighted averaging over the respective index. An 
equivalent formulation is to sum the squares of all the log odds ratios in the ma-
trix formed by a pair (i, i) of rows and a pair (j, j) of columns, each weighted by 
the respective pairs of weights:

 ∑ ∑∑ ∑ r r c ci i j j= ′ ′ ltotal log-ratio variance oog
n n

n n
ij i j

ij i j
j ji i

′ ′

′ ′

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥< ′< ′

2

 (16.5)

The odds ratio is a well-known concept in the analysis of frequency data: an odds 
ratio of 1 is when the ratio between a pair of row elements, say, is constant across 
a pair of columns. For example, in the fatty acid data set of Chapter 14, when two 
fatty acids j and j in two different samples i and i have the same ratio (e.g,. one 
is twice the other: ni j/ni jnij/nij2), then log(1)0 and no contribution to 
the total variance is made. The higher the disparities are in comparisons of this 
kind, the higher is the log-ratio variance.

Finally, in CA, which applies to a table N of nonnegative variables all meas-
ured on the same scale, usually count data, the total variance (called inertia in 
CA jargon) is closely related to the Pearson chi-square statistic for the table. 
The chi-square statistic computes expected values for each cell of the table 
using the table margins, and measures the difference between observed and 
expected by summing the squared differences, each divided by the expected 
value:

 ∑∑chi-square  statistic (observed expected)
expected

2

χ 2 = −
ji

 (16.6)

where the observed valueni j and the expected valueni nj/n, and the sub-
scriptindicates summation over the respective index. The chi-square statistic 
increases with the grand total n of the table (which is the sample size in a cross-
tabulation), and the inertia in CA is a measure independent of this total. The 
relationship is simply as follows:

 total inertiia = ++χ 2 n  (16.7)

In spite of the fact that the defi nitions of total variance in PCA, LRA and CA 
might appear to be different in their formulations, they are in fact simple varia-
tions of the same theme. Think of them as measuring the weighted dispersion of 
the row or column points in a multidimensional space, according to the distance 
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Variances on principal 
axes

Decomposition of 
principal variances into 

contributions

Exhibit 16.1:
Schematic explanation 

of the decomposition 
of total variance into 

parts. First, variance is 
decomposed from 

largest to smallest parts 
(1, 2, …) along 

successive principal 
axes. Then each  can 

be decomposed into 
contributions either 

from the rows or from 
the columns. These part 

contributions to each axis 
provide diagnostics for 

interpretation of the results

function particular to the method: Euclidean distance (unstandardized or stand-
ardized) for PCA, log-ratio distance for LRA and chi-square distance for CA.

The dimension-reduction step in all these methods concentrates a maximum 
amount of variance on the fi rst ordination dimension, then – of the remaining vari-
ance – a maximum on the second dimension, and so on, until the last dimension, 
which has the least variance, in other words the dimension for which the dispersion 
of the rows or columns is closest to a constant. These dimensions, also called prin-
cipal axes, defi ne subspaces of best fi t of the data – we are mainly interested in two-
dimensional subspaces for ease of interpretation. We have seen various scree plots 
of these parts of variance on successive dimensions (Exhibits 12.6 and 13.3), which 
are eigenvalues of the matrix being decomposed by each method, and usually re-
ferred to as such in program results and denoted by the Greek letter , sometimes 
also called principal variances or principal inertias. What we are interested in now is 
the decomposition of these eigenvalues into parts for each row or each column.

Thanks to the least-squares matrix approximation involved in this family of 
methods, there is a further decomposition of each ordination dimension’s vari-
ance into part contributions made by each row and each column. The complete 
decomposition is illustrated schematically in Exhibit 16.1. Each eigenvalue can 

Axis 1 

Rows Columns

…

Axis 2 

Rows Columns

etc.

etc.

λ2λ1

λ1 λ2 λ3 λ4

Total variance 
decomposed 

into parts along 
principal axes
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VARIANCE PARTITIONING IN PCA, LRA, CA AND CCA 

Exhibit 16.2:
Tabulation of the 
contributions of five species 
in data set “bioenv” to the 
four principal inertias of CA: 
the columns of this table 
sum to the eigenvalues 
(principal inertias) and the 
rows sum to the inertia of 
each species

Exhibit 16.3:
Contributions of the species 
to the principal inertias and 
the total inertia (Exhibit 
16.2 re-expressed as values 
relative to column totals)

be decomposed into parts, called contributions, either for the rows or for the 
columns. An example is given in Exhibit 16.2, for the CA of the “bioenv” data 
(see Exhibit 1.1), showing the contributions of each of the fi ve species to the four 
dimensions of the CA. The grand total of this table, 0.5436, is equal to the total in-
ertia in the data set. This is decomposed into four principal inertias, 10.2882, 
20.1205, 30.0735, 40.0614 (column sums), while the values in each 
column are the breakdown of each principal inertia across the species. The row 
sums of this table are the inertias of the species themselves, and the sum of their 
inertias is again the total inertia. 

The actual values in Exhibit 16.2 are by themselves diffi cult to interpret – it is 
easier if the rows and columns are expressed relative to their respective totals. 
For example, Exhibit 16.3 shows the columns expressed relative to their totals. 
Thus, the main contributors to dimension 1 are species a and c, accounting for 
23.7% and 69.5% respectively, while species e is the overwhelming contributor 
to dimension 2, accounting for 82.1% of that dimension’s inertia. To single out 
the main contributors, we use the following simple rule of thumb: if there are 5 
species, as in this example, then the main contributors are those that account for 
more than the average of 1/50.2 of the inertia on the dimension. In the last 
column the relative values of the inertias of each point is given when summed 
over all the dimensions, so that c is seen to have the highest inertia in the data 
matrix as a whole. 

 dim1 dim2 dim3 dim4 Sum

a 0.0684 0.0013 0.0300 0.0025 0.1022

b 0.0107 0.0202 0.0108 0.0278 0.0694

c 0.2002 0.0001 0.0070 0.0012 0.2086

d 0.0013 0.0000 0.0248 0.0254 0.0515

e 0.0077 0.0989 0.0009 0.0045 0.1120

Sum 0.2882 0.1205 0.0735 0.0614 0.5436

 dim1 dim2 dim3 dim4 All

a 0.2373 0.0110 0.4079 0.0410 0.1880

b 0.0370 0.1676 0.1463 0.4527 0.1277

c 0.6947 0.0005 0.0959 0.0200 0.3837

d 0.0045 0.0001 0.3373 0.4130 0.0947

e 0.0266 0.8208 0.0126 0.0733 0.2060

Sum 1.0000 1.0000 1.0000 1.0000 1.0000
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Contribution coordinates

Correlations between 
points and axes

Exhibit 16.4:
Contributions of the 

dimensions to the inertias 
of the species (Exhibit 16.2 

re-expressed as values 
relative to row totals). In 
the last row the principal 

inertias are also expressed 
relative to the grand total

The alternative way of interpreting the values in Exhibit 16.2 is to express each 
of the rows as a proportion of the row totals, as shown in Exhibit 16.4. This shows 
how each species’ inertia is distributed across the dimensions, or in regression ter-
minology, how much of each species’ inertia is being explained by the dimensions 
as “predictors”. Because the dimensions are independent these values can be 
aggregated. For example, 66.9% of the inertia of species a is explained by dimen-
sion 1, and 1.3% by dimension 2, that is 68.2% by the fi rst two dimensions. Notice 
in the last row of Exhibit 16.4 that the eigenvalues are also expressed relative to 
their total (the total inertia), showing overall how much inertia is explained by 
each dimension. For example, 53.0% of the total inertia of all the species is ex-
plained by dimension 1, but dimension 1 explains different percentages for each 
individual species: 66.9% of a, 15.4% of b, etc.

Exhibit 16.3 shows the contributions of each species to the variance of each di-
mension. These contributions are visualized in the contribution biplot, described 
in Chapter 13. Specifi cally, the contribution coordinates are the square roots of 
these values, with the sign of the respective principal or standard coordinate. For 
example, the absolute values of the contribution coordinates for species a on the 
fi rst two dimensions are 0.23730.487 and 0.01100.105 respectively, with 
appropriate signs. Arguing in the reverse way, in Exhibit 13.5 the contribution 
coordinate on dimension 1 of the fi sh species Bo_sa is 0.874, hence its contribu-
tion to dimension 1 is (0.874)20.763, or 76.3%. 

Just like the signed square roots of the contributions of points to axes in Exhibit 16.3 
have a use (as contribution coordinates), so the signed square roots of the contri-
butions of axes to points in Exhibit 16.4 also have an interesting interpretation, 
namely as correlations between points and axes, also called loadings in the factor 
analysis literature. For example, the square roots of the values for species a are 

0.66900.818, 0.01300.114, 0.29340.542, 0.02460.157. These are the 
absolute values of the correlations of species a with axis 1, with signs depending on 
the sign of the respective principal or standard coordinates. Species a is thus highly 
correlated with axis 1, and to a lesser extent with axis 3. Remember that the four 

 dim1 dim2 dim3 dim4 Sum

a 0.6690 0.0130 0.2934 0.0246 1.0000

b 0.1536 0.2910 0.1550 0.4004 1.0000

c 0.9600 0.0003 0.0338 0.0059 1.0000

d 0.0251 0.0002 0.4820 0.4928 1.0000

e 0.0684 0.8832 0.0083 0.0402 1.0000

All 0.5302 0.2216 0.1352 0.1129 1.0000
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Contributions in 
constrained analyses

Exhibit 16.5:
(a) Raw contributions to 
four dimensions by the 
species in the CCA of the 
“bioenv” data (see Chapter 
15). The row sums are the 
inertias of the species in 
the restricted space, while 
the column sums are the 
principal inertias in the 
restricted space. (b) The 
contributions relative to 
their column sums (which 
would be the basis of the 
CCA contribution biplot. (c) 
The contributions relative 
to their row sums (i.e., 
squared correlations of 
species with axes)

ordination dimensions function as independent predictors of the rows or columns 
of the data set, with the fi rst dimension explaining the most variance, the second 
dimension the next highest, and so on. Each value in Exhibit 16.4 is a squared cor-
relation and can be accumulated to give an R 2 coeffi cient of determination, thanks 
to the zero correlation between the dimensions. Summing these for the fi rst two di-
mensions in Exhibit 16.4 gives R 2’s for the fi ve species of 68.2%, 44.5%, 96.0%, 2.5% 
and 95.2% respectively – clearly, species d is very poorly explained by the fi rst two 
dimensions, and from Exhibit 16.4 it is mainly explained by the last two dimensions. 

In canonical correspondence analysis the dimensions are constrained to be linear 
combinations of external predictors. This restricts the space in which dimension 
reduction will take place. As seen in Chapter 15, for the “bioenv” data set, the 
amount of inertia in this constrained space is equal to 0.2490, compared to the 
0.5436 in the unconstraineded space. This lower value of 0.2490 now becomes the 
total inertia that is being explained, otherwise everything is as before. Exhibit 16.5 

 dim1 dim2 dim3 dim4 Sum

a 0.9291 0.0058 0.0587 0.0064 1.0000

b 0.6519 0.1757 0.1459 0.0266 1.0000

c 0.9977 0.0004 0.0004 0.0015 1.0000

d 0.0042 0.6438 0.0003 0.3516 1.0000

e 0.0386 0.9410 0.0168 0.0036 1.0000

All 0.8066 0.1559 0.0242 0.0133 1.0000

 dim1 dim2 dim3 dim4 All

a 0.1962 0.0064 0.4127 0.0818 0.1703

b 0.0652 0.0910 0.4860 0.1614 0.0807

c 0.7321 0.0015 0.0093 0.0682 0.5919

d 0.0001 0.1018 0.0003 0.6526 0.0247

e 0.0063 0.7993 0.0916 0.0360 0.1324

Sum 1.0000 1.0000 1.0000 1.0000 1.0000

 dim1 dim2 dim3 dim4 Sum

a 0.0394 0.0002 0.0025 0.0003 0.0424

b 0.0131 0.0035 0.0029 0.0005 0.0201

c 0.1470 0.0001 0.0001 0.0002 0.1474

d 0.0000 0.0040 0.0000 0.0022 0.0061

e 0.0013 0.0310 0.0006 0.0001 0.0330

Sum 0.2008 0.0388 0.0060 0.0033 0.2490

(a)

(b)

(c)
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Exhibit 16.6:
Squared correlations of each 

predictor variable with each CCA 
ordination axis. In computing 
the correlations the weights 

of the cases (sites in this 
example) are used. The values 

can be accumulated across 
the columns of this table to 
give proportions of variance 

explained by sets of dimensions

Exhibit 16.7:
Improved squared correlations 
of sediment categories with 

the four ordination axes 
of the CCA, considering 

them as supplementary row 
points that aggregate the 

species abundances in the 
sites corresponding 

to each category

shows the tables corresponding to Exhibits 16.2, 16.3 and 16.4 for the CCA. Having 
restricted attention to that part of the variance correlated with the external predic-
tors (depth, pollution, temperature and sediment), it now appears that a much 
larger percentage of the inertia is explained on the fi rst two axes. Thus the species 
are better explained now according to Exhibit 16.5(c), but we should emphasize 
that we are explaining only the restricted part of the species inertia in the space of 
the environmental predictors. 

Finally, each of the external predictors can be correlated with the axes, and 
the proportion of the predictors’ variance explained by the dimensions can be 
computed. Exhibit 16.6 shows the squared correlations with each axis, where 
the sites are weighted by their usual masses in the computation of the correla-
tion. Squared correlations can be accumulated to give proportions of variance 
explained. 

For example, depth has 0.1290.7230.852, i.e. 85.2%, of its variance ex-
plained by the fi rst two dimensions. Pollution is almost 100% explained by the 
fi rst two dimensions, while temperature is very poorly explained. The dummy 
variables for sediment are also poorly explained, but this is mostly due to the fact 
that they take on only two values. An improved measure of fi t can be obtained by 
considering the categories rather as groupings of cases (i.e., supplementary row 
points rather than dummy variable column points in the CCA), just like we dis-
played categories as centroids of the site points corresponding to the respective 
categories. Exhibit 16.7 shows the squared correlations of the sediment categories 

 dim1 dim2 dim3 dim4 Sum

Depth 0.129 0.723 0.081 0.004 0.938

Polln 0.980 0.011 0.008 0.000 0.999

Temp 0.000 0.033 0.496 0.462 0.992

C 0.010 0.078 0.511 0.128 0.727

S 0.118 0.030 0.012 0.040 0.200

G 0.169 0.165 0.269 0.249 0.852

 dim1 dim2 dim3 dim4 Sum

C 0.023 0.079 0.897 0.001 1.000

S 0.186 0.284 0.526 0.004 1.000

G 0.571 0.226 0.191 0.012 1.000
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VARIANCE PARTITIONING IN PCA, LRA, CA AND CCA 

SUMMARY:
Variance partitioning in 
PCA, LRA, CA and CCA

as row profi les with the four dimensions of the CCA solution. Thus gravel has a 
variance explained by the fi rst two dimensions of 79.7%, compared to 33.4% ac-
cording to Exhibit 16.6. 

1.  All these methods that analyse a rectangular data table share a common theory 
and a common objective – what differentiates them is the distance function 
inherent in structuring the space of the rows and columns, which in turn is a 
function of the type of data being analysed. Weights for the rows and columns 
are implicit in all the methods, even when the weights are equal. 

2.  In each method, based on the weights and the metric, a matrix is formed for 
dimension reduction, and the total variance of the data is measured by the 
sum of squares of that matrix. In PCA it is the sum (or average) of the vari-
ances of the variables; in LRA it is the weighted sum of all logarithms of the 
odds ratios in the matrix; in CA it is the total inertia, the chi-square statistic 
divided by the grand total of the table; in CCA it is that part of the total inertia 
that is projected onto the space of the explanatory variables.

3.  The total variance or inertia is decomposed along principal axes, in decreas-
ing parts, such that the part accounted for by the fi rst axis is the maximum, 
and then of the remaining inertia the second axis accounts for the maximum, 
and so on.

4.  Each part of variance on the principal axes is decomposed in turn into con-
tributions by the rows (usually cases) or by the columns (usually variables) of 
the data table. 

5.  These contributions can be used as diagnostics in two ways: interpreting how 
each axis is built up from the rows or from the columns, or interpreting how 
each row or column is explained by the axes. The relative contributions of the 
axes to the variances of a row or column are squared correlations and can be 
summed to obtain a R 2 measure of explained variance of the row or column.

6.  The contributions of the columns to the axes are what are visualized in the 
contribution biplot, because the columns usually defi ne the variables (e.g., 
species) of the table. In principle, one can defi ne contribution coordinates 
for the rows as well.

7.  All of the above applies similarly to constrained forms of these methods, where 
the total variance is restricted to the part that is directly related to a set of ex-
planatory variables. 
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Univariate test of group 
difference

Chapter 

Inference in Multivariate Analysis

We have presented multivariate analysis as the search for structure and rela-
tionships in a complex set of data comprising many sampling units and many 
variables. Groupings are observed in the data, similarities and differences reveal 
themselves in ordination maps, and the crucial question then arises: are these ob-
served patterns just randomly occurring or are they a signal observed in the data 
that can be considered signifi cant in the statistical sense? In this chapter we shall 
tackle this problem in two different ways: one is using bootstrapping, to assess 
the variability of patterns observed in the data, analogous to setting confi dence 
intervals around an estimated statistic, and the other is using permutation tests 
in order to compute p -values associated with the testing of different hypotheses. 
We will illustrate these computational approaches to statistical inference in two 
different situations, where group differences or associations between variables 
are being assessed. Before tackling the multivariate context we shall treat more 
familiar univariate and bivariate examples in each respective situation. 

Contents

Univariate test of group difference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  213
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Multivariate test of group difference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  219
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One of the simplest statistical tests to perform is the two-group t -test of difference 
in means between two populations, based on a sample from each population. 
Taking our “bioenv” data set as an example, suppose we aggregate the samples 
corresponding to clay (C) and sand (S) sediment (labelled as group CS), to be 
compared with the gravel sediment sample (G). We want to perform a hypothesis 
test to compare the pollution values for the 22 sites of CS with the 8 sites of G. 
The mean pollution in each group is computed as:

17
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x xCS G5 18 2 70= =. .

Performing the usual t -test and not worrying for the moment whether the assump-
tions of this test have been satisfi ed, we obtain a t -statistic (with 30228 degrees 
of freedom) of 3.22 with associated p -value for a two-sided test of 0.0032. Thus we 
would conclude that there is truly a difference in pollution between clay/sand 
and gravel samples, with gravel samples having less pollution on average. The 
estimated difference in the mean pollution is 2.48 and a 95% confi dence interval 
for the difference in the means is 0.90, 4.05. Now this simplest form of the t -test 
assumes that the data are normally distributed and that the variances are equal in 
the two groups. An alternative form of the t -test, known as the Welch test, does not 
assume equal variances and obtains a t -statistic of 4.62, a lower p -value of 0.00008 
and a much narrower 95% confi dence interval of 1.38, 3.58. If we examine the 
normality by making a normal quantile plot and using the Shapiro-Wilks test1 in 
these quite small samples, there is no strong evidence that the data are not normal. 

An alternative distribution-free approach to this test, which does not rely on the 
normality assumption, is to perform a permutation test. Under the hypothesis of 
no difference between the two groups it is assumed they come from one single 
distribution of pollution, so any observation could have been in the clay/sand 
group or the gravel group. So we randomly assign the 30 pollution observations 
to a sample consisting of 22 of the values, with the remaining 8 values in the other 
sample, and recompute the difference in the group means. The number of ways 
we can randomly separate the 30 values into two samples of 22 and 8, is:

5,852,925
30

22

30

8
= =⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟

that is, almost 6 million ways. In such a situation we do this random allocation 
a large number of times, typically 9,999 times, plus the actual observed samples, 
giving 10,000 permutations in total. The distribution of these 10,000 values, 
called the permutation distribution, is given in Exhibit 17.1 – it is the distribution 
of the difference in means under the null hypothesis of no difference. To obtain 
a p -value we see where our observed difference of 2.48 lies on the distribution, 
counting how many of the random permutations give differences higher or equal 
to 2.48, as well as lower or equal to 2.48, since the test is two-sided. There are 29 
permutations outside these limits so the p -value is 29/10,0000.0029, which is 
compatible with the p -value calculated initially for the regular t -test.

1 See Appendix C for descriptions of the functions used, and the online R code.
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Exhibit 17.1:
Permutation distribution for 
test of difference in means 
of two populations based on 
samples of size 22 and 8. 
Of the 10,000 permutations 
29 lie outside the limits 
of  2.48, hence the 
estimated p-value is 0.0029

Exhibit 17.2:
Bootstrap distributions 
of the mean pollution 
for the gravel and 
clay/sand groups, based on 
22 samples and 8 samples 
respectively, drawn with 
replacement 10,000 times 
from the original data. The 
right hand histogram is the 
bootstrap distribution of the 
differences, showing the 
limits for a 95% confidence 
interval

To estimate the variability of the estimated difference correctly, without recourse 
to distributional assumptions, we would need repeated pollution samples of size 
22 and 8 respectively from the populations of clay/sand and gravel locations from 
which the original data were obtained, which is clearly not possible since we only 
have one set of data. To simulate data from these two populations we can resort 
to bootstrapping the data. Samples are taken from the two sets of data, with replace-
ment, which means that the same observation can be chosen more than once and 
some not at all. We do this repeatedly, also 10,000 times for example, each time 
computing the difference in means, leading to the bootstrap distribution of this dif-
ference, shown in Exhibit 17.2, alongside the separate bootstrap distributions of 
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Test of association 
between two variables

Exhibit 17.3:
Permutation distribution 

based on 9,999 estimates 
of the correlation between 
depth and pollution, under 

the null hypothesis of no 
correlation, together 

with the observed value 
of 0.396. The values 
 0.396 are indicated 

– there are 315 values 
equal to or more extreme, 

hence the p-value is 0.0315 

the two populations. The bootstrap distribution is an estimate of the true distri-
bution of the differences, so to estimate the 95% confi dence interval, we cut off 
2.5% (i.e., 250 values out of 10,000) on each side of the distribution, obtaining 
the interval 1.51, 3.51. This is more in line with the confi dence interval obtained 
by the Welch method.

Another common situation in statistical inference is to test an association, for 
example correlation, that is measured between two variables. In Chapter 1 we 
calculated a correlation between pollution and depth in the “bioenv” data set 
of 0.396 and a p -value of 0.0305 according to the two-tailed t -test for a correla-
tion coeffi cient. This test relies on normality of the data but a distribution-free 
permutation test can also be conducted, as follows. Under the null hypothesis of 
zero correlation there is no reason to link any observation of depth with the cor-
responding observation of pollution in a particular sample, so we can randomly 
permute one of the data vectors. We do this 9,999 times, computing the correla-
tion coeffi cient each time, and Exhibit 17.3 is the permutation distribution. The 
observed value of 0.396 is exceeded in absolute value by 315 of these randomly 
generated ones, and so the estimated p -value is 315/10,0000.0315, almost the 
same as the t -test result. 

Bootstrapping can be performed to obtain a confi dence interval for the correla-
tion coeffi cient. Now the pairs of depth and pollution values are kept together, 
and the sampling is done from their bivariate distribution by taking 30 samples at 
a time from the data set, with replacement (again, some samples are chosen more 

–0.396
Correlation

Fr
eq

ue
nc

y

 

–0.6 –0.4 –0.2 0.0 0.2 0.4 0.6

0
2

0
0

4
0

0
6

0
0

8
0

0
1

,0
0

0

0.396



217

INFERENCE IN MULTIVARIATE ANALYSIS 

Exhibit 17.4:
Bootstrap distribution of 
the correlation coefficient, 
showing the values 
for which 2.5% of the 
distribution is in each tail 

than once, some not at all). This is done 10,000 times, and each time a correla-
tion coeffi cient is calculated, and Exhibit 17.4 shows their distribution. Cutting 
off 2.5% of the values on each tail gives a two-sided confi dence interval for the 
correlation of 0.704, 0.044. Notice that the distribution in Exhibit 17.4 is not 
symmetric, and that this 95% confi dence interval does not include zero, which is 
another way of saying that the observed correlation is signifi cant at the 5% level 
of signifi cance. 

We have not exhausted all the possible alternative approaches in the last 
two sections. For example, a nonparametric Kruskal-Wallis rank test can be 
performed to test the difference in pollution between clay/sand and gravel 
samples, leading to a p -value of 0.0017. Or a Spearman rank coeffi cient can 
be computed between depth and pollution as 0.432 and its p -value is 0.021. 
Both these alternative approaches give results in the same ball-park as those 
obtained previously. Having shown these alternative ways of assessing statistical 
signifi cance, based on statistical distribution theory with strong assumptions on 
the one hand, and using computationally intensive distribution-free methods 
on the other hand, the question is: which is preferable? It does help when the 
different approaches corroborate one another, but there is no correct method. 
However, we can eliminate methods that clearly do not fi t the theory, for exam-
ple normality-based methods should not be used when the data are clearly not 
normal. When we come to the multivariate case, however, the situation is much 
more complex, and in the absence of a theoretical basis for statistical testing, 
we rely more on the distribution-free approaches of permutation testing and 
bootstrapping.
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Exhibit 17.5:
Three-dimensional views 
of the 30 samples in the 

unstandardized (a) and 
standardized (b) Euclidean 

space of the three variables. 
Clay, sand and gravel 

samples are colour coded 
as gray, brown and green 

respectively, and their 
group average positions 

denoted by C, S and G. 
Since depth has a much 

higher range of numerical 
values than the other two 

variables, it would dominate 
the computation of inter-

group difference if the data 
were not standardized in 

some way
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Temperature
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Multivariate test of group 
difference

Exhibit 17.6:
Permutation distribution 
of measure of intergroup 
difference in standardized 
multivariate space. There 
are 32 of the simulated 
values greater than or equal 
to the observed value of 
6.303, hence the p-value is 
32/10,000 = 0.0032 

Suppose now that we wanted to test the differences between the sediment 
groups based on all three continuous environmental variables depth, pollu-
tion and temperature. This time let us also keep the three sediment groups 
separate. Even in the univariate case, when we pass to more than two groups, 
the notion of a negative difference no longer exists – any measure of differ-
ence will be a strictly positive number. Furthermore, when we pass to more 
than one variable then the issue of standardization is crucial in the measure of 
group difference, since the variables have to contribute equitably to the meas-
ure of difference. To rub this point in even further, consider the positions of 
the samples in unstandardized and standardized coordinates in Exhibit 17.5. 
The centroids of the three sediment groups are also shown, and it is clear that 
standardization is necessary, otherwise depth would dominate any measure of 
intergroup difference. We are going to measure the difference between the 
three sediment groups by the lengths of the sides of the triangle in the stand-
ardized space – see the triangle in Exhibit 17.5(b). If these lengths are large 
then the group means are far apart, if they are small then the means are close 
together. The question then is whether they are signifi cantly far apart. The sum 
of these three lengths turns out to be 6.303. To obtain a p -value a permuta-
tion test is performed by randomly allocating the C, S and G labels to the data 
samples many times, and each time computing the same statistic, the sum of 
the distances between group means. The permutation distribution is shown 
in Exhibit 17.6, and the observed statistic lies well into the tail of the distribu-
tion, with a p -value of 0.0032. Notice that now it is only the right tail that is 
counted, since the value of 0 on the left side of the distribution indicates the 
null hypothesis of no difference.
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Exhibit 17.7:
Permutation distributions 
for measure of intergroup 

difference based on single 
variables. The observed 

difference is indicated each 
time and the p-values are 

0.0032, 0.0084 and 
0.7198 respectively.
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Test of association 
between groups of 
variables

Having concluded that the group differences are signifi cant there are two fur-
ther aspects to be considered, since there are three variables and three groups 
involved: fi rst, are all groups signifi cantly different from one another? and 
second, which variables contribute mostly to the difference? These two ques-
tions are related, since it may be that a group may be different from another 
on only one or two of the variables, whereas the third group may be different 
from the other two on all three variables. Anyway, let us consider the latter 
question fi rst: are the groups signifi cantly different on all three variables? We 
can perform the same test three times using one variable at a time – here it 
would not matter if the data were standardized or not, but we continue to use 
the standardized form since it is easier to compare the three results. Exhibit 17.7 
shows the three permutation distributions and it is clear that temperature is 
not at all different between the three sediment groups, so we could drop it 
from further consideration. 

Next, we examine whether the groups are all different from one another, based 
on just depth and pollution. The differences between C and S, S and G and C 
and G are computed, similar to the multiple comparison procedure in ANOVA, 
and their permutation distributions generated, shown in Exhibit 17.8. It is clear 
that there is no signifi cant difference between clay and sand groups (hence our 
aggregating them in the initial example of this chapter), whereas they are both 
highly signifi cantly different from the gravel group.

The multivariate equivalent of testing a correlation coeffi cient is when there are 
several predictor variables being used to explain one or more response variables. 
The most relevant case to us is in canonical correspondence analysis (CCA), when 
many biological variables are being related to several environmental variables, for 
example, via a process of dimension reduction in the biological space. There are 
two ways to assess this relationship: one way is to simply include all the environ-
mental variables in the model and test for their overall signifi cance, while another 
more laborious way is to look for a subset of signifi cant environmental predictors, 
eliminating the insignifi cant ones. We shall illustrate these two strategies again 
using the simple “bioenv” data set, leaving a more substantial application to the 
case study of Chapter 19.

The inertia of the biological data in this example (species a, b, c, d and e) 
is 0.544 (see Chapter 13). When using depth, pollution and temperature 
as environmental predictors in a CCA, the inertia accounted for is 0.240, 
or 44.1%. We can generate a permutation distribution to test whether this 
percentage is significant. As in the case of the correlation of two variables, 
under the null hypothesis of no relationship, the biological and environmen-
tal data vectors can be randomly paired, keeping the biological vectors (with 
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Exhibit 17.8:
Permutation distributions 

for measure of pairwise 
intergroup differences based 

on depth and pollution. 
The observed difference is 

indicated each time and the 
p-values are 0.5845, 0.0029 

and 0.0001 respectively
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Other permutation tests 
for ordination 

five abundance values) and the environmental vectors (with three continu-
ous measurements) intact. If we do this 9,999 times, we do not get any case 
that improves the figure of 44.1% inertia explained, so the p -value is 0.0001, 
highly significant. 

Dropping one variable at a time and repeating this exercise, we obtain the fol-
lowing percentages of explained inertia and p -values for the three different pairs 
of variables:

Depth and pollution:  42.7% (p0.0001)

Depth and temperature: 11.4% (p0.1366)

Pollution and temperature: 37.4% (p0.0001)

and for a single variable at a time:

Depth: 10.0% (p0.0366)

Pollution: 36.3% (p0.0001)

Temperature:  1.1% (p0.8642)

So it seems clear that temperature has no predictive role and can be dropped. 
Pollution is the best predictor and if a forward stepwise process were fol-
lowed, then pollution would be the first to enter the model. The only ques-
tion remaining is whether depth adds significantly to the model that is driven 
mainly by pollution. This can be tested by generating a permutation distribu-
tion with pollution as a predictor, unpermuted, while just the depth values 
are permuted randomly. After the usual 9,999 permutations of the depth 
vector, the result is that the percentage of inertia explained by depth and 
pollution, seen above to be 42.7%, is the 222nd highest value in the sorted 
list of 10,000, so the p -value for the additional explained inertia of depth is 
0.0222, significant at the 5% level. The final model would thus include pol-
lution and depth.

In any dimension-reduction technique to establish an ordination of a data 
set, the objective is to separate what is “signal”, that is true structure, from 
“noise”, that is random variation. In Chapter 12 we discussed an informal way 
of judging which dimensions are “significant” from the appearance of the 
scree plot (see Exhibit 12.6 and related description). A permutation test can 
make a more formal decision about the dimensionality of the solution. In a 
PCA, the correlations between the variables combine to form the principal 
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Exhibit 17.9:
Scatterplot of percentages 

of variance on the first 
two dimensions of 10,000 

PCAs, one of which is based 
on the observed data set 
“climate” and the other 

9,999 are computed using 
random matrices obtained 

by permutation

axes of an ordination, so if there is no correlation between the variables then 
there is no structure. Hence a permutation test for the principal axes of the 
“climate” data set can be performed by generating several random data sets 
under the null hypothesis of no correlation between the variables by random-
ly permuting the values down the columns of each variable. The eigenvalues 
of these randomly generated data sets yield permutation distributions of the 
eigenvalues under the null hypothesis. Since the total variance in a PCA of 
standardized data is a fixed number, it is equivalent to look at the percent-
ages of variance explained on the axes. Exhibit 17.9 shows the scatterplot of 
the first and second percentages of variance for the 9,999 permuted data sets, 
along with the actual values of 27.8% and 17.8% in the original data set. The 
p -values are again calculated by counting how many of the values are greater 
than or equal to the observed ones, only 1 for the first dimension (the ob-
served value itself) and 13 for the second, hence the p -values are 0.0001 and 
0.0013 respectively. Continuing with the third and higher dimensions, the 
p -values are 0.0788, 0.2899, 0.9711 and so on, none of which is significant. 
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A permutation test for 
clustering

Hence, the two-dimensional solution, accounting for 45.6% of the variance, 
is considered the appropriate solution, and the remaining 54.4% of the vari-
ance is regarded as random variation.

The situation is slightly different for methods like CA, LRA and CCA that do not 
have a fi xed total variance, and have weights attached to the rows and columns. 
Whereas in PCA it is equivalent to consider the eigenvalues or their percentages 
relative to the total variance, in these other methods such as CA, for example, 
the total inertia of an abundance matrix can be very high compared to the vari-
ance of the permuted matrices under a null model of no relationship between 
the species. So we would base our decision about signifi cance of the dimensions 
purely on the percentages of inertia. An example will be given in the case study 
of Chapter 19.

The same issues arise when performing a cluster analysis: for example, which 
are the “significant” clusters, or in a hierarchical clustering at what level 
should the dendrogram be cut for the identifi cation of “signifi cant” cluster-
ing? This is a diffi cult question and we present one possible approach to 
identifying a signifi cant cutpoint. The levels of the nodes at which clusters 
are formed are fi rst saved for the original dendrogram, for example in the 
dendrogram on the right of Exhibit 7.8, based on clustering zero/one data 
using the Jaccard index, the levels of the nodes are (from the bottom up): 
0.200, 0.250, 0.333, 0.429, 0.778 and 1.000. Now we generate a permutation 
distribution for these levels by randomly permuting the columns of the data 
matrix, given in Exhibit 5.6, so that we have a large number of simulated val-
ues (again, 9,999) under the hypothesis of no relationship between the spe-
cies. For each permuted matrix the node levels are stored, and then for each 
level we count how many are less than or equal to the originally observed 
node level. For signifi cant clustering we would expect the node level to be 
low. The p -values associated with each node are (again, from bottom up): 
0.1894, 0.0224, 0.0091, 0.0026, 0.7329, 1.000, so that node level 4, which cuts 
the sample into three clusters, is the most signifi cant. Exhibit 17.10 shows 
the permutation distribution for the node 4 levels and the observed value of 
0.429. There are only 26 permutations where the node level is lower than or 
equal to 0.429, hence the p -value of 0.0026.

As a contrasting example, the same strategy was applied to the dendrogram of 
Exhibit 7.10 that clusters 30 samples based on their standardized Euclidean dis-
tances using variables depth, pollution and temperature. None of the p -values for 
the 29 nodes in this example are less than 0.05, which indicates that there are no 
real clusters in these data, but rather a continuum of dispersion in multivariate 
space.
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Exhibit 17.10:
Permutation distribution of 

node 4 levels, corresponding 
to a three-cluster solution, 

for the presence-absence 
data of Exhibit 5.6 – see 

the dendrogram on the 
right of Exhibit 7.8. There 
are 26 permutations (out 
of 10,000) that are less 

than or equal to 0.429, the 
value of the level in the 

dendrogram

SUMMARY:
Inference in multivariate 

analysis

1.  Conventional statistical inference relies on assuming an underlying distribu-
tion of the data under a null hypothesis (e.g., a hypothesis of no difference, 
or of no correlation), called the null distribution. The unusualness of the 
observed value (e.g., a difference or a correlation) is then judged against the 
null distribution and if its probability of occurring (i.e., p -value) is low, then 
the result is declared statistically signifi cant.

2.  Distribution-free methods exist that free the analyst from assuming a theo-
retical distribution: null distributions can be generated by permuting the data 
under the null hypothesis, and the variability of observed statistics can be esti-
mated using bootstrapping of the observed data. 

3.  In the multivariate context, where theory is much more complex, we shall gen-
erally rely purely on computer-based permutation testing and bootstrapping. 
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4.  To assess the signifi cance of group differences, the null hypothesis of no dif-
ference implies that we can allocate observations to any groups. A statistic 
measuring group difference is postulated, and then the same statistic is meas-
ured on data that have been randomly permuted a large number of times by 
randomly assigning the group affi liations to the observations. The statistic 
computed on the original data is then judged against the permutation distri-
bution to obtain a p -value.

5.  To assess the association between two sets of variables, a statistic measuring this 
association is fi rst postulated. Under the null hypothesis of no difference we 
can randomly connect the fi rst and second sets of data, and doing this many 
times generates a null distribution of the association measure. The observed 
association measured on the original data is once again judged against the 
permutation distribution to obtain a p -value.

6.  The parts of variance/inertia, or eigenvalues, can also be assessed for statistical 
signifi cance by generating a null distribution of their percentages of the total, 
under an hypothesis of no relationship between the variables (usually columns 
of the data matrix), in which case the values for each variable can be permuted 
randomly to generate a null distribution of each eigenvalue.

7.  We propose a similar procedure for hierarchical cluster analysis, where 
clusteredness is indicated by low node levels. The data for each variable are 
permuted randomly and each time the same clustering algorithm performed, 
generating a permutation distribution for each level under the null hypoth-
esis. Observed node levels that are in the lower tail of these permutation dis-
tributions will indicate signifi cant clustering.
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Chapter 

Statistical Modelling

As we said in Chapter 2, the principal methodologies of statisticians are 
functional methods that aim to explain response variables in terms of a set 
of explanatory variables (also called predictors), i.e. the typical regression 
situation. In this book we have been concentrating on structural methods of 
particular importance for ecological data analysts – this is mainly because of the 
large numbers of response variables observed in ecological studies, and the 
ensuing need for dimension reduction. In this chapter we intend to give a 
short overview of the sort of functional methods that are in use today when 
there is one response variable of interest, emphasising that this is a very brief 
description of a topic that deserves a book by itself. We start with several 
variants of linear regression, gathered together under the collective title of 
generalized linear models. These approaches all achieve a mathematical 
equation that links the mean of the response variable with a linear function 
of the explanatory variables. We shall also give some glimpses of two alterna-
tive nonparametric approaches to modelling: generalized additive modelling, 
which replaces the linear function of the predictors with a much freer set of 
functional forms, and classifi cation and regression trees, which take a radi-
cally different approach to relating a response to a set of predictors and their 
interactions, in the form of a decision tree. 

Contents
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Multiple linear regression

Exhibit 18.1:
Many observations of a 
response variable y for 

different integer values of 
a predictor x. Every set 

of y values for a given x 
is a sample conditional 

distribution, with a mean 
and variance, and the 

brown trajectory links the 
conditional sample means. 

Multiple linear regression 
assumes that the data are 
from normal distributions 

conditional on x (a few 
are shown in green), with 

conditional means modelled 
as a straight line and with 

constant variances

Multiple regression is a model for the conditional mean of a response variable y 
given a set of explanatory variables x1, x2, …, xm. To explain this statement and 
the assumptions of the regression model, we consider the simple case when there 
is only one explanatory variable x. Exhibit 18.1 shows an explanatory variable x 
(which could be depth, for example) that can take on the integer values from 
50 to 100, and for each value of x there are many values of y (which could be 
pollution). The brown line trajectory connects the means of y in every subsample 
of points corresponding to a given value of x. For each x we can imagine the 
total population of values of y, and each of these populations has a probability 
distribution, called a conditional distribution because it depends on x. Each of these 
conditional distributions has a mean and a variance and if we connected the 
means of all these conditional distributions (as opposed to the sample means that 
are connected by the brown lines) we would have what is called the regression of y 
on x, denoted by (x). Multiple linear regression has the following assumptions:

1.  The regression function (i.e., means of the conditional distributions for all 
values of x) is linear, in this case a straight line: (x)abx.
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Exhibit 18.2:
A sample of 50 observations 
of the response y and 
predictor x, showing the 
estimated regression line

2.  The conditional distribution for any x is normal, with mean equal to a linear 
function of x (i.e., assumption 1), and variance equal to a constant value across 
all the x values (we say that the variances are homoscedastic, as opposed to hetero-
scedastic if the variances change with x).

In Exhibit 18.1 the estimated linear regression function is shown by a dashed line, 
as well as a few examples of the conditional distributions – since the y values are 
on the vertical axis the distribution functions are shown on their sides. In this 
example there would be a conditional distribution for each value of x and the 
regression line is the assumed model for the means of these distributions, called 
the conditional means.

There are more than 2,000 sample points in Exhibit 18.1 and we would seldom 
get such a large sample – rather, we would get a sample of size 50, say, as shown 
in Exhibit 18.2, but the assumptions of linearity and variance homogeneity 
remain exactly the same. The analysis estimates the linear regression relation-
ship, as shown, which is used fi rstly for interpreting the relationship between 
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Poisson regression

response and predictor, and secondly for predicting y for given x. Notice that 
when a response is predicted from a given value of x, it is the mean of the con-
ditional distribution that is being predicted. In Exhibit 18.2, for example, an 
x value of 80 predicts a y value of about 7.89. One has then to imagine all the 
possible y values that constitute the population, possibly infi nite, that could be 
observed for x80, and then the value 7.89 is the predicted mean of these. Re-
gression analysis includes the technology for setting confi dence limits around 
these predicted means.

Performing the regression on the above sample of 50 observations gives the fol-
lowing regression equation with standard errors (in square brackets) and p -values 
(in round brackets) associated with each coeffi cient:

 mean of y  0.392  0.0937x

1.587 0.0218

(p0.81) (p < 0.0001)

 (18.1)

The statistical conclusion would be that the constant term (i.e. intercept) is not 
signifi cantly different from zero, while the predictor (i.e. slope) is highly signifi -
cant. This agrees with the way these data were simulated: the conditional mean 
of y was set as the linear function 0.1x with no constant term, and the confi dence 
interval for the coeffi cient of x, based on the estimate and the standard error 
(where the confi dence interval is about 2 standard errors about the mean), does 
include the true value 0.1. 

The regression model can be generalized to the situation where the responses 
are of different data types, for example count and categorical variables. This gen-
eral family of methods is called generalized linear modelling (GLM, for short). We 
fi rst consider the case of a count response, which can be modelled using Poisson 
regression. Exhibit 18.3 shows some count data (for example, abundance counts, 
where only counts of 0 to 5 were observed here) recorded for different values of 
the predictor x. Theoretically again, we could have an infi nite number of count 
observations for each x value, and the assumption is that for each x the counts 
follow the natural distribution for count data, the Poisson distribution, with a 
mean that depends on x (three examples of conditional distributions are shown 
in Exhibit 18.3, for x50, 75 and 100). Because a count variable is considered 
to be a ratio variable, it is the logarithm of the conditional means of the Poisson 
distribution that is modelled as a linear function: log((x))abx (see Chapter 
3 where we discussed relationships of this type, where an additive change in x 
would imply a multiplicative change in the mean count). Notice in Exhibit 18.3 
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Exhibit 18.3:
Poisson regression, 
showing some observed 
response count data, three 
examples of the conditional 
distributions for x50, 
75 and 100, assumed 
to be Poisson, shown in 
green, with the dashed 
line showing the estimated 
regression relationship of 
the means, where log mean 
is modelled as a linear 
function of the predictor

Logistic regression

that the conditional means are increasing and that the variance of the Poisson 
distributions is increasing accordingly. 

Performing the Poisson regression on the above sample of 50 observations gives 
the following regression equation with standard errors (in square brackets) and 
p -values (in round brackets) associated with each coeffi cient:

 log(mean of y)  0.0822  0.0183x

0.3785 0.0046

(p0.83) (p < 0.0001)

 (18.2)

Again, the statistical conclusion would be that the constant term is not signifi -
cantly different from zero, while the predictor is highly signifi cant. This agrees 
with the way these data were simulated: the log of the conditional mean of y was 
set as the linear function 0.02x with no constant term, and the confi dence inter-
val for the coeffi cient of x, based on the estimate and the standard error, does 
include the true value 0.02. The interpretation of the estimated coeffi cient 0.0183 
is that for every unit increment in x, the log mean is increased by 0.0183, that is 
the mean is multiplied by exp(0.0183)1.0185, or an increase of 1.85%. Notice 
how the slope of the regression curve is increasing (i.e., the curve is convex) due 
to the multiplicative effect of the predictor. 

As a fi nal example of a generalized linear model, consider a dichotomous response 
variable, for example presence/absence of a species, and consider observations of 
this response along with associated predictor values, shown in Exhibit 18.4. Now the 
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Exhibit 18.4:
Logistic regression, 

showing some observed 
dichotomous data, three 

examples are shown in 
green of the conditional 

probabilities of a 1 and a 
0, for x50, 75 and 100 

(remember again that these 
probability distributions 

are shown on their sides, 
in this case there are only 
two probabilities for each 

distribution, the probability 
of a 0 and the probability of 
a 1). The dashed line shows 

the estimated regression 
of the means, in this case 

probabilities, where the 
logits of the probabilities 

are modelled as linear 
functions of the predictor

Explained variance, 
deviance and AIC

observations are only 0s (absences) and 1s (presences) and there could be some 
repeated observations. 

Performing the logistic regression on the above sample of 50 observations gives 
the following regression equation with standard errors (in square brackets) and 
p -values (in round brackets) associated with each coeffi cient:

 logit(p) p
p1

log
−

⎛

⎝
⎜

⎞

⎠
⎟  3.568  0.0538x

1.523 0.0219

(p0.019) (p0.014)

 (18.3)

The statistical conclusion would be that both the constant term and the predictor 
are signifi cant. This agrees with the way these data were simulated: the condi-
tional mean of y was set as the linear function 2(1/30)x, where 1/300.0333, 
and the confi dence intervals for both coeffi cients do include the true values, but 
do not include 0. 

The measure of explained variance in linear regression is well-known and we have 
used the concept many times in other contexts as well, for example the variance 
(or inertia) explained by the dimensions of a PCA, LRA, CA or CCA solution. 
Deviance is the generalization of this concept when it comes to GLMs. Without 
defi ning deviance mathematically, it functions in the same way: fi rst, there is the 
concepts of the full (or saturated) model, where the response is fi tted perfectly, 
and the null model, where no explanatory variables are fi tted at all, with just the 
constant term being estimated. This difference is used as a measure of total vari-
ance and is, in fact, equal to the total variance in the case of linear regression. 
Deviance is used to measure the difference between models (i.e. hypotheses) in 
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Nonlinear models

their ability to account for variation in the response variable. For example, if an 
explanatory variable is introduced in the GLM, deviance measures the amount 
of variance accounted for by this new variable compared to the null model. If a 
second variable is then introduced, one can compute the deviance between the 
one-variable model and the two-variable model to ascertain if it is worth introduc-
ing the second variable. Deviance has an approximate chi-square distribution, 
with degrees of freedom depending on the difference in numbers of parameters 
between two models. Let us take the logistic regression just performed above as 
an example. The null deviance for a model with no variables turns out to be equal 
to 68.99, and the residual deviance 1 for a model with the single predictor x is equal 
to 61.81.The deviance is thus the difference 68.9961.817.18, which is from a 
chi-square distribution with 1 degree of freedom (the model has one additional 
parameter), for which the p -value is 0.007. Note that this p -value is not exactly 
the same as the one (p0.014) reported for the coeffi cient in (18.3), which was 
computed using the normal distribution. 

When comparing the performance of alternative models (i.e. testing alterna-
tive hypotheses) it is important to consider both their goodness of fi t (e.g., 
analysis of deviance) and complexity, that is the number of explanatory vari-
ables (and associated parameters) included in each model. Akaike’s informa-
tion criterion (AIC) is a way of comparing models with different numbers of 
parameters that combines goodness of fi t and complexity considerations. Since 
adding explanatory variables to a model, whether they are relevant or not, will 
always explain more variance, i.e. reduce the residual deviance, the AIC crite-
rion adds a penalty for additional parameters equal to two times the number 
of parameters. Here the constant term is included, hence in our logistic regres-
sion model (18.3) the AIC is equal to the residual deviance plus 4 (2 times the 
number of parameters), i.e. 61.81465.81. Models with the lowest AIC are 
to be preferred. For example, if we added another explanatory variable to the 
model and reduced the residual deviance to 60.50, say, then the AIC would 
be 60.502366.50, and the fi rst model with one parameter is preferable 
because it has lower AIC. 

In the above examples, although the link function that transforms the mean of 
the response changes according to the response variable type, the way the predic-
tors are combined is always a linear function, which is quite a simplistic assump-
tion. Transformations can also be made of the predictors to accommodate non-
linear relationships. For example, Exhibit 18.5 shows another set of observations, 
and a scatterplot smoother has been added (in brown) indicating the possibility 

1 This is the way the R function glm reports the deviance values.
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Exhibit 18.5:
A scatterplot of a 

continuous response y 
and a predictor x, showing 

a scatterplot smoother 
(brown line) which suggests 

a nonlinear relationship. 
The estimated quadratic 

relationship is shown by a 
dashed curve 

that the relationship is not linear, but reaching a peak or possibly an asymptote. 
In order to take into account the curvature, an additional predictor term in x2 can 
be included so that a quadratic is postulated as the regression function (polyno-
mial regression), and the result is as follows:

 mean of y  39.91  1.139x  0.0068x2

9.09 0.258 0.0018

(p < 0.0001) (p < 0.0001) (p0.0004)

 (18.4)

All terms are signifi cant and the confi dence intervals for the coeffi cients all con-
tain the true values used in the simulated formula, which is 320.9x0.005x2. 
The estimated regression function in (18.4) is shown with a dashed line.

Since we have introduced fuzzy coding, it is interesting to compare the results 
using this alternative. Fuzzy coding of the predictor variable with three fuzzy 
categories allows for a curve with one turning point, which is what we need, so 
three categories were created, x1, x2, x3, and the following regression function 
resulted:
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Multiple predictors and 
interactions

Exhibit 18.6:
Same data as in Exhibit 
18.5, with the estimated 
quadratic relationship in 
gray, and the relationship 
according to (18.5) shown 
by black dashed lines

 mean of y  1.03x1
 7.95x2

 7.56x3

0.59 0.62 0.61

(p0.08) (p < 0.0001) (p < 0.0001)

 (18.5)

(notice that we show the result without the constant for the three fuzzy dum-
mies). The variance explained is 65.6%, only slightly less than the 66.0% for the 
quadratic; both have three coeffi cients and thus the same degrees of freedom in 
the regression. Exhibit 18.6 shows that with the fuzzy coding the relationship is es-
timated as two linear functions, because of the triangular membership functions 
used to create the fuzzy categories. To capture a curved relationship we should 
use different membership functions, of which there are many possibilities, for 
example Gaussian (i.e., normal) membership functions. If interest is not only in 
diagnosing a smooth relationship (like the scatterplot smoother visualizes) but 
also in testing it statistically, then the section on generalized additive models later 
in this chapter provides a solution.

Most often there are many explanatory variables, therefore we need a strategy to 
decide which are signifi cant predictors of the response, and whether they inter-
act, so as to choose the best model (hypothesis) given the data. As an illustration 

50 60 70 80 90 100

0
5

1
0

1
5

Predictor

R
es

po
ns

e



 MULTIVARIATE ANALYSIS OF ECOLOGICAL DATA

238

Generalized additive 
models

we return to the “Barents fi sh” data set studied in Chapters 1, 13 and 15. To con-
vert the abundances of the 30 fi sh species, effectively a 30-variable response, to a 
single response, we computed the Shannon-Weaver diversity H for each of the 89 
stations, using the formula:

H–  j pj log(pj)

where pj is the proportional abundance of species j, j1,…30. This well-known 
diversity index is at its lowest value, 0, when there is only a single species ob-
served in the sample, and reaches its maximum if all species are contained in 
the same proportion. Amongst possible explanatory variables of diversity we 
have the bottom depth and temperature at the station trawled. If depth and 
temperature are entered into a linear regression, then the estimated effects 
of each variable do not depend on the other variable. In this example the 
effects of depth and temperature in a model as separate linear terms are not 
statistically signifi cant. Signifi cant results are found, however, when the inter-
action term is included, i.e. the product of the two variables, which allows for 
the possibility that the relationship with temperature depends on the depth 
and vice versa. The regression, explaining only 6.6% of the variance, but still 
signifi cant, is:

mean H    0.466   0.00243 depth   0.493 temp.  0.00152 depth  temp.

 0.470 0.00152 0.218 0.00072

 (p0.32) (p0.11) (p0.026) (p0.038)

 (18.6)

The interaction term implies that the relationship with depth varies according 
to the temperature – notice that we would retain the linear term in depth even 
though it is insignifi cant, because the interaction term which involves depth is 
signifi cant. Exhibit 18.7 shows the linear relationships with depth for three dif-
ferent temperatures that are chosen in the temperature range of the observed 
data. 

Generalized additive models (GAM for short) are a very fl exible framework 
for taking care of nonlinearities in the data. The approach is more complex 
but the benefi ts are great. Without entering too much into technicalities, we 
show the equivalent GAM analysis used to estimate the regression of diversity 
as a function of depth and temperature, in the previous example. If we enter 
depth and temperature as separate variables, the GAM results show that depth 
is signifi cant with a clear nonlinear relationship (p < 0.0001) but not tempera-
ture (p0.25) – see Exhibit 18.8. In a GAM model the form of the relationship 
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Exhibit 18.7:
Linear regression 
relationships (18.6) 
between diversity and 
temperature that depend 
on the depth (illustrated 
for three values of depth), 
showing an interaction 
effect (regression lines 
with different slopes). If 
the interaction effect were 
absent, the three lines 
would be parallel and 
the effect of temperature 
would be the same (i.e., not 
contingent on depth)

is diagnosed for the researcher, and the number of degrees of freedom of the 
relationship is estimated: 1.96 (say 2) for depth, and 1 for temperature. There 
is no mathematical model for the regression here, so we cannot write down a 
formula as before. But, since the depth relationship looks quadratic, we could 
try adding a quadratic term to the model, and return to using conventional 
regression:

mean H2.22  2.15 depth  0.0000326 depth2  0.0463 temp.

 0.80 0.0048 0.0000071 0.0374

 (p0.007) (p < 0.0001) (p < 0.0001) (p0.22)

 (18.7)

To choose between models (18.6) and (18.7) we can compare the AIC in each 
case: 94.9 for (18.6) and 79.7 for (18.7). The difference in AIC between the para-
metric model in (18.7) and the GAM model summarized in Exhibit 18.8, which 
has an AIC of 79.5, is tiny. Model (18.7) could thus be further improved by drop-
ping the insignifi cant temperature term:
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Exhibit 18.8:
Generalized additive 

modelling of diversity as 
smooth functions of depth 

and temperature: depth 
is diagnosed as having 
a significant quadratic 

relationship, while 
the slightly increasing 

linear relationship with 
temperature is non-

significant. Both plots are 
centred vertically at mean 

diversity, so show estimated 
deviations from the mean. 
Confidence regions for the 

estimated relationships are 
also shown
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Classification trees

 mean H  2.11  2.13 depth  0.0000324 depth2

0.80 0.0048 0.0000071

(p0.01) (p < 0.0001) (p < 0.0001)

 (18.8)

in which case the AIC is 79.3, and explained variance is 19.9%.

As a fi nal illustration of the power of GAMs, we can make a model with a smooth 
interaction of depth and temperature. This has an even lower AIC value 70.7, 
and now to visualize the diagnosed relationship requires making a contour 
plot of the model values in the space of the depth and temperature variables, 
or making a perspective plot in three dimensions – see Exhibit 18.9.To test 
whether the interaction is signifi cant we can compare the residual deviances for 
the model shown in Exhibit 18.8 (85.04) and the one in Exhibit 18.9 (83.67), 
i.e. a difference of only 1.37 units of deviance, which is not signifi cant.2 All 
these results and considerations lead us to the conclusion that the parametric 
model (18.8) with depth modelled as a quadratic is the one of choice – it has 
few parameters, is a function that can be easily interpreted and computed and 
does almost as well as several competing models that are more complex. Here 
we have demonstrated how GAM can help to suggest a nonlinear model for a 
regression. We will return to GAM modelling in Chapter 20 where we show that 
it is a convenient and fl exible approach for taking into account the effect of 
spatial position.

We close this chapter on statistical modelling by showing a completely differ-
ent approach to modelling a continuous or categorical response variable, by 
constructing a type of decision tree with the goal of predicting the continuous 
response variable (regression trees) or categorical response category (classifi ca-
tion trees). We consider the latter case fi rst, and take as example the presence/
absence of polar cod (Boreogadus saida) in a sample. In the data matrix there are 
21 samples with polar cod and 68 without, so the response data consist of 21 ones 
and 68 zeros. Applying a classifi cation tree algorithm, with two predictors, depth 
and temperature, produces the tree model of Exhibit 18.10. The 89 samples 
are notionally fed down the tree and are split by the decisions at each branch, 
where each decision indicates the subsample that goes to the left hand side. For 
example, samples going to the left at the top of the tree satisfy the condition 

2 Here we have not entered into the aspect of the degrees of freedom for this comparison of GAM models, nor 
how p -values are computed. In GAM the degrees of freedom are not integers, but estimates on a continuous 
scale. Hence, comparing models leads to differences in degrees of freedom that are also not whole numbers 
– in this particular case the degrees of freedom associated with the deviance difference of 1.37 are 1.01, close 
enough to 1 for all practical purposes.
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Exhibit 18.9:
Contour plot (upper) and 

perspective plot (down) of 
the diagnosed interaction 

regression surface of 
depth and temperature, 

predicting the deviations 
from mean diversity. The 

concave relationship with 
depth is clearly seen as well 

as the slight relationship 
with depth. The difference 

between the model with 
or without interactions is, 

however, not significant
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Exhibit 18.10:
Classification tree model 
for predicting the presence 
of polar cod. The one 
branch which predicts their 
presence gives the rule: 
temperature < 1.6 ºC and 
depth  306 m. 
This rule correctly predicts 
the presence of polar 
cod in 16 samples but 
misclassifies 5 samples 
as having polar cod when 
they do not

Regression trees

that temperature is greater than or equal to 1.6 ºC, while the others for which 
temperature is less than 1.6 ºC go to the right. Of the 89 samples, 51 go to the 
left, and all of them have no polar cod, so the prediction is False (i.e., no polar 
cod). The remaining 38 samples that go to the right are optimally split into two 
groups according to depth, 305 m or less to the left, and 306 m or more to the 
right. Of 38 samples, 17 go to the left and of these 12 have no polar cod, so False 
is predicted, while 21 go to the right, and a majority has polar cod so polar cod is 
predicted (True). The fi nal branches of the tree, where the fi nal predictions are 
made, are called terminal nodes, and the objective is to make them as concentrated 
as possible into one category.

The beauty of this approach is that it copes with interactions in a natural way by 
looking for combinations of characteristics that explain the response, in this case 
the combination of lower temperature (lower than 1.6 ºC) and higher depths 
(greater than or equal to 306 m) is a prediction rule for polar cod, otherwise no 
polar cod are predicted.

As a comparison, let us perform a logistic regression predicting polar cod, using 
depth and temperature. Both variables are signifi cant predictors but result in 
only 12 correct predictions of polar cod presence. The misclassifi cation tables for 
the two approaches are given in Exhibit 18.11. 

The same style of tree model can be constructed for a continuous response. 
In this case the idea is to arrive at terminal nodes with standard deviations (or 

Temperature ≥ 1.6

Depth < 305.5

False
51/0

False
12/5

True 
5/16
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Exhibit 18.11:
Comparison of 

misclassification rates for 
the classification tree of 

Exhibit 18.10, compared to 
that for logistic regression, 
using the same predictors. 

The classification tree 
correctly predicts presence 

and absence in 79 of 
the 89 samples, while 

logistic regression correctly 
predicts 74

Exhibit 18.12:
Regression tree predicting 
fish diversity from latitude 

and longitude of sample 
positions. The terminal 
nodes give the average 

diversity of the samples 
that fall into them. This 

tree yields the spatial 
classification of the 

sampling region given in 
Exhibit 18.13

any other appropriate measure of variability for the response) as low as pos-
sible. As an example, we return to the diversity response, this time choosing 
time latitude and longitude coordinates as the predictors in order to classify 
the samples into regions of homogeneous diversity. The result is given in Ex-
hibit 18.12. 

The regression tree partitions the sampling area and can be drawn on the map in 
Exhibit 18.13. The most diverse area is in the north-west, while the least diverse 
is in the central western block.

Classification tree Logistic regression

Truth Truth

Polar cod No polar cod Polar cod No polar cod

Predicted
Polar cod 16 5 12 6

No polar cod 5 63 9 62

Latitude < 74.09

Latitude ≥ 72.61

Latitude < 73.61

Longitude < 26.23

Latitude < 71.53

Longitude ≥ 30.63

0.7244
n = 10

0.9954
n = 12

1.201
n = 12

1.285
n = 11

1.444
n = 16

1.289
n = 10

1.553
n = 18
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Exhibit 18.13:
Map of Barents Sea showing 
the locations of the 89 
sampling sites (see Exhibit 
11.1) and the slicing up of 
the region according to the 
regression tree of Exhibit 
18.12, and the average fish 
diversities in each block. 
Most of the slices divide 
the latitudes north to south, 
with just two east-west 
divisions of the longitudes. 
Dark locations show the 
21 sites where polar cod 
were found

SUMMARY:
Statistical modelling

1.  The family of generalized linear models (GLMs) includes multiple linear 
regression, Poisson regression, and logistic regression, when the response vari-
able is continuous, count or categorical, respectively, for which the assumed 
conditional distributions given a set of explanatory variables (or predictors), 
are normal, Poisson and binomial respectively.

2.  Each of these models assumes that a transformation of the mean is a linear 
function of the explanatory variables. This transformation is called the link 
function. In multiple regression there is no transformation, and the link is thus 
the identity. In Poisson regression the link is the logarithm, and in logistic 
regression it is the logit function, or log-odds.

3.  To take into account nonlinearities, polynomial functions of the explanatory 
variables or fuzzy coding into several categories can be used. 
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4.  Generalized additive models (GAMs) are even more general than GLMs, al-
lowing considerable fl exibility in the form of the relationship of the response 
with the explanatory variables.

5.  Both GLM and GAM environments allow interaction effects to be included 
and tested.

6.  Classifi cation and regression trees are an alternative that specifi cally look at 
the interaction structure of the predictors and come up with combinations 
of intervals that predict either categorical or continuous responses with mini-
mum error.
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TWO CASE STUDIES
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Sampling bias

Chapter 

Case Study 1: 
Temporal Trends and Spatial Patterns 

across a Large Ecological Data Set

The examples presented in previous chapters have generally been on small- to 
medium-sized data sets that are good for teaching and understanding the basic con-
cepts of the methodologies used. We conclude with two chapters detailing much 
larger studies that take full advantage of multivariate analysis to synthesize complex 
phenomena in a format that is easier to interpret and come to substantive conclu-
sions. The two chapters treat the same set of data, a large set of samples of fi sh 
species in the Barents Sea over a six-year period, where the spatial location of each 
sample is known as well as additional environmental variables such as depth and 
water temperature. In the present chapter we shall study the temporal trends and 
spatial patterns of the fi sh compositions and also try to account for these patterns 
in terms of the environmental variables. But before applying multivariate analysis to 
data across time and space, we have to consider carefully the areal sampling across 
the years and reweight the observations to eliminate sampling bias.

Contents

Sampling bias   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  249
Data set “Barents fish trends” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  251
Reweighting samples for fuzzy coded data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  251
Correspondence analysis of reweighted data   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  253
Canonical correspondence analysis of reweighted data   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  255
Some permutation tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  255
Isolating the spatial part of the explained inertia   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  258
SUMMARY: Case Study 1: Temporal trends and spatial trends across a large ecological data set   . .  260

In this chapter we shall be considering samples in different regions over time over 
an area of interest. An important consideration is whether data have been col-
lected in a balanced way over time in each region. This is important if one wants 
to summarize the data over the whole area and make temporal comparisons. If 

19



 MULTIVARIATE ANALYSIS OF ECOLOGICAL DATA

250

Exhibit 19.1:
(a) Actual number of sample 

taken in three regions 
over a three-year period, 

with overall proportions of 
samples in each region over 

the whole period. 
(b) Expected number of 
samples if in each year 

sampling had taken place in 
accordance with the overall 
proportions. (c) The weights 

computed by dividing the 
values in table (b) by those 

in table (a) 

sampling is more intense in some regions in some years and less intense in other 
years, this can lead to what is called sampling bias. Consider in Exhibit 19.1(a) the 
hypothetical layout of numbers of samples taken over an area divided into three 
regions, for three consecutive years.

Let us assume for the moment that the total number of samples over the three 
years is representative of the sizes (or some measure of importance in the study) 
of the three regions surveyed, that is region 2 is the largest, followed by region 1 
and then region 3. Then, for the sampling to be balanced over the years the num-
bers of samples should follow the proportions 0.300, 0.433 and 0.267, as seen in 
the last line of Exhibit 19.1(a). Computing expected proportions for each year, in 
exactly the same way as one computes expected frequencies in a chi-square test, 
the table in Exhibit 19.1(b) is obtained. If this latter table of expected frequencies 
is now divided, cell by cell, by the former table of actual frequencies, a table of 
weights is obtained in Exhibit 19.1(c), refl ecting the imbalances.

In Exhibit 19.1(c) the column of ones for region 1 shows that the sampling was 
in perfect proportion to the expected number. In contrast, region 2 is under-

Region 1 Region 2 Region 3 Sum

Year 1 30  20 50 100

Year 2 15  30  5 50

Year 3 45  80 25 150

All years 90 130 80 300

Prop’n 0.30 0.433 0.267

Region 1 Region 2 Region 3 Sum

Year 1 30 43.3 26.7 100

Year 2 15 21.7 13.3 50

Year 3 45 65 25 150

All years 90 130 80 300

Prop’n 0.30 0.433 0.267

Region 1 Region 2 Region 3

Year 1 1 2.167 0.533

Year 2 1 0.722 2.667

Year 3 1 0.813 1.600

(a)

(b)

(c)
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CASE STUDY 1: TEMPORAL TRENDS AND SPATIAL PATTERNS ACROSS A LARGE ECOLOGICAL DATA SET

Data set “Barents fish 
trends”

Reweighting samples for 
fuzzy coded data

sampled in year 1 and over-sampled in years 2 and 3. In year 1 this region has 
only 20 samples whereas the expected proportion of 43.3% of 100 is 43.3. The 
weight of 2.167 is then used to scale up the abundances of observed species in 
this region. In year 2 the 30 actual samples represent an over-sampling com-
pared to the expected value of 21.7, and these 20 samples are thus down-scaled 
by a factor of 0.722, and so on. Each of the 300 samples thus receives a weight 
in Exhibit 19.1(c) according to its year and region, some up-weighted, others 
down-weighted – notice that the sum of the weights allocated to the 300 samples 
is equal to 300.

This reweighting is not necessary if the regions are studied one by one, for ex-
ample average abundances or measures of diversity can be compared within a 
region using the original unweighted data. However, whenever the regions are 
put together to estimate a value over the whole area, the weighting will be nec-
essary. Consider, for example, if in region 3 a certain species where particularly 
abundant. Since this region is heavily sampled in year 1, almost twice as much 
compared to the expected proportion, the unweighted data in year 1 could show 
a difference with the other years which is due to this oversampling. Of course, we 
are assuming that the proportions in the last row of Exhibit 19.1(a) refl ect the 
“population” proportions, but these can be determined by an external criterion 
such as the area of each region.

In Chapter 11 the data set “Barents fi sh” was introduced, a relatively small data set 
of fi sh abundances of 30 species at 89 sites in the Barents Sea, during a sampling 
period in 1997 (Exhibit 11.2). The geographical location was handled in different 
ways, fi rst by defi ning a spatial grouping of the samples (Exhibit 11.1), second 
using latitude and longitude as continuous variables (Exhibits 11.5 and 11.6) 
and third by defi ning fuzzy positions with respect to eight compass points and a 
central category (Exhibits 11.8 and 11.9). In this case study we extend the data 
set to six consecutive years of data, from 1999 to 2004, called Barents fi sh trends, 
thus introducing a temporal component into the study. A total of 600 samples are 
included. We will implement a reweighting scheme in this application, explaining 
how the previous argument for “crisp” regions can be extended quite naturally to 
our fuzzy coding of the spatial positions.

We are going to use fuzzy coding again to code the geographical position of each 
sample, as described at the end of Chapter 11. If each of the 600 samples had 
been allocated “crisply” to one of 9, say, regions, then we would proceed as just 
explained by counting how many samples were in each region in each year to 
check if proportionally the same number of stations were sampled from year to 
year. The situation is hardly different for the fuzzy coding, thankfully, since we 
can sum the fuzzy values and not the zero-one dummy variables for the region 



 MULTIVARIATE ANALYSIS OF ECOLOGICAL DATA

252

Exhibit 19.2:
Sums of fuzzy-coded 

regional categories for 
each year and for all years. 

Columns are the eight 
compass points and a 

central region (C) 

Exhibit 19.3:
Weights for data according 

to year and fuzzy region

categories. Exhibit 19.2 shows the sums for each year and for the whole period 
along with the overall proportions for each region. 

To balance the allocation to each region each should follow the overall propor-
tions, that is SW should have 2.5% of the 88 samples, i.e. 2.20 (so it is slightly 
over-represented, since the actual value is 2.33, W should have 15.5% of 88, i.e. 
13.64 (again under-represented, actual value is 11.71), and so on. If we continue 
computing the expected values and comparing them with the observed ones in 
Exhibit 19.2, the ratios expected/observed give a matrix of weighting factors in 
Exhibit 19.3.

So in category SW (south-west) 2000’s samples must be downweighted by a factor 
of 0.572, whereas 2001’s samples must be upweighted by 3.229.

Since the samples do not fall strictly into a region, how can these weights be ap-
plied? For example a particular sample in 2000 is coded spatially as follows:

 

SW W NW S C N SE E NE

0.125 0.862 0.000 0.002 0.011 0.000 0.000 0.000 0.000  (19.1)

SW W NW S C N SE E NE Sum

1999 2.33 11.71 1.16 10.12 31.25 12.57 3.57 11.29 4.00 88

2000 4.60 18.86 1.47 14.32 39.27 11.65 2.47 11.43 2.93 107

2001 0.64 11.14 1.15 6.60 31.93 12.73 3.06 12.18 4.57 84

2002 2.46 15.83 1.41 11.83 37.44 12.50 2.22 11.01 4.30 99

2003 2.02 16.44 1.36 14.93 38.55 6.63 6.28 12.04 1.75 100

2004 2.72 18.87 1.61 15.46 45.42 14.56 4.17 14.37 4.80 122

All years 14.76 92.85 8.17 73.24 223.85 70.64 21.79 72.33 22.36 600

Prop’n 0.025 0.155 0.014 0.122 0.373 0.118 0.036 0.121 0.037

SW W NW S C N SE E NE

1999 0.929 1.163 1.033 1.062 1.051 0.824 0.895 0.940 0.820

2000 0.572 0.878 0.991 0.912 1.017 1.081 1.573 1.128 1.361

2001 3.229 1.167 0.994 1.554 0.981 0.777 0.997 0.831 0.685

2002 0.990 0.968 0.956 1.022 0.987 0.932 1.619 1.084 0.858

2003 1.218 0.941 1.001 0.818 0.968 1.776 0.578 1.001 2.130

2004 1.104 1.001 1.032 0.963 1.002 0.987 1.062 1.023 0.947
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Correspondence analysis 
of reweighted data

i.e., it is mostly in the western section, but a bit towards south-west, and quite far 
from the centre (remember that you can fi nd the exact position of this station from 
the fuzzy coding). Now each value that we observe in this sample, for example an 
abundance value of 19 for the species Sebastes mentella (Se_me, beaked redfi sh) is 
split between the fuzzy categories in the above proportions, after which the weights 
for the year 2000 in Exhibit 19.2 are applied. This means that we can compute a 
sample-specifi c weight as the weighted average of the weighting factors:1

 0.1250.5720.8620.8780.0020.9120.0111.0170.8413 (19.2)

Hence, all the abundance data for this sample are downscaled by the factor 
0.8413, e.g., for the Se_me value of 19, 0.84131915.99. Weights for all the 
samples are computed in the same way, and the sum of these sample weights is 
equal to the sample size, 600 in this case. The weights can be used to adjust the 
abundances as well as in computing regression relationships, using weighted 
regression, or in computing overall measures over the whole study area such 
as means and diversity measures, for example, which are then appropriately re-
weighted to compensate for sampling biases in different areas.

In most applications such as this one, where the sampling is not drastically out 
of proportion from year to year, it is not going to make a big difference to the 
results of a multivariate analysis whether one uses the original abundance matrix 
or the reweighted one – nevertheless, reweighting is an insurance against possible 
sampling bias. The negative side of this approach, however, is that in a severely 
under-sampled region such as the south-western region in 2001 (Exhibit 19.2) 
there might be some unusual samples that then become up-weighted and thus 
over-emphasize the species (or lack of species) in that region, so we should still 
have a certain minimum sample size in each area and each year to avoid estima-
tion bias. In what follows, we will consistently use the reweighted data set and can 
report in passing that the results are very similar when compared to those of the 
unweighted data.

Exhibit 19.4 shows the CA of the abundance matrix, fi rst the samples (gray circles) 
and species (brown abbreviated labels) and then an enlargement of the central 
area showing the centroids of the year points and all the fuzzy categorical variables. 
Six species contribute more than average to the axes, shown with bigger labels. The 
fi rst CA axis separates species dominating in cold Arctic waters from species found 

1 There are three different weights here: (1) the fuzzy coded values in (19.1) that add up to 1, which will be 
used as weights in the weighted averaging (only four of them are nonzero); (2) the fuzzy-region-specifi c weight-
ing factors in Exhibit 19.2; and (3) the fi nal value of 0.8413 which is a weight to apply to the abundances of 
this particular sample.
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Exhibit 19.4:
Correspondence analysis 
contribution biplot of the 

“Barents fish trends” 
data set. The upper plot 

shows the active data, 
the samples and species 

(high-contributing species 
are shown with bigger 
labels).The lower plot 

shows the centroids of 
all the categories, linking 

together categories of 
ordinal variables. 32.6% of 
the total inertia of 4.017 is 
explained by these two first 

dimensions
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CASE STUDY 1: TEMPORAL TRENDS AND SPATIAL PATTERNS ACROSS A LARGE ECOLOGICAL DATA SET

Canonical 
correspondence analysis 
of reweighted data

Some permutation tests

in warmer Atlantic waters, in other words a latitudinal effect. The second axis sepa-
rates species in shallower waters from those found in deeper waters.

The CA will show the main dimensions of the 600 samples in the abundance 
matrix without specifi c reference to the interannual differences and differences 
across temperature, depth, slope and in space. The CCA will look at the dimen-
sions of abundance that are in the space of the all these explanatory variables. 
Each set of dummy or fuzzy variables contributes one less than its number of cat-
egories to the dimensionality of the restricted space in which CCA operates: time 
(615), space (918) and depth, temperature and slope (413, each), 
totalling 22. This 22-dimensional restricted space contains 37.7% of the total iner-
tia of the data, in other words there is 62.3% of the inertia that is unrelated to the 
explanatory variables. Exhibit 19.5 shows the result in the same format as Exhibit 
19.4. If the scale of the lower centroid plot is compared to that of the centroid 
plot in Exhibit 19.4, it is clear that the categories are more spread out, which is 
the objective of the CCA to discriminate maximally between the categories. The 
high-contributing fi sh species have changed now, apart from Bo_sa which still 
maintains its important position on the fi rst dimension, separating year 1999. The 
cloud of samples in upper left are associated with species extending out in that 
direction of the ordination, found in warm water coming from the Atlantic in the 
south, while the cloud of samples at bottom left is associated with deep water spe-
cies found in the western area. The temporal trend is now clearer, with years 2003 
and 2004 tending even more towards the warmer area of the map.

Each year points shows the centroid of all the samples for a particular year, group-
ing all the fuzzy regions. A trajectory for each region can be indicated as well, 
this time as supplementary points – that is, we fi x the CCA solution and compute 
centroids for regional subsets of samples over the years. Exhibit 19.6 shows the 
regional trajectories for the categories N, E, W and S as well as their overall spatial 
and time centroids that were shown in Exhibit 19.5. It can be seen now that, of 
these four regions shown, it is mainly the southern and eastern regions that con-
tinue moving towards the “warm” region of the map in 2003 and 2004, whereas 
in the northern and western regions the warming trend stops from 2003 to 2004. 
In this way one can interpret the interaction between space and time, seeing the 
difference in trends between regions, or equivalently the difference in spatial pat-
terns over time, while the six year points and nine region points show the average 
time trend and spatial pattern.

We can conduct various permutation tests to make conclusions about the 
statistical signifi cance of the CCA results. A fi rst test can be to confi rm, as we 
surely believe, that the association between the abundance data and all the 
environmental data is signifi cant. The environmental data set is kept fi xed 



 MULTIVARIATE ANALYSIS OF ECOLOGICAL DATA

256

Exhibit 19.5:
Canonical correspondence 

analysis of the “Barents fish 
trends” data. The format 

is the same as Exhibit 
19.4, with the samples and 
species plotted in the upper 

biplot and an enlarged 
version of the category 

centroids in the lower plot. 
58.5% of the restricted 

inertia is explained by these 
two dimensions
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CASE STUDY 1: TEMPORAL TRENDS AND SPATIAL PATTERNS ACROSS A LARGE ECOLOGICAL DATA SET

Exhibit 19.6:
Temporal trajectories in 
regional categories north, 
east, south and west. Time 
and regional centroids are 
at (weighted) averages of 
the corresponding category 
points: for example, S is at 
the average of the six points 
making up the trajectory 
for south, while 2004 is at 
the average of all the 2004 
points (for all nine regions, 
only four shown here)

Exhibit 19.7:
In descending order, 
the proportion of inertia 
explained, R 2, and adjusted 
R 2, of the five categorical 
environmental variables; k is 
the number of categories

and the samples in the abundance data set are permuted many times. In 1,000 
permutations the highest inertia explained is by the original data, so the sig-
nifi cance is p0.001 at most. What is more interesting is to see the signifi cance 
of individual variables. Using them one at a time as constraining variables, 
the associated p -values are all highly signifi cant (p0.001) except for slope 
(p0.12). Ordering them by explained inertia, Exhibit 19.7 shows the per-
centage of variance explained, denoted by R 2 because it is the direct analogue 
of the coeffi cient of determination in regression, as well as an analogue of the 
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Isolating the spatial part 
of the explained inertia

Exhibit 19.8:
Scree plot of the inertias of 

successive dimensions in 
the constrained space of 

the CCA of the “Barents fish 
trends” data. The first three 

dimensions clearly stand 
out from the rest

adjusted R 2 which takes into account the number of categories (see Appendix 
A and B for details). The spatial position of the sample has by far the most ex-
planatory power. 

Another statistical aspect of the constrained ordination solution that requires 
investigation is the dimensionality of the solution. The scree plot of inertias on 
successive dimensions is shown in Exhibit 19.8, suggesting a three-dimensional 
solution. A permutation test for the percentages of constrained inertia, as de-
scribed in Chapter 18, but applied to the inertias on the constrained dimensions, 
confi rms without any doubt that there are actually three signifi cant dimensions in 
the constrained space. On the supporting website of this course there is a video 
of the three-dimensional ordination, which gives an idea of this additional dimen-
sion and the 19.6% additional inertia it accounts for.

Because the spatial component is intimately related to the environmental vari-
ables, especially temperature, it is possible to use CCA to isolate which part of the 
constrained inertia is purely due to the spatial component and not confounded 
with the environmental variables. A partial CCA is used, which involves fi rst 
partialling out the effect of one set of variables, and then doing a CCA on the 
residuals using a different set of constraining variables. The steps in separating 
contributions to inertia of inter-correlated variables are as follows:

–  Perform the CCA with all constraining variables, in this case environmental, 
temporal and spatial: the inertia in the constrained space is 1.4746, i.e. 36.7% 
of the total inertia of the abundance data of 4.0170.
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CASE STUDY 1: TEMPORAL TRENDS AND SPATIAL PATTERNS ACROSS A LARGE ECOLOGICAL DATA SET

Exhibit 19.9:
Partitioning the total 
inertia in the abundance 
data into parts due to the 
spatial variables and other 
variables separately, and 
their part in common

–  Perform the CCA with the environmental and temporal variables constraining: 
the inertia in the constrained space is now 0.9761, i.e. 24.3% of the total.

–  Perform the CCA with the spatial variables constraining: the inertia in the con-
strained space is now 1.1044, i.e. 27.5% of the total. It is clear that there must 
be some confounding between the spatial variables and the others, because 
24.3%27.5% is much higher than 36.7%, that is the total constrained inertia 
including all variables in a CCA.

–  Perform the CCA with the environmental and temporal variables constraining 
after partialling out the spatial variation: the inertia in this constrained space is 
0.3703, i.e. 9.2% of the total. This 9.2% of the inertia is due to the environmen-
tal variables only in a space uncorrelated with the spatial variation.

–  Similarly, perform the CCA with the spatial variables constraining after partial-
ling out the other variables: the inertia in the constrained space is now 0.4982, 
i.e. 12.4% of the total.

–  From the last two calculations it must be that 36.7%9.2%12.4%15.1% is 
inertia due to that common effect of the spatial with the other environmental 
and temporal variables.

This set of inertia components can be depicted in compositional form as shown 
in Exhibit 19.9. This fi gure shows how much of the variation is unexplained and 
how the part that is explained is divided between the spatial and environmental 
predictors (where “environmental” includes the temporal trend in this case). 

63.3%

12.4%

15.1%

9.2%

Unexplained

Spatial, nonenvironmental

Spatial+environmental

Environmental, nonspatial
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SUMMARY:
Case Study 1: Temporal 

trends and spatial trends 
across a large ecological 

data set

Remember that, of the 36.7% explained variance, the two-dimensional CCA 
ordination of Exhibits 19.5 and 19.6 only accounts for 58.5%, that is 21.5% of 
the total variation in the fi sh abundances. If we take into account the third di-
mension (see Exhibit 19.8), this brings the explained constrained inertia up to 
58.519.678.1%, which is 28.7% of the total inertia. Hence, in summary, using 
the available explanatory variables, depth, temperature, spatial position and year, 
we can give a statistically justifi able explanation of 28.7% of the variation in the 
species abundances.

1.  This case study involved a large data set of fi sh abundances from trawl samples 
taken in the Barents Sea, over a six-year period. In addition to the fi sh data, 
the environmental variables bottom depth, water temperature and slope of 
sea-bed were available for each sampling site, as well as latitude and longitude 
coordinates.

2.  In studies such as these that involve sampling across a region over time it can 
happen that there is unrepresentative sampling in certain areas at different 
time periods. Conclusions about temporal trends, for example, can become 
biased due to these sampling imbalances.

3.  Samples can be reweighted to be in line with some fi xed distribution. In this 
study we took the distribution over the whole six-year period as the target dis-
tribution and reweighted the samples in nine fuzzy regions to be in line with 
this distribution, thereby eliminating bias in the estimates.

4.  Sample weights can be used to reweight the abundance data, after which ordi-
nation by CA or CCA, for example, continues as before. In computing average 
temperatures or diversity measures across the whole region, weighted averages 
are used. 

5.  Permutation testing is useful for verifying that the relationship between the 
fi sh abundances, regarded as responses, have a statistically signifi cant rela-
tionship with the environmental variables and to confi rm temporal trends. 
Similarly, we can test how many dimensions in the solution are nonrandom.

6.  The overall variation in the abundance data can be partitioned into a part 
explained by the environmental and spatial variables. The environmental and 
spatial predictors are confounded, however, but we can quantify the parts of 
variation that are purely environmental, purely spatial and a confounding of 
environmental and spatial. 
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The functional 
trait matrix

Chapter 

Case Study 2: 
Functional Diversity of Fish in the Barents Sea

The ability of a marine ecosystem to withstand environmental changes depends on 
its adaptability. Biodiversity makes an ecosystem more adaptable and thereby less 
vulnerable to change since a high number of species can perform a wide range of 
ecosystem functions present in the community. Diversity can be measured at the 
taxonomic level, the phylogenetic level or the functional level, and it is the object of 
this case study to investigate the last option in the same data set studied in Chapter 
19. In order to measure functional diversity, species need to be coded in terms of 
their functional traits. There are then two alternative ways of proceeding: either cre-
ate groups of species with similar functional traits and then measure diversity of the 
functional groups, or use a diversity measure which depends on the particular mix 
of species present at a site, and how far apart they are in terms of their trait charac-
teristics. Both these approaches will be illustrated in this case study, as well as their 
relationships to environmental, spatial and temporal variables.

Contents

The functional trait matrix   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  261
Distances between species based on the traits   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  263
Hierarchical clustering of the fish using trait distances   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  263
Definition of functional diversity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  265
Relating functional diversity to species richness   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  269
Relating functional diversity to space, time and environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  271
SUMMARY: Functional diversity of fish in the Barents Sea   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  275

The starting point for a study of functional diversity is the defi nition of a set of 
attributes, called functional traits, that defi ne the functioning of the species. These 
can be the type of feeding, movement and reproductive behaviour, for example. 

20

1 We are indebted to Magnus Wiedmann of the University of Tromsø for his agreement to use these data, which 
are part of his PhD thesis and an article in the journal Marine Ecology Progress Series (see Bibliographical Appendix).
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Exhibit 20.1:
Part of the trait matrix 

coding the various 
functional characteristics of 

Barents Sea fish species

Exhibit 20.1 shows a part of the trait1 matrix for the 62 Barents Sea fi sh species 
studied in Chapter 19. The total list of traits is as follows: 

Diet: three-category variable, multiple responses possible

Habitat: two-category variable

Average fecundity: continuous variable, highly positively skew

Offspring size: three-category variable

Offspring behaviour: three-category variable

Maximum size: continuous variable, highly positively skew

Shape: fi ve-category variable

Salinity range: three-category variable

Temperature range: three-category variable

 Depth range: three-category variable

Thus, there are 10 traits, 8 categorical and 2 continuous.

As can be seen in Exhibit 20.1, the categorical options are coded as zeros and ones, 
and the fi rst variable (diet) can have more than one option indicated as a trait (for 

Species Functional traits

Diet Habitat Fecundity Offspring

Name Abbrevn benthivorous ichthyivorous planktivorous demersal pelagic (mean) small medium large ···

Amblyraja 
hyperborea

Am_hy 1 1 0 1 0 30 0 0 1 ···

Amblyraja 
radiata

Am_ra 1 1 0 1 0 26.5 0 0 1 ···

Anarhichas 
denticulatus

An_de 1 1 1 1 0 46,500 0 1 0 ···

Anarhichas 
lupus

An_lu 1 0 0 1 0 12,740 0 1 0 ···

Anisarchus 
medius

An_me 1 0 0 1 0 700 1 0 0 ···

Anarhichas 
minor

An_mi 1 0 0 1 0 19,700 0 1 0 ···

Artediellus 
atlanticus

Ar_at 1 1 0 1 0 117.5 0 1 0 ···

···
···

···
···

···
···

···
···

···
···

···
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CASE STUDY 2: FUNCTIONAL DIVERSITY OF FISH IN THE BARENTS SEA 

Distances between 
species based on 
the traits

Hierarchical 
clustering of fish using 
trait distances

example, the fi rst species is indicated as both benthivorous and ichthyi vorous for 
diet), whereas the others only allow one option; for example, offspring can only be 
in one category of small, medium or large). 

There are several approaches to defi ning a distance, or dissimilarity, between 
pairs of fi sh, based on mixed-scale data such as these. Our choice here will be 
to code each of the continuous variables into three fuzzy categories so that the 
whole trait matrix can be treated as a set of categorical data. Because the two con-
tinuous variables are highly skew, it is important to fi rst log-transform them before 
the fuzzy coding. Several distance functions are possible: simply computing the 
sum of absolute differences between the traits of pairs of fi sh, or applying a dis-
tance like the chi-square distance that will normalize the traits according to their 
average appearance in all the fi sh. We chose the former approach, so that the dis-
tance between fi sh would not depend on the particular sample of fi sh included in 
this study (the chi-square distance would depend on the marginal trait averages). 
Nevertheless, to get an idea of the relationship between this set of fi sh and the 
traits, CA using the chi-square distance is still of interest, as shown in Exhibit 20.2. 
In the upper right corner, for example, we fi nd fi sh that must have some of the 
following characteristics: small (ML1) and bottom dwelling (Demersal) benthivo-
rous species, with strange shapes (Shape_eellike or Shape_deep_short), having few 
(FM1), medium-sized (Medium_offspring), demersal eggs (Egg_dem) and moderate 
tolerance to variations in abiotic factors such as temperature and salinity.

Having defi ned a distance between the fi sh, the next step is to perform a cluster-
ing of the fi sh into groups that are relatively homogenous with respect to the 
traits. Again several choices are available: complete or average linkage or Ward 
clustering. To ensure a certain level of compactness of the clusters we chose 
complete linkage – see Exhibit 20.3. Notice that the distance measure has been 
rescaled so that 1 equals maximum distance. 

There are two approaches to defi ning functional diversity that we shall investigate 
here. The fi rst way involves defi ning functional groups, using the results of the 
hierarchical clustering. Using the permutation test for clustering described in 
Chapter 17, we obtain the following estimates of p -values for signifi cant cluster-
ing, from 2 to 12 groups:

2 groups: p0.989 6 groups: p0.021 10 groups: p0.048

3 groups: p0.975 7 groups: p0.177 11 groups: p0.082

4 groups: p0.354 8 groups: p0.001 12 groups: p0.019

5 groups: p0.821 9 groups: p0.006
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Exhibit 20.2:
CA of the trait matrix, part 

of which is shown in Exhibit 
20.1. Traits are shown in 

principal coordinates in (a)
 and the fish species in 

principal coordinates 
in (b). 27.4% of the 
inertia is displayed

CA of functional trait matrix: 62 species
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CASE STUDY 2: FUNCTIONAL DIVERSITY OF FISH IN THE BARENTS SEA 

Exhibit 20.3:
Hierarchical clustering of 
fish based on distances 
between fish, showing boxes 
indicating eight clusters

Definition of functional 
diversity

We choose the eight-cluster solution, which is the most signifi cant (p0.001), 
indicated in Exhibit 20.3. A six-group solution (p0.021) is another possibility if 
fewer groups are required, but we preferred more groups that are internally more 
homogeneous. Notice in the dendrogram that the nine-group solution (p0.006) 
would split off one species on its own, which is not desirable. Hence, the decision 
about the number of groups is based on statistical signifi cance as a guideline, but 
also the nature of the dendrogram and substantive biological knowledge. 

Once functional groups have been defi ned another CA is possible, at the group 
level, to interpret these defi nitions. The trait values for each fi sh group are ag-
gregated, so we reduce the 62-row trait matrix in Exhibit 20.1 to a 8-row matrix 
– see Exhibit 20.4. As mentioned in Chapter 16, the CA of this aggregated matrix 
is a type of discriminant analysis between the fi sh groups, or alternatively a CCA 
of the original trait matrix with fi sh group as a constraining variable. In Ex-
hibit 20.4(b) we show the fi sh group centroids as well as the convex hulls around 
the fi sh species in each group. There is some overlap because not all of the inter-
group variance, contained in seven dimensions (one less than the number of 
groups), can be shown in the two-dimensional map.

Once the tree, or dendrogram, given in Exhibit 20.3 is established, there are 
two ways to defi ne functional diversity at a sampling site, one of which depends 
on having decided on the number of groups, as we have already done above, 
and the other which only needs the tree. The former is simple to understand: 
given a sample of fi sh at a site along with their abundance values, they are clas-
sifi ed into groups and their abundance values are aggregated. Then a standard 
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Exhibit 20.4:
CA of the trait matrix 

aggregated according to the 
fish groups (G1 to G8) that 

were defined in Exhibit 20.3. 
The solution optimizes the 

group differences, although 
the basic configuration is 

similar to that of Exhibit 
20.2 which optimized 

the fish differences. 
The  functional traits are 
displayed in contribution 

coordinates in (a). 52.4% 
of the inertia between fish 

groups is displayed
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diversity measure is computed, for example the Shannon-Weaver index, de-
noted by H:

Hg pg log(pg)

where pg is the proportional abundance of functional group g.

The other way is to measure diversity by summing branches on the dendrogram 
according to the mix of fi sh species found in the sample – in this case only pres-
ences of fi sh are used and not their abundances, although an abundance-weight-
ed measure can be envisaged. First let us suppose that a sample contains all 62 
fi sh, which would give the maximum diversity possible. The measure of diversity 
is obtained by summing all the vertical branches in Exhibit 20.3: since each of 
the n2 nodes of the tree has two vertical branches below it, this is the sum of 
2(n1)122 values in this example, equal here to 20.31. This value is called the 
functional diversity of the species pool (henceforward, we use the abbreviation FD 
for functional diversity). 

Now for a general sample that contains only a subset of the fi sh species, the FD 
value is computed by summing all the branches linking this subset. Clearly, if the 
fi sh in a subset are “close” together in terms of trait distance, then the sum of 
the associated branches will be relatively low, while if there are fi sh species in the 
sample that are “far apart” with not so many common traits, then the sum of their 
linking branches will be relatively high. To normalize the FD measures, we shall 
express them relative to the maximum value of 20.31 for the species pool, so that 
FD will be between 0 and 1. 

Using the same data as in Chapter 19, the FD values for each of the 600 sampling 
sites were computed in the two different ways, fi rst as the diversity index H tak-
ing into account the aggregated abundances, and second as the normalized value 
lying between 0 and 1 that only uses presences of the fi sh. Exhibit 20.5 shows the 
histograms of FD for each alternative, as well as a scatterplot of their paired val-
ues. The fairly low rank correlation of 0.3 suggests that these two measures refl ect 
different information about the diversity.

Interestingly, it is feasible to make a permutation test on the species pool FD as 
an alternative test for overall clusteredness of the fi sh, different from testing for a 
particular number of groups. If the trait data are randomly permuted within each 
variable, e.g., within diet the three options are permuted together across the fi sh 
(and not separately), many alternative values of the species pool FD can be ob-
tained, under a null hypothesis of no relationship between the traits. Exhibit 20.6 
shows that the observed FD value is much lower than those obtained under the 
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Exhibit 20.5:
(a) Histogram of the 

group-based FDs defined as 
Shannon-Weaver diversities 

on the aggregated 
abundances in 600 samples 
for eight functional groups; 

(b) Histogram of the tree-
based FDs using presences 

only and summing the 
branches in the dendrogram 

for the subset of observed 
species, normalized with 
respect to the FD of the 

species pool; (c) Scatterplot 
of the two functional 

diversity indices (Spearman 
rho correlation0.300)
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Exhibit 20.6:
Permutation distribution 
of the species pool FD, 
under the null hypothesis 
of no relationship between 
the traits. The observed 
value of 20.31 is the 
smallest and the associated 
p-value, based on 1,000 
permutations, is thus 
p0.001

Relating functional 
diversity to species 
richness

null hypothesis, and the estimated p -value is p0.001, showing that there are 
signifi cant similarities between the fi sh across the traits.

Both measures of functional diversity will be used and compared in the remainder 
of this chapter, since they appear to contain different information and are defi ned 
in different ways, the common feature being the dendrogram based on the trait 
distances. Exhibit 20.7 shows their relationships with species richness (SR), that is 
the number of species in each sample. Since the tree-based FD only takes presences 
into account and would clearly increase with increasing number of species, as more 
branch lengths are summed, it is no surprise that it follows species richness very 
closely (Exhibit 20.7(a)). Both relationships are slightly nonlinear, with concave 
curves, and so we would use a quadratic function, for example, as a model for the 
conditional means, shown in Exhibit 20.7 (in both cases the explanatory terms SR 
and SR2 are highly signifi cant in the regressions). The deviations of the functional 
diversity values from that expected by their relationship with species richness are 
used as a measure of so-called functional dispersion. Higher functional dispersions 
at a site are associated with greater ecosystem adaptability because the number 
of functions displayed by the species at this site is higher than expected given the 
number of species present – they possess more “tools” and are thus expected to be 
better prepared for environmental change. On the other hand, the impact on the 
FD due to the loss of a species would be proportionally larger at this site since each 
species contributes more to the FD as compared to a site with the same SR but a 
lower FD (i.e., lower functional dispersion).
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Exhibit 20.7:
Scatterplots of the two FD 
measures versus species 

richness (SR, the number of 
species in sample), showing 

the modelled quadratic 
relationships. The horizontal 

axis is marked with the 
value of SR, and below the 

number of sites with the 
corresponding value)
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Relating functional 
diversity to space, time 
and environment

Exhibit 20.8:
Scatterplots of the variables 
depth, slope, temperature, 
longitude and latitude 
with one another as well 
as with the two measures 
of functional diversity, 
based on the functional 
groups (FDgroup) and on 
the dendrogram (FDtree). 
Spearman rank correlations 
are shown in the upper 
triangle, with font size 
proportional to their 
absolute values.

As a fi rst bivariate view of associations between the two FD measures and the 
available covariates, Exhibit 20.8 shows the matrix of scatterplots, with Spearman 
rank correlations in the upper triangle and scatterplots and smooth relationhips 
in the lower triangle. Apart from the known features of the region, that depth is 
negatively correlated with longitude and temperature negatively correlated with 
latitude and longitude, the group-based FD is correlated with depth and the tree-
based FD negatively with temperature and positively with latitude and longitude, 
although these last correlations are less than 0.30 in absolute value. As already 
seen in Chapter 19, the variable slope does not appear to have any association 
with any other, so we drop it from further consideration. 

To show the spatial relationship latitude and longitude should be considered to-
gether along with their interaction. We can compare two ways of spatial modelling, 
by spatial fuzzy coding (Chapter 11) and by generalized additive modelling (GAM, 
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Exhibit 20.9:
Contour plots of the spatial 

component of functional 
diversity according to 

the two definitions (first 
row is the tree-based FD, 

second row is group-based 
FD) using two modelling 

methods (in columns, 
first column is using fuzzy 
spatial categories, second 

is using GAM modelling). 
The northern border of 

Norway with Russia and the 
southern tip of Svalbard 

situate the region of interest

Chapter 18). For both models we model each FD measure on latitude and longi-
tude interactively, and the results are shown in Exhibit 20.9 in the form of con-
tours of predicted FD values.

The results or the two types of FD are quite different, with the tree-based FD 
showing a west and south to north-east gradient, with higher FD in the north-east, 
whereas the group-based FD shows higher diversity in the central area, falling 
off to the west and the south-east. Remember that the group-based FD takes the 
abundance values into account and the water in the central areas is warm, and 
species from more southern areas (e.g., Norwegian Sea) migrate into these areas 
(often in schools), especially in warmer years, giving a more equal spread of rela-
tive abundance values in the functional groups. Concerning the tree-based FD, the 
GAM fi t shows a ridge in the diversity values from south to north while the fuzzy 
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Exhibit 20.10:
Plot of regression 
coefficients for each year 
showing average estimated 
year effects for the 
residuals of (tree-based) 
functional diversities 
from the spatial model, 
with p-values for testing 
differences compared to the 
zero mean of the residuals 
(dashed line)

fi t shows a wider ridge from south-west to north-east. For the group-based FD the 
results are similar between the two methodological approaches, but the fuzzy ap-
proach performs noticeably better according to AIC and the adjusted R 2. Another 
advantage of the approach using fuzzy-coded categories is that there is a p -value 
associated with every compass point’s difference with the central category. So we 
can get results that for the group-based FD several sectors are signifi cantly lower 
than the central (C) one: NW, E, SE and S (all with p0.001), NE (p0.002) and 
W (p0.04), whereas for the tree-based FD the following sectors are signifi cantly 
lower than the central one: NW (p0.001), SE (p0.002) and S (p005). 

Although the spatial variation is highly linked to the variation of environmental 
variables such as temperature and possibly also to temporal variation, we can study 
inter-year variation in the residuals from the above spatial models as well as any 
further relationships with the environmental variables temperature and depth. As 
an example, we consider the residuals of tree-based classifi cation from the fuzzy 
spatial model (top left example in Exhibit 20.9), and model the residuals on year 
as a categorical variable, and temperature and depth either as regular continuous 
variables, or the four-category fuzzy versions used in Chapter 19, or as smooth 
functions using GAM. Both temperature and depth are found to be nonsignifi cant 
predictors of the residuals, irrespective of the coding. There is signifi cant temporal 
variation, however, almost identical in all analyses, which can be plotted as in Ex-
hibit 20.10. Remembering that these are the residuals from the spatial model, we 
can say that in 1999 and 2001 there were lower functional diversities compared to 
the spatial model (as measured by the dendrogram-based approach) and higher 
in 2003 and 2004. All effects are different from 0 (the mean of the residuals) and 
highly signifi cant (p0.0001), apart from 2002 which is closer to 0 (p0.025).
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Exhibit 20.11:
GAM of tree-based FD 

as a smooth function of 
depth (p = 0.0001) and 

temperature (p < 0.0001). 
To model these effects 

parametrically depth would 
be modelled as a quadratic 

and temperature linear
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SUMMARY:
Functional diversity of 
fish in the Barents Sea

From the above it is clear that the effects of spatial position and of the environ-
mental variables temperature and depth are confounded and diffi cult to sepa-
rate. If FD is fi rst related to temperature and depth, ignoring the spatial compo-
nent, highly signifi cant relationships are found: for example, tree-based FD goes 
down with increasing temperature and we fi nd the same quadratic relationship 
with depth as in Chapter 18 where the response was species diversity – see Exhibit 
18.7 for the analysis of only 89 sites (where temperature was nonsignifi cant), 
and Exhibit 20.11 for the present example of 600 sites. More or less the same 
depth value, about 350 m, is found here for maximum FD as was found before in 
Exhibit 18.7 for maximum species diversity. Adding the year effects gives almost 
exactly the same pattern as in Exhibit 20.9, with 1999 and 2001 low and the other 
years high. Of the FD variance, 30.2% (adjusted R 2) is explained by depth, tem-
perature and years. Residuals from this environmental and temporal relationship, 
accounting for about 70% of the FD variance, can then be modelled spatially: 
using a GAM model as in Exhibit 20.8 there is still a signifi cant spatial component 
in the residuals, although the explained variance in these residuals is only 4.3%. 

In summary, temperature and depth, both of which are related to spatial position 
in the Barents Sea, are found to be strongly associated with functional diversity, 
and there are also signifi cant differences between the years. Residuals from a 
model of FD as a function of these environmental and temporal variables can be 
explained, although to a minor extent, by spatial position.

1.  Functional diversity measures diversity in the functional traits (feeding, mo-
tion, reproductive behaviour, habitat preferences, etc.) among species in an 
ecosystem.

2.  Functional groups are groups of species that share the same functional traits. 

3.  To measure functional diversity two approaches are considered here, both 
based on a dendrogram obtained by hierarchical clustering of the species 
according to their functional traits. They are thus both dependent on the dis-
tance/dissimilarity function used as well as the type of clustering.

4.  The fi rst way is to use the hierarchical clustering to decide on the number of clus-
ters that are suffi ciently homogeneous internally to be considered separate groups. 
Functional diversity (FD) at a site can then be measured by any of the usual diversity 
measures, for example the Shannon-Weaver diversity, which is a function of relative 
abundances (or biomasses) of the functional groups. We call this group-based FD.

5.  The second way is to add up the branches of the dendrogram of the particular 
mix of species at the site – this takes only presences of species into account, 
not their abundances. We call this tree-based FD.
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6.  These FD measures are found to have monotonically increasing, slightly con-
cave, relationships with species richness (SR). Tree-based FD is very closely 
related to SR because both take only species presences into account.

7.  Both FD measures can be related to spatial, temporal and environmental 
variables in the usual way using multiple regression. Spatial coordinates are 
interactively coded to explain the spatial relationship. Continuous explanatory 
variables can be coded in their original form, possibly transformed to account 
for nonlinear relationships, or coded as fuzzy variables. 

8.  An alternative modelling strategy is to use generalized additive modelling 
(GAM) which produces a smooth regression relationship with the two-dimen-
sional spatial position and the continuous variables.
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Transformations and 
standardization

Appendix 

Aspects of Theory

This appendix summarizes the theory described in this book. The treatment is 
defi nitely not exhaustive and the bibliography in Appendix B gives some pointers 
to additional reference material. We deal with the theory in more or less the same 
order as the corresponding methods appeared in the text, although some topics 
might be grouped slightly differently.

Contents

Transformations and standardization   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  279
Measures of distance and dissimilarity   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  281
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The most common measurements scales are:

  Continuous interval: differences between values are measured and interpreted; 
variables on this scale can have negative values; we also say an additive scale. For 
example, time, temperature.

  Continuous ratio: ratios between values are measured and interpreted (i.e., per-
centage differences); variables on this scale have positive values; we also say a 
multiplicative scale. For example, heavy metal concentration, weight.

  Categorical (or discrete) nominal: only a few categories are possible and they have 
no particular order. For example, region, phylogenetic group.

  Categorical (or discrete) ordinal: only a few categories are possible and they do 
have an inherent ordering. For example, month, sediment class.

A
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  Count: Variable that takes positive integer values, including 0; we also say a fre-
quency. For example, abundance count, number of offspring.

  Compositional: this refers to a set of variables with the unit-sum constraint, pro-
portions that add up to 1 (or 100% if percentages). For example, a set of fatty 
acid compositions, relative abundances of a set of species.

Standardization is often applied to put different variables on the same scale. For 
data x1, …, xn on an interval-scale variable the most common is to make them all 
mean 0, variance 1, by centering (i.e., subtracting) with respect to the mean x  and 
normalizing (i.e., dividing) with respect to the standard deviation s.

 , 1z i= = , , ni

x x

s
i …
−  (A.1)

Other forms of standardization might be deemed more suitable, such as center-
ing with respect to the median and normalizing by the range. 

For positive data x1,…, xn on a ratio-scale variable, a convenient transformation is 
the logarithm:

 zilog(xi) (A.2)

because it converts the ratio-scale variable x to an interval-scale variable z, which 
needs no further normalization.

Nominal and ordinal categorical data are often converted to dummy variables, 
which are as many variables as there are categories, taking the values 0 and 1.

Count data as well as compositional data are similar to ratio-scale variables 
and are usually logarithmically transformed, or root-transformed (square root, 
fourth root…). If there are zero count values, then they are often transformed as 
log(1x). In the case of compositional data, we prefer to replace zeros with small 
values equal to the detection limit in the context of the data.

The Box-Cox transformation is a general power transformation for ratio-scale, 
count and compositional data:

 z x= −( )1 1
λ

λ  (A.3)

usually for powers  less than 1, and where for zero values of x, x 0. As the 
power  tends to 0 (we say as the root transformation gets stronger) the transfor-
mation gets closer and closer to the log-transformation log(x). 
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Measures of distance 
and dissimilarity

Differences between values of a single interval variable are computed simply by 
subtraction, while for a ratio variable or a count, multiplicative differences can be 
computed by taking ratios, or differences on the log-scale. For multivariate sam-
ples difference is measured by a distance or dissimilarity which combines differ-
ences across the variables. A distance has all the properties of a well-defi ned met-
ric, including the triangular inequality property. A dissimilarity is an acceptable 
measure of inter-sample difference but does not obey the triangular inequality.

A general distance is the weighted Euclidean distance, computed between two sam-
ples x1,…,xp and y1,…,yp observed on p variables, with weights on the variables 
w1,…,wp:

 ∑
j

p

= 1

d w x yx y j j j= −( ),
2  (A.4)

Well-known special cases are:

  Euclidean distance, when wj1; applicable to set of interval variables all on the 
same scale that do not need normalization, or a set of ordinal variables, all on 
the same scale (e.g., fi ve-point ordinal scales of plant coverage) for which the 
inter-category differences are accepted as interval measures.

  Standardized Euclidean distance, for a set of interval-scale variables: wj1/s j
2, 

the inverse of the variance of the j -th variable; this is the distance function 
computed by standardizing all the variables fi rst and then applying the regular 
unweighted Euclidean distance.

  Chi-square distance, for abundance, relative abundance, and compositional 
data: wj1/cj , where cj is the mean for variable j. 

The Bray-Curtis (or Sørensen) dissimilarity (which is not a true distance function, 
since it does not obey the triangle inequality) is a popular choice for measuring 
differences between samples when the data are abundances, or other positive 
amounts such as biomasses:
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For one/zero data, for example presence/absence data, there are many possibili-
ties and we only summarize the two presented in this book, the matching  coeffi -
cient and Jaccard dissimilarity. For p variables observed on two samples, we defi ne 
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anumber of variables matched with a 1 in both samples, dnumber of matches 
of 0 in both samples, bnumber of variables “mismatched” with 1s in the fi rst 
sample, 0s in the second, cnumber of mismatches with 0s in the fi rst sample, 1s 
in the second, so abcdp. Then:

  Matching: (bc)/p (actually, this is a measure of mismatching) (A.6)

  Jaccard: (bc)/(pd) (A.7)

Both the above dissimilarities lie between 0 and 1, with 0 when there are no mis-
matches. For matching the maximum value of 1 is attained when ad0 (no 
1s or 0s matched), while for Jaccard, which ignores matching 0s, the maximum 
of 1 is reached when a0 (no 1s matched). Jaccard is preferable for presence/
absence data when the co-occurrence of absences is not interesting, only the co-
occurrence of presences.

For mixed-scale multivariate data, usually continuous and categorical mixed, some 
form of normalization or homogenization is required so that it makes sense to com-
bine them into a measure of inter-sample difference. The Gower index of dissimilarity 
(not discussed in the book) involves applying a standardization on the continuous 
variables to make them comparable to the categorical ones that are dummy coded, 
after which Euclidean distance is applied. The alternative that is presented in this 
book is to fuzzy code the continuous variables into sets of fuzzy categories. Fuzzy cat-
egories corresponding to a continuous variable look like a set of dummy variables 
except that they have any values between 0 and 1, not exactly 0 or 1, and in this 
way preserve the exact value of the continuous variable in categorical form. With 
the categorical variables coded as dummy variables and the continuous variables 
coded as fuzzy categorical variables, Euclidean distance can be applied, possibly 
with weights to adjust the contributions of each variable to the measure of distance. 

To defi ne a method of cluster analysis one defi nes the algorithm used to imple-
ment the method. Two approaches are of interest, hierarchical and nonhierar-
chical clustering, both of which rely on a matrix of proximities (distances or dis-
similarities) between pairs of objects to be clustered, where objects can be sampling 
units such as sites or variables such as species.

Hierarchical cluster analysis creates a dendrogram, or binary tree, in a stepwise fashion, 
successively aggregating objects, two at a time, and eventually aggregating groups 
of objects as well, according to their proximities. Assuming a decision about the 
measure of proximity has been made, the crucial decision is then how to measure 
proximity between groups of objects formed in the previous stage of the stepwise 
procedure. The main options in practice are: (1) complete linkage, where the 
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maximum distance or dissimilarity value between groups is used; (2) average link-
age, where the average value is used; or (3) Ward clustering, a different ANOVA-
like approach which maximizes the overall between-group variance at each step of 
the clustering, equivalently minimizing within-group variance. The fi nal result is a 
dendrogram, which is then cut at a certain level to create a small number of groups 
of objects, designed to be internally homogeneous and distinct from one another.

Nonhierarchical cluster analysis is used when the number of objects is very large, say 
greater than100, when the dendrogram becomes unwieldy to interpret. The most 
popular example is k-means clustering, which has the same objective as Ward clus-
tering, to maximize between-group variance while minimizing within-group vari-
ance. The number of groups k is pre-specifi ed and the algorithm proceeds from 
a random start to create k groups iteratively, at each iteration assigning objects to 
the group with the closest mean. The solution is seldom globally optimum and 
several random starts are recommended, and the best fi nal solution accepted.

While clustering results in a grouping of objects, multidimensional scaling (MDS) 
results in an ordination map of the objects. Given a matrix of inter-object prox-
imities, MDS fi nds a confi guration of the objects in a space of specifi ed dimen-
sionality, almost always a two-dimensional plane, such that the displayed inter-
object distances are as close as possible to the given proximities. Different ways 
of measuring the fi t between the displayed distances, gathered in a matrix D, and 
the given proximities, gathered in a matrix , lead to different MDS techniques. 

Classical MDS, also called principal coordinate analysis, relies on the eigenvalue-ei-
genvector decomposition, called eigen-decomposition, of a square matrix of scalar 
products to obtain a solution. Initially, the elements of the given proximity ma-
trix are squared – this matrix of squared distances or dissimilarities is denoted 
by (2). To give the most general form of classical MDS, we assume that there 
is a set of positive weights w1,…,wn assigned to the n objects, where i wi1, so 
that the objective is to optimize a weighted fi t where objects of higher weight 
are displayed more accurately in the solution. An operation of double-centering 
and multiplying by ½ is applied to (2) to obtain the scalar product matrix S:

 S½(I1wT)(2)(I1wT)T (A.8)

where I is the nn identity matrix, 1 is the n1 vector of 1s and w the n1 
vector of weights. Centering of the values in the columns of (2) is performed 
by premultiplying by the centering matrix (I1wT), while post-multiplying by the 
transposed centering matrix centers the values in the rows. The eigen-decompo-
sition is then obtained on a weighted form of S, where Dw is the diagonal matrix 
of weights:
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 Dw
½ S Dw

½UDU
T (A.9)

U contains the eigenvectors of S in its columns and D is a diagonal matrix with 
the eigenvalues of S down the diagonal, in decreasing order. The principal coordi-
nates of the objects are fi nally given by:

 FDw
½ UD

½ (A.10)

The rows of F refer to the objects and the columns to the principal axes of the 
solution in decreasing order of importance. For a two-dimensional display the 
fi rst two columns provide the coordinate pairs (fi 1, fi 2) for displaying the i -th 
object. The sum of the eigenvalues are a measure of the total variance and each 
eigenvalue a measure of explained variance by a principal axis, hence the quality 
of display in a two-dimensional solution, which can be interpreted like an R 2 in 
regression, is (12)/kk.

When all the nonzero eigenvalues are positive, the given matrix of proximities is 
Euclidean embeddable, which means that it is possible to represent the objects in a 
Euclidean space, with dimensionality equal to the number of positive eigenvalues. 
When there are some negative eigenvalues, their absolute values quantify the part 
of variance that is impossible to represent in a Euclidean space. For example, a 
matrix of chi-square distances is always Euclidean embeddable, while a matrix of 
Bray-Curtis dissimilarities is not. This fact has led to practitioners preferring non-
metric MDS to display Bray-Curtis dissimilarities.

Nonmetric MDS relaxes the measure of fi t between the displayed distances and the 
given proximities. A perfect fi t in nonmetric MDS would be when the order of all 
the displayed distances is the same as the order of all the given proximities. Spe-
cifi cally, if the ½n(n1) displayed distances are listed next to the ½n(n1) given 
proximities, a perfect fi t would give a Spearman rank correlation between the two 
lists of 1. Rather than measure quality of fi t, nonmetric MDS measures error of fi t 
using a quantity called stress, so a perfect fi t would be a stress of 0. The measure of 
stress will always appear more optimistic than the measure of unexplained variance 
in classical MDS, but this does not imply that nonmetric MDS is an improvement 
– classical MDS has a stricter objective, and thus more error in achieving it. 

These three methods, abbreviated as PCA, CA and LRA, are variations of the 
same theme, so we treat them together. All three methods start with a rectangular 
data matrix, prepared according to the method for being decomposed by the sin-
gular-value decomposition (SVD). The SVD is similar to the eigen-decomposition 
but applicable to rectangular rather than square matrices. All three methods can 
be defi ned using eigen-decompositions as well, but the SVD approach is more 
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elegant and brings out clearly the features of the eventual joint display, for exam-
ple, whether the display is a biplot or not. 

The SVD is defi ned as follows, for a rectangular matrix A (IJ ):

 AUDV
T (A.11)

where U (IR) and V (IR) have orthonormal columns: UTUVTVI, and D 
is a diagonal matrix of positive values in descending order: 12···R0. R 
is the rank of A. The columns of U and V are called left and right singular vectors, 
respectively, corresponding to the singular values r. (A.11) can be written equiva-
lently as the sum of R terms, each of which involves a singular value and associated 
pair of singular vectors:

 A1u1v1
T2u2v2

T···RuRvR
T (A.12)

Since each matrix urvr
T has sum of squared elements equal to 1 and the singular 

values are in descending order, this already suggests that the fi rst terms of (A.12) 
come close to reproducing the matrix A. In fact, the famous Eckart-Young theo-
rem states that the fi rst R * terms constitute a rank R * least-squares matrix ap-
proximation of A – if we take the fi rst two terms, for example, which is the most 
popular choice, then we have a rank 2 approximation of A, and this will provide 
us with coordinates of points representing the rows and columns of A in a two-
dimensional plot. 

We need a slightly more general form of the SVD to take into account weights as-
signed to the rows and columns. Suppose r1,…,rI and c1,…,cJ are, respectively, two 
such sets of weights, all positive and each set adding up to 1. Then, the weighted 
form of the SVD, which gives weighted least-squares approximations to A, is ob-
tained by fi rst multiplying the elements aij of the matrix by the square roots of the 
weights, (ricj)

½, then decomposing this reweighted matrix by the SVD, and fi nally 
“de-weighting” the fi nal result. In matrix formulation these three steps are as fol-
lows, where Dr and Dc denote diagonal matrices of the row and column weights:

  Weight rows and columns: Dr
½ ADc

½  (A.13)

  Compute SVD: Dr
½ ADc

½UD V
T (A.14)

  “De-weight” to get the solution: A(Dr
½ U)D(Dc

½ V)T (A.15)

Solutions of PCA, CA and LRA can be found by specifying the input matrix A and 
the weights. In all cases there is some type of centering of the original data matrix 
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to obtain A. Centering of the columns, for example, as seen already in (A.8), is 
performed by pre-multiplying by (I1rT), where r is the vector of row weights. 
Centering of the values in the rows involves post-multiplying by (I1cT)T, where 
c is the vector of column weights. Here follow the three variants:

PCA: The data matrix Y contains interval-scale data, cases in rows, variables 
in columns. Usually case and variable weights are equal, i.e. r(1/I )1 and 
c(1/J )1, where 1 denotes an appropriate vector of ones. The columns are 
centered and optionally standardized, for example in the unstandardized case, 
A(I(1/I )11T)Y. For the standardized case, divide the values in each column 
of Y by their respective standard deviation.

CA: The data matrix Y contains nonnegative ratio-scale data, usually counts 
such as abundances, or biomasses or percentages. Suppose P equals Y divided 
by its grand total, so that the sum of all elements of P is 1. The row and column 
sums of P are r and c, the row and column weights. Compute the matrix of ratios 
pij /(ricj ), i.e. Dr

1P Dc
1. Then A is the double-centered matrix of these ratios: 

A(I1rT) Dr
1P Dc

1(I1cT)T.

LRA: The starting point of LRA is similar to CA, except that the data matrix Y 
must be strictly positive. Again the masses r and c are the row and column sums 
of Y relative to the grand total. Then A is the double-centered matrix of the loga-
rithms of Y: A(I1rT) log(Y)(I1cT)T.

After putting these options through steps (A.13)–(A.15), various coordinates can 
be computed:

Principal row coordinates: Dr
½ UD Principal column coordinates: Dc

½ VD (A.16)

Standard row coordinates: Dr
½ U Standard column coordinates: Dc

½ V (A.17)

Contribution row coordinates: U Contribution column coordinates: V (A.18)

In each method the total variance, customarily called inertia in CA, is the sum 
of squared singular values computed in (A.14). This is identical to the sum of 
squared elements of the weighted matrix in (A.13). The part of variance ex-
plained by the fi rst R * dimensions of the solution (e.g., R *2) is the sum of the 
fi rst R * squared singular values. The squared singular values are, in fact, eigenval-
ues in the equivalent defi nitions in terms of eigen-decompositions.

In all three methods there is the concept of a supplementary variable and a supple-
mentary point. A supplementary variable is an additional continuous variable that 
is related to the low-dimensional solution afterwards, using multiple regression. 
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When the supplementary variable is standardized and the row standard coordi-
nates are used as explanatory variables, the regression coeffi cients reduce to the 
correlation coeffi cients of the variable with the dimensions, thanks to the dimen-
sions being uncorrelated. Hence the supplementary variable can be represented 
by coordinates equal to their correlation coeffi cients. If the rows are displayed in 
standard coordinates then they have a biplot relationship with these supplemen-
tary variables: rows can be projected onto the supplementary variable direction 
to line up the rows on that variable, the origin being the average. Notice that if 
there are row weights, then the regression and correlation calculations have to 
be weighted.

A supplementary point is an additional row (or column) that one wants to add 
to the existing map. This point differs from a supplementary variable in that it is 
comparable in scale to the data matrix that was analysed (called the active data 
matrix – sometimes a supplementary point is referred to as passive). For example, 
in a CA of abundance data, there might be additional species, or groups of spe-
cies, that one wants to situate in the ordination. These have profi les just like the 
active data, and they can be projected onto the solution just like the active profi les 
were projected. The only difference is that the supplementary points have not 
been used to construct the solution, as if they were data points with zero weight. 
Supplementary points are often used as an alternative way of representing a cat-
egorical variable in an ordination. For example, again in CA, suppose the data 
were fi sh abundances, with columns as fi sh and classifi ed into two types, pelagic 
and demersal. Aggregating all the columns corresponding to pelagic fi sh and all 
those corresponding to demersal fi sh gives two new columns labelled pelagic and 
demersal. These aggregated abundances have well-defi ned profi les in the column 
space and can be displayed on the ordination – in fact, their positions will be at 
the respective weighted average positions of the set of pelagic and set of demersal 
fi sh. In a similar way, fuzzy categories can be displayed. For example, the rows 
(e.g., sites) may have fuzzy categories for temperature, so aggregation of abun-
dances is now performed over the rows to get four fi ctitious sites representing 
the fuzzy categories. The aggregation must be fuzzy as well, in other words, the 
abundances are multiplied by the fuzzy value and summed.

The three methods defi ned above lend themselves in exactly the same way to 
include a second data matrix X (IK ) of K explanatory variables, continuous 
and/or categorical in the form of dummy variables, that serve to constrain the 
solution. The data matrix Y is then regarded as responses to these explanatory 
variables, or predictors. Suppose X is standardized, always taking into account 
the weights assigned to the rows, in other words the columns of X have weighted 
means zero and weighted variances 1. The matrix A is fi rst projected onto the 
space of the explanatory variables:
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 A X[ X(XTDrX)1XTDr ]A (A.19)

and then the same three steps (A.13)–(A.15) are applied to AX instead of A, with 
the same options for the coordinates. This gives, respectively, redundancy analysis 
(PCA with constraints), canonical correspondence analysis (CCA, CA with con-
straints), and constrained log-ratio analysis. AX is that part of the response data 
that is perfectly explained by the predictors. The matrix AA X is the part of the 
response data that is uncorrelated with the predictors. If X includes variables that 
one wants to partial out, then AA X is analysed using the same steps (A.13)–
(A.15). In the case of CCA this is called partial CCA.

The total variance (or inertia) is now fi rst partitioned into two parts, the part 
corresponding to the projected matrix A X, which is in the space of the predic-
tors, and the part corresponding to AA X, which is in the space uncorrelated 
with the predictors. Otherwise, the computation of coordinates defi ned in 
(A.16)–(A.18) and the addition of supplementary variables and points follow 
in the same way.

The solutions obtained in all the multivariate analyses described in this book 
should be regarded as a complex point estimate – dendrograms and ordinations 
do not contain any information about the statistical signifi cance of the results 
or whether the results would have been any different if the study were repeated 
in the same way. In order to perform hypothesis testing or to obtain intervals 
or regions of confi dence, some standard multivariate tests exist for very spe-
cial situations, which have quite restrictive assumptions, for example that data 
come from a multivariate normal distribution. We resort to computationally 
intensive methods to judge whether our solutions are nonrandom, refl ecting 
some actual structure rather than random variation. In this book we have used 
permutation testing to obtain p -values associated with certain hypotheses, and 
bootstrapping to obtain measures of confi dence, although this distinction is 
actually blurred (for example, one can do hypothesis testing using bootstrap-
ping as well). 

Permutation testing can be used for testing differences between groups. Under 
the null hypothesis that there is no inter-group difference, so that all the observa-
tions (e.g., sites) come from the same distribution, we can randomly assign the 
group labels to the observations and measure the inter-group difference by some 
reasonable statistic, such as the between-group sum of squares in multivariate 
space. Doing this a large number of times, obtaining a large number – say 9,999 
– of values of the statistic, which defi nes its null distribution. Then, we see where 
the actual inter-group measure (in this case, the 10,000th) lies on this distribution 
and the estimated p -value is the proportion of all 10,000 values equal to or more 
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extreme than this value. The actual value is included in this proportion, so the 
smallest p -value obtainable would be 1/10,0000.0001 in this case. 

Permutation testing of inter-variable associations proceeds differently. In the case 
of a CCA, for example, there are two sets of variables, the response set and the 
explanatory set. We can measure how much inertia of the response data Y is ex-
plained by the explanatory data in X – this is the constrained inertia contained in 
the matrix A X defi ned above. The null hypothesis is that there is no association, in 
which case every set of observations on the explanatory variables could be paired 
with any set of observations on the responses. So we randomize the order of one 
set of data, for example the rows of the explanatory data X, each time comput-
ing the amount of response inertia (or proportion) explained, doing this again 
thousands of times. The actual value of inertia explained is compared to the right 
tail of the null distribution to estimate the p -value.

Permutation testing can be used to give a guideline about the level at which a 
dendrogram should be cut to obtain signifi cant clustering. Our approach has 
been to randomize the values within each column of data, that is shuffl e them up 
randomly, assuming the columns contain the variables of the data, and recomput-
ed the dendrogram each time. The node levels are stored for each dendrogram 
computed and this gives an idea of the null distribution of each level for data 
where there is no structure between the variables. The node levels of the actual 
dendrogram computed on the original data are then compared to these null 
distributions to obtain a p -value for each node. Here we are looking for values 
in the left tail of the respective null distributions, because signifi cant clustering 
would be when the node levels are generally low in value. There can be several 
signifi cant p -values in this case, and the fi nal choice is based on these, substantive 
knowledge and the number of groups being sought.

Permutation testing can be similarly used for deciding on the dimensionality of 
the ordination solution. The columns of data are similarly randomized, each giv-
ing new parts of variance on the recomputed dimensions. This is done thousands 
of times, generating a null distribution of the parts of variance for the fi rst dimen-
sion, second dimension, and so on. The original parts of inertia are compared to 
their corresponding null distributions to estimate a p -value for each dimension. 
In this case, p -values will generally increase for successive dimensions, and an 
obvious cut-off will appear, which usually coincides with the rule of thumb based 
on the scree plot of the eigenvalues.

To illustrate the use of bootstrapping for this last example, suppose we want a 
confi dence region around the percentages of variance in a PCA, CA or LRA. 
The I rows of the data matrix are sampled, with replacement, until we have 
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a bootstrap sample, also of I rows. This means that some rows can be chosen 
more than once, others not at all – this differs from permutation testing where 
observations are simply re-arranged in a random order. For each bootstrap 
sample the multivariate method is recomputed and the percentages of inertia 
stored, and this is repeated thousands of times. This procedure results in an 
estimated distribution of percentages of inertia for each dimension, and a 95% 
confi dence interval for each can be determined by cutting off 2.5% of the values 
on either tail of the distribution.

In the situation where we relate a single response to a set of explanatory variables, 
regular statistical modelling can be applied. Generalized linear modelling, gen-
eralized additive modelling and classifi cation and regression trees, are alternative 
ways to model this relationship. 

The most restrictive is generalized linear modelling (GLM), since it assumes that 
the effects of the explanatory variables are linear. But the way the linear effect 
translates to a change in the conditional mean of the response, called the link 
function, is different depending on the measurement scale of the response. The 
three most common types of responses are interval-scale continuous, ratio-scale 
count, and categorical binary:

Response variable Link function Conditional distribution Name of method

Continuous: Identity Normal Multiple linear regression

Count: Logarithm Poisson Poisson regression

Categorical (binary): Logit (log-odds) Binomial Logistic regression

The formulation of a generalized linear model is:

 y x x( )= + + +1 1 2 2η α β β �   (A.20)

with inverse transformation

 y x(= +−1
1 1η α β ++ +β2 2x �)   (A.21)

where  is the link function and the conditional distribution of the response is 
the one corresponding to it, with mean given by (A.21). The inverse function 1 
is exp(·) for log and exp(·)/[1exp(·)] for logit.

Generalized additive modelling (GAM) is like GLM, but with a freer and more 
fl exible range of possibilities for the shape of the relationship between the 
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response and each explanatory variable. The linear model on the right of (A.20) 
is replaced by a sum of smooth terms: s(x1)s(x2). Each smooth func-
tion s(·) is quite general, and involves tying together several cubic functions 
called a smoothing spline. These functions have estimated degrees of freedom and 
their form can either confi rm approximate linearity of the relationship or sug-
gest a transformation of the explanatory variables to accommodate a nonlinear 
relationship.

Both GLMs and GAMs can include interactions between the explanatory vari-
ables. Classifi cation and regression trees (CART) form an alternative nonpara-
metric approach that uses simple rules for predicting the response by cutting 
up the range of the predictors, but specifi cally looking for interactions in the 
form of combinations of intervals of the predictors which maximize the fi t to 
the response. The result is a decision tree that allows every case to be run down 
it, according to the conditions at each node, to arrive at a terminal node that 
predicts the response, either the mean or median for a continuous response, or 
a set of probabilities for a categorical response that lead to the prediction of the 
most likely category.
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Appendix

Bibliography and Web Resources

This appendix lists various bibliographical resources, with short annotations, for 
further reading. In addition, some web resources are given for supporting infor-
mation and material such as R software and tutorials.
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Functions from the 
base package in R

Appendix

Computational Note

This appendix is a short summary of the software used for the analyses in this 
book, using packages from the R environment for statistical computing and 
graphics. Data sets and R code for reproducing the results are given online at the 
supporting website:

www.multivariatestatistics.org

As an introduction to the online code, we give here a list of some of the common 
R functions and packages used in the computations of this book. 

Contents

Functions from the base package in R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  303
Package ca   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  305
Package vegan   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  305
Packages maptools, mapdata and mapproj   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  306
Package mgcv . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  306
Packages rpart and tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  306
Additional functions in supporting material   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  306

The open-access R software has become the standard for statistical computing, 
especially for conducting research, thanks to its fl exible programming environ-
ment. It is downloadable for free from the R project website

www.r-project.org

The simple installation process sets up R with what is called the base package, 
consisting of various functions that are commonly used (later we list more special-
ized packages that need to be downloaded and installed separately). Here we list 
some of the useful functions in the base package: 

C
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  hist – takes a set of data on a continuous or count variable and makes a his-
togram; user can choose the interval boundaries; see Exhibits 1.2 and 1.3, for 
example. 

  qqnorm – takes a set of data on a continuous variable and plots the sample 
quantiles against the quantiles of a normal distribution; if the points follow 
the 45-degree diagonal line of the plot, the data can be regarded as normal, 
otherwise not; see Chapter 17.

  shapiro.wilks – takes a set of data on a continuous variable and performs 
the Shapiro-Wilks test for normality; if the p -value is small then normality is 
rejected; see Chapter 17.

  pairs – takes a rectangular data matrix as input and computes all bivariate 
scatterplots; see Exhibits 1.4 and 20.8. 

  boxplot – takes a set of data on a continuous variable and makes a box-and-
whisker plot, optionally with a categorical variable that makes boxplots for 
each category alongside one another, with a common scale; see Exhibits 1.5 
and 1.8. 

  scale – takes a set of data on a continuous variable and standardizes it by 
subtracting its mean (i.e., centering) and dividing by its standard deviation 
(i.e., normalization); centering or normalization can be switched off; see 
Chapter 3. 

  dist – takes a rectangular data matrix as input and computes a distance matrix 
between the rows, with several choices of distance functions; for example, see 
Exhibit 4.5.

  cor – takes either two sets of data or a matrix of data with variables in columns 
and computes the single correlation in the former case, or the correlation 
matrix in the latter case; optionally computes Spearman rank correlations; see 
Exhibit 6.4.

  table – takes a single categorical and counts the frequencies in each category; 
if two categorical variables are given the function counts the frequencies in the 
cross-tabulation; see Exhibit 6.6.

  sample – takes a set of data and performs random sampling, without replace-
ment (this re-arranges, or shuffl es, the data set randomly) for permutation 
testing or with replacement for bootstrapping; see Chapter 18.
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Package ca

Package vegan

  hclust – takes a matrix of distance or dissimilarities (e.g., created by function 
dist) and performs hierarchical clustering; various clustering algorithms can 
be selected, including Ward clustering; see Chapters 7 and 8.

  kmeans – takes a rectangular matrix of data and the specifi ed number of 
groups and performs k -means nonhierarchical clustering; see Chapter 8.

  cmdscale – takes a matrix of distances or dissimilarities (e.g., created by func-
tion dist) and performs classical multidimensional scaling; see Chapter 9.

  lm – takes data on a response variable and one or more explanatory variables 
(or predictors) and performs least-squares linear regression; weights can be 
specifi ed for weighted least-squares regression; see Chapters 10–20.

  glm – takes data on a response variable and one or more explanatory variables 
(or predictors) and performs generalized linear modelling (GLM); several link 
functions and error distributions can be specifi ed, giving linear regression, 
Poisson regression and logistic regression, for example; see Chapters 10 and 18.

  prcomp and princomp – alternative functions for computing a principal com-
ponent analysis on a rectangular data matrix, where rows are assumed to be 
sampling units and columns to be variables; see Chapter 12.

  kruskal.test – takes a data set for a continuous variable and a grouping 
variable and performs the Kruskal-Wallis rank test of difference between groups 
(the nonparametric equivalent of a one-way ANOVA); see Chapter 17.

The ca package performs correspondence analysis (function ca) and multiple 
correspondence analysis (function mjca – this generalization of CA to multi-
variate categorical data, more used in the social sciences, is not discussed in this 
book). Various graphical options are available using function plot.ca, includ-
ing plotting with contribution coordinates and three-dimensional visualization 
of a CA solution with three principal axes, using function plot3d.ca, including 
interaction with 3d display such as rotation and zooming. The 3d graphics uses 
the R package rgl; see Chapter 13.

The vegan package performs a variety of multivariate analyses and includes 
most of the methods treated in this book, and aimed at biologists (specifi cally 
botanists, but the terminology can be equated to any biological application). 
Methods that are not included in R’s base package described above are compu-
tation of Bray-Curtis and Gower dissimilarities (function vegdist with options 
method="bray" or method="gower" respectively), various diversity measures 



 MULTIVARIATE ANALYSIS OF ECOLOGICAL DATA

306

Packages maptools, 
mapdata and 

mapproj

Package mgcv

Packages rpart 
and tree

Additional functions in 
supporting material

(function diversity), nonmetric multidimensional scaling (function metaMDS), 
canonical correspondence analysis (function cca), redundancy analysis (func-
tion rda – like cca but for continuous response variables) and various permuta-
tion tests (e.g., function permutest); see Chapters 15 and 20.

Packages maptools and mapdata provide functions that allow drawing of geo-
graphical maps, with mapdata containing the outlines of all the world’s land-
masses and several countries. The mapproj package performs a variety of map 
projections, using function mapproject, based on the latitude and longitude 
coordinates of a set of spatial locations. This is useful for obtaining coordinates 
on which Euclidean distances can be computed that approximate great circle 
distances; see Chapters 11 and 19. 

This package performs generalized additive modelling (GAM), using a function 
gam that functions very similarly to glm for generalized linear modelling. Ex-
planatory variables can be defi ned as smooth functions using the function s, for 
example s(x) for predictor x; see Chapters 18, 19 and 20.

These packages are alternatives for classifi cation and regression trees, also called 
recursive partitioning (hence rpart). They defi ne tree models in the same style as 
functions lm, glm and gam, as a response variable ~ sum of explanatory variables. 
Plotting the result using plot gives the tree plot; see Chapter 18.

Several additional functions that are used in our applications are given in the 
supporting material on www.multivariatestatistics.org.

  fuzzy.tri – takes a set of data on a continuous variable, with a specifi ed num-
ber of categories, and transforms to fuzzy categories using triangular member-
ship functions; hinges are by default defi ned as quantiles, but can be supplied 
by the user; see Exhibit 3.3. 

  chidist – takes a rectangular matrix of same-scale nonnegative data as input 
and computes the matrix of chi-square distances between rows or between col-
umns; see Exhibit 4.7. 

  jaccard – takes a rectangular matrix of presence-absence data (ones and 
zeros) and computes the matrix of Jaccard dissimilarities between rows or be-
tween columns (this can also be achieved in the vegan package using function 
vegdist with method="jaccard"); see Chapter 5 and Exhibit 7.1.
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low values that are mostly zeros, especially in species e  .....................  18

Exhibit 1.4:   Pairwise scatterplots of the three continuous variables in the lower 
triangle, showing smooth relationships (in brown, a type of moving 
average) of the vertical variable with respect to the horizontal one; 
for example, at the intersection of depth an pollution, pollution 
defi nes the vertical (“y”) axis and depth the horizontal (“x”) one. 
The upper triangle gives the correlation coeffi cients, with size of 
numbers proportional to their absolute values  ..................................  19

Exhibit 1.5:   Box-and-whisker plots showing the distribution of each continu-
ous environmental variable within each of the three categories of 
sediment (C = clay/silt, S = sand, G = gravel/stone). In each case the 
central horizontal line is the median of the distribution, the boxes 
extend to the fi rst and third quartiles, and the dashed lines extend 
to the minimum and maximum values  ...............................................  20

Exhibit 1.6:   Pairwise scatterplots of the fi ve species abundances, showing in each 
case the smooth relationship of the vertical variable with respect to 
the horizontal one; the lower triangle gives the correlation coeffi -
cients, with size of numbers proportional to their absolute values  ...  21

Exhibit 1.7:   Pairwise scatterplots of the fi ve groups of species with the three con-
tinuous environmental variables, showing the simple least-squares 
regression lines and coeffi cients of determination (R 2)  ....................  22

Exhibit 1.8:   Box-and-whisker plots showing the distribution of each count 
variable across the three sediment types (C = clay/silt, S = sand, G = 
gravel/stone) and the F -statistics of the respective ANOVAs  .............  23



 MULTIVARIATE ANALYSIS OF ECOLOGICAL DATA

308

Exhibit 2.1:   Schematic diagram of the two main types of situations in multivariate 
analysis: on the left, a data matrix where a variable y is singled out as 
being a response variable and can be partially explained in terms of 
the variables in X. On the right, a data matrix Y with a set of response 
variables but no observed predictors, where Y is regarded as being 
explained by an unobserved, latent variable f  ....................................  26

Exhibit 2.2:   The four corners of multivariate analysis. Vertically, functional and 
structural methods are distinguished. Horizontally, continuous and 
discrete variables of interest are contrasted: the response variable(s) 
in the case of functional methods, and the latent variable(s) in the 
case of structural methods  ...................................................................  27

Exhibit 3.1:   A classifi cation of data in terms of their measurement scales. A variable 
can be categorical (nominal or ordinal) or continuous (ratio or interval). 
Count data have a special place: they are usually thought of as ratio vari-
ables but the discreteness of their values links them to ordinal categorical 
data. Compositional data are a special case of ratio data that are compo-
sitional in a collective sense because of their “unit-sum” constraint  .........  34

Exhibit 3.2:   The natural logarithmic transformation x' = log(x) and a few Box-
Cox power transformations, for powers  = ½(square root), ¼(dou-
ble square root, or fourth root) and 0.05  ...........................................  37

Exhibit 3.3:   Fuzzy coding of a continuous variable x into three categories, using 
triangular membership functions. The minimum, median and maxi-
mum are used as hinge points. An example is given of a value x* just 
below the median being fuzzy coded as [0.22 0.78 0]  .......................  39

Exhibit 4.1:   Pythagoras’ theorem in the familiar right-angled triangle, and the 
monument to this triangle in the port of Pythagorion, Samos island, 
Greece, with Pythagoras himself forming one of the sides. © Michael 
Greenacre  .............................................................................................  48

Exhibit 4.2:  Pythagoras’ theorem applied to distances in two-dimensional space  49

Exhibit 4.3:  Pythagoras’ theorem extended into three dimensional space  ...........  50

Exhibit 4.4:  Standardized values of the three continuous variables of Exhibit 1.1  52

Exhibit 4.5:   Standardized Euclidean distances between the 30 samples, based on 
the three continuous environmental variables, showing part of the 
triangular distance matrix ....................................................................  53

Exhibit 4.6:   Profi les of the sites, obtained by dividing the rows of counts in Ex-
hibit 1.1 by their respective row totals. The last row is the average 
profi le, computed in the same way, as proportions of the column 
totals of the original table of counts  ...................................................  56



309

LIST OF EXHIBITS 

Exhibit 4.7:   Chi-square distances between the 30 samples, based on the biological 
count data, showing part of the triangular distance matrix ...............  57

Exhibit 5.1:  Illustration of the triangle inequality for distances in Euclidean space  62

Exhibit 5.2:   Bray-Curtis dissimilarities, multiplied by 100, between the 30 
samples of Exhibit 1.1, based on the count data for species a to e. 
Violations of the triangle inequality can be easily picked out: for 
example, from s25 to s4 the Bray-Curtis is 93.9, but the sum of the 
values “via s6” from s25 to s6 and from s6 to s4 is 18.6+69.2 = 87.8, 
which is shorter  ........................................................................................ 64

Exhibit 5.3:   Various dissimilarities and distances between pairs of sites (count 
data from Exhibit 1.1). B-C-raw: Bray Curtis dissimilarities on raw 
counts (usual defi nition and usage), chi2 raw: chi-square distances 
on raw counts, B-C rel: Bray-Curtis dissimilarities on relative counts, 
chi2 rel: chi-square distances on relative counts (usual defi nition and 
usage)  ....................................................................................................  65

Exhibit 5.4:   Graphical comparison of Bray-Curtis dissimilarities and chi-square 
distances for (a) raw counts, taking into account size and shape, and 
(b) relative counts, taking into account shape only  ...........................  66

Exhibit 5.5:   Two-dimensional illustration of the L1 (city-block) and L2 (Euclidean) 
distances between two points i and i': the L1 distance is the sum of 
the absolute differences in the coordinates, while the L2 distance is 
the square root of the sum of squared differences  ............................  68

Exhibit 5.6:   Presence–absence data of 10 species in 7 samples  .............................  69

Exhibit 5.7:   Distances between four stations based on the L1 distance between 
their standardized and rescaled values, as described above. The 
distances are shown equal to the part due to the categorical (CAT.) 
variables plus the part due to the continuous (CONT.) variables  .....  72

Exhibit 6.1:   (a) Two variables measured in three samples (sites in this case), viewed 
in three dimensions, using original scales; (b) Standardized values; (c) 
Same variables plotted in three dimensions using standardized values. 
Projections of some points onto the “fl oor” of the s2 – s3 plane are 
shown, to assist in understanding the three-dimensional positions of 
the points  ..............................................................................................  76

Exhibit 6.2:   Triangle of pollution and depth vectors with respect to origin (O) 
taken out of Exhibit 6.1(c) and laid fl at  .............................................  77

Exhibit 6.3:   Same triangle as in Exhibit 6.2, but with variables having unit length 
(i.e., unit variables. The projection of either variable onto the direc-



 MULTIVARIATE ANALYSIS OF ECOLOGICAL DATA

310

tion defi ned by the other variable vector will give the value of the 
correlation, cos(). (The origin O is the zero point – see Exhibit 
6.1(c) – and the scale is given by the unit length of the variables.) ..  78

Exhibit 6.4:   Correlations and associated distances between the three continuous 
variables of Exhibit 1.1: fi rst the regular correlation coeffi cient on 
the continuous data, and second the rank correlation  ......................  80

Exhibit 6.5:   Chi-square distances and Bray-Curtis dissimilarities between the fi ve 
species variables, in both cases based on their proportions across the 
samples (i.e., removing the effect of different levels of abundances 
for each species). The two sets of values are compared in the scat-
terplot  ...................................................................................................  81

Exhibit 6.6:   Cross-tabulation of depth, categorized into three categories, and 
sediment type, for the data of Exhibit 1.1  ..........................................  82

Exhibit 6.7:   Estimated permutation distribution for the correlation between 
pollution and depth (data from Exhibit 1.1), for testing the null 
hypothesis that the correlation is zero. The observed value of –0.396 
is shown, and the permutation test consists in counting how many 
of the simulated correlations have an absolute value greater than or 
equal to 0.396  .......................................................................................  84

Exhibit 7.1:   Dissimilarities, based on the Jaccard index, between all pairs of seven 
samples in Exhibit 5.6. Both the lower and upper triangles of this 
symmetric dissimilarity matrix are shown here (the lower triangle is 
outlined as in previous tables of this type)  .........................................  90

Exhibit 7.2:   Dissimilarities calculated after B and F are merged, using the “maxi-
mum” method to recompute the values in the row and column la-
belled (B,F)  ...........................................................................................  91

Exhibit 7.3:   First two steps of hierarchical clustering of Exhibit 7.1, using the 
“maximum” (or “complete linkage”) method  ....................................  91

Exhibit 7.4:   Dissimilarities calculated after A and E are merged, using the “maxi-
mum” method to recompute the values in the row and column la-
belled (A,E)  ...........................................................................................  91

Exhibit 7.5:   Dissimilarities calculated after C and G are merged, using the “maxi-
mum” method to recompute the values in the row and column la-
belled (C,G)  ..........................................................................................  92

Exhibit 7.6:   The third and fourth steps of hierarchical clustering of Exhibit 7.1, 
using the “maximum” (or “complete linkage”) method. The point at 
which objects (or clusters of objects) are joined is called a node  .....  92



311

Exhibit 7.7:   Dissimilarities calculated after C and G are merged, using the “maxi-
mum” method to recompute the values in the row and column la-
belled (C,G)  ..........................................................................................  92

Exhibit 7.8:   The fi fth and sixth steps of hierarchical clustering of Exhibit 7.1, 
using the “maximum” (or “complete linkage”) method. The dendro-
gram on the right is the fi nal result of the cluster analysis  ................  93

Exhibit 7.9:   Complete linkage cluster analyses of similarities between species: (a) 
r, the correlation coeffi cient between species); (b) Jaccard similarity 
index between species. The R function hclust which calculates the 
dendrograms places the object (species) labels at a constant distance 
below its clustering level  ......................................................................  96

Exhibit 7.10:  Complete linkage cluster analyses of the standardized Euclidean 
distances of Exhibit 4.5  ........................................................................  97

Exhibit 8.1:   Representation of the 30 values of pollution (see Exhibit 1.1), coded 
for the three sediment types. The means (to one decimal place) of 
the three subsets of data are indicated, as well as the overall mean 
(compare this graphical representation with that of the middle plot 
of Exhibit 1.5, where the medians and quartiles are displayed)  .......  100

Exhibit 8.2:   Ward clustering of the 30 sites in Exhibit 1.1 according to the single 
variable “pollution”, showing the cutpoint for a 3-cluster solution 
(partitioning of 9; 14 and 7 values, shown by vertical dashed lines), 
with between-to-total sum of squares ratio, BSS/TSS = 0.825. The 
sites are labelled by their pollution values. The curly brackets show 
the globally optimal 3-cluster solution (partitioning of 14; 13 and 3 
values) for which BSS/TSS = 0.867  .....................................................  102

Exhibit 8.3:   Ward clustering of the 30 sites in Exhibit 1.1 according to the three 
variables depth, pollution and temperature, using standardized Eu-
clidean distances (Exhibit 4.5). Cuts are shown which give three and 
four clusters  ..........................................................................................  103

Exhibit 9.1:   Classical multidimensional scaling solution in two dimensions of the 
matrix D, using the R function cmdscale  .........................................  110

Exhibit 9.2:   Classical multidimensional scaling solution in two dimensions of the 
matrix of chi-square distances of Exhibit 4.7. The percentages of 
variance on the horizontal and vertical axes are 52.4% and 22.0% 
respectively  ...........................................................................................  112

Exhibit 9.3:   Classical multidimensional scaling solution in two dimensions of the 
matrix of Jaccard dissimilarities of Exhibit 7.1.The percentages of 
variance on the horizontal and vertical axes are 56.5% and 32.5%

LIST OF EXHIBITS 



 MULTIVARIATE ANALYSIS OF ECOLOGICAL DATA

312

         respectively (expressed relative to the four-dimensional Euclidean 
part of the variance)  ..........................................................................  114

Exhibit 9.4:    Ordering of the original Jaccard dissimilarities, from lowest to high-
est, and ordering of the interpoint distances in the metric MDS of 
Exhibit 9.3  ...........................................................................................  115

Exhibit 9.5:    Nonmetric MDS of the Jaccard dissimilarities of Exhibit 7.1. The 
samples agglomerate into three groups, identical to the clustering 
in Exhibit 7.8  ......................................................................................  116

Exhibit 9.6:    The horizontal axis shows the observed dissimilarities from Exhibit 
7.1, and the vertical axes show the fi tted interpoint distances from 
Exhibits 9.3 and 9.5 respectively. In both plots the closest fi tting 
monotonically increasing function is shown. The vertical scale of 
the fi rst seven points in the nonmetric MDS (see lower plot) is ex-
panded considerably to show the small lack of fi t for those points  ..  117

Exhibit 9.7:    The MDS maps of Exhibits 9.3 and 9.5 with the species added at the 
average positions of the samples that contain them  ........................  119

Exhibit 9.8:    The eigenvalues in the classical MDS of the Bray-Curtis dissimilarity 
indices of Exhibit 5.2, showing positive eigenvalues in green and 
negative ones in brown  ......................................................................  120

Exhibit 9.9:    Classical MDS map (upper) and nonmetric MDS map (lower) of 
the Bray-Curtis dissimilarities of Exhibit 5.2  .....................................  121

Exhibit 9.10:   Nonmetric MDS solution (right hand map in Exhibit 9.9) with 
species a to e added by weighted averaging of sample points, and 
sediment types C, S and G by averaging  ............................................  122

Exhibit 10.1:   Regression plane defi ned by Equation (10.4) for standardized re-
sponse d* and standardized explanatory variables pollution* and 
depth*. The view is from above the plane  ........................................  129

Exhibit 10.2:   Another view of the regression plane, showing lines of equal height 
(dashed white lines in the plane) and their projection onto the 
depth–pollution plane (red dashed lines in the darker “shadow” 
of the plane). The view is now from below the regression plane 
but above the depth–pollution plane. The short solid white line in 
the regression plane shows the direction of steepest ascent, and its 
projection down onto the depth–pollution plane is the gradient 
vector  ............................................................................................  130

Exhibit 10.3:   Regression plane shown as contour lines in the plane of the two 
explanatory variables, depth and pollution, both standardized. In 



313

LIST OF EXHIBITS 

(a) the contours are shown of the standardized response variable 
d*, where the units are standard deviations (sd’s) and the contour 
through the origin corresponds to mean 0 on the standardized 
scale, i.e. the mean on the original abundance scale. In (b) the con-
tours are shown after unstandardizing to the original abundance 
scale of d. The sample shown in (b) corresponds to a height of 4.2 
on the regression plane  .....................................................................  131

Exhibit 10.4:   Regression biplot of the fi ve species with respect to the predictors 
depth and pollution  ...........................................................................  132

Exhibit 10.5:   (a) Logistic regression biplot of the three sediment categories and 
(b) Poisson regression biplot of the fi ve species as predicted by 
depth and pollution. In each biplot the gradient vectors are shown 
connected to the origin. In addition, the positions of the sediment 
categories and the species as supplementary points are given in 
their respective biplots by their labels in parentheses  .....................  134

Exhibit 10.6:   Fuzzy coding of the species, showing for the fuzzy categories (a) 
their regressions on (standardized) depth and pollution, and (b) 
their weighted average positions with respect to the samples (i.e., 
supplementary points)  .......................................................................  136

Exhibit 10.7:   Canonical correlation biplot of the fi ve species with respect to the 
predictors depth, pollution and temperature ....................................  137

Exhibit 11.1:   Locations of samples in “Barents fi sh” data set. At each sampling 
point the data consist of the abundances of 30 fi sh species, the 
bottom depth, the temperature and the spatial position (latitude 
and longitude). The stations have been colour coded into ap-
proximately neighbouring groups, using great circle distances, for 
comparison with the MDS map based on the abundances (coming 
in Exhibit 11.3)  ..................................................................................  140

Exhibit 11.2:   Part of the “Barents fi sh” data set: 89 samples (rows), 4 environmen-
tal variables and 30 fi sh species (columns) ........................................  140

Exhibit 11.3:   Nonmetric MDS of the Bray-Curtis dissimilarities in community 
structure between the 89 samples, with the same colour coding as 
in the map of Exhibit 11.1  .................................................................  141

Exhibit 11.4:   Scatterplot of inter-sample geographical (great circle) distances and 
distances in Exhibit 11.3. Spearman rank correlation = 0.378 ...........  142

Exhibit 11.5:   Gradient vectors of the species (from Poisson regressions) and of 
the environmental variables (from linear regressions) when regres-
sion is performed on the dimensions of Exhibit 11.3  ......................  143



 MULTIVARIATE ANALYSIS OF ECOLOGICAL DATA

314

Exhibit 11.6:   Nonlinear contours of the four environmental variables showing 
their relationship with the two MDS dimensions  .............................  145

Exhibit 11.7:   Fuzzy categories of the four environmental variables, positioned at 
their respective weighted averages of the samples. The sample or-
dination is given in Exhibit 11.3, and linear relationships of species 
and variables in Exhibit 11.5  .............................................................  146

Exhibit 11.8:   Coding the latitude–longitude interaction into fuzzy categories: 
for example, each is coded into three fuzzy categories and then 
all pairwise products of the categories are computed to give nine 
categories coding the interaction. For example, the point with 
latitude 71.8ºN and longitude 41ºE has fuzzy coding [0.28 0.72 0] 
and [0 0.6 0.4] respectively. The fi rst set is reversed to give values 
from north to south, and all combinations of the fuzzy values give 
nine categories coding the eight compass points and a central 
location  ..............................................................................................  147

Exhibit 11.9:   The positions of the nine fuzzy categories coding the interaction be-
tween latitude and longitude. Labels are the eight compass points, 
and C for central position  ..................................................................  148

Exhibit 12.1:   Annual climate data for years 1981-2003, consisting of 17 climate in-
dices and meteorological variables. Part of the 23  17 data matrix 
is shown  ...............................................................................................  152

Exhibit 12.2:   MDS map of the 23 years according to the standardized Euclid-
ean distances between them, across 17 climate variables. Variance 
explained by the two dimensions is 27.8% and 17.8%, totalling 
45.6%  ..................................................................................................  154

Exhibit 12.3:   Regression relationships of the variables with the two dimensions 
of the MDS map in Exhibit 12.2. Superimposing this confi guration 
on Exhibit 12.2 would give a biplot of the years and the variables. 
This would be the so-called row-principal biplot, explained on the 
following page  ....................................................................................  155

Exhibit 12.4:   Column-principal biplot of the climate data. Here the year points 
have coordinates that are standardized, while the sum of squares of 
the variable points on each dimension is proportional to the vari-
ance explained  ...................................................................................  157

Exhibit 12.5:   Plot of the variables as in Exhibit 12.4, that is as standardized re-
gression coeffi cients (i.e., principal coordinates in this PCA, which 
are the correlations between the variables and the dimensions), all 
lying within the unit circle. The closer the variable vector is to the 
unit circle, the better it is explained by the dimensions. The angle 



315

LIST OF EXHIBITS 

cosines between the vectors also approximate the correlations be-
tween the variables  .............................................................................  159

Exhibit 12.6:   Scree plots of the eigenvalues for (a) the climate data matrix; (b) a 
random data matrix  ...........................................................................  160

Exhibit 13.1:   Unweighted MDS (a) and weighted MDS (b) of the chi-square dis-
tances between sampling sites, for the “Barents fi sh” data. Colour 
coding as in Chapter 11  .....................................................................  167

Exhibit 13.2:   Row-principal CA biplot (asymmetric map) of “Barents fi sh” data. 
The sample profi les are shown as well as unit profi les for the species. 
There is a barycentric (weighted average) relationship between the 
samples and species points. Explained variance is 47.4%  ..................  168

Exhibit 13.3:  Scree plot of eigenvalues in the CA of the “Barents fi sh” data .........  170

Exhibit 13.4:   Three-dimensional view of the samples and species, row principal 
biplot scaling. For readers of the electronic version: To see the rota-
tion of these points around the vertical (second) axis, click on the 
display ..................................................................................................  171

Exhibit 13.5:   Species in contribution coordinates. Combining this confi gura-
tion with the sample points in Exhibit 13.2 would give the two-
dimensional contribution biplot. The species that contribute more 
than average to an axis are shown in larger font (contributions to 
all three signifi cant dimensions are taken into account here – the 
species Hi_pl contributes highly to the third dimension). Those 
near the origin in tiny font are very low contributors to the CA 
solution  ...............................................................................................  172

Exhibit 13.6:   Contribution biplot of the “Barents fi sh” data, retaining only the 
nine species with high contributions to the three-dimensional so-
lution. The sample and species points are shown separately. The 
Procrustes correlations with the confi gurations obtained in Exhibits 
13.2 (sample points) and 13.5 (species points), using all 30 species, 
are 0.993 and 0.997 respectively  ........................................................  173

Exhibit 13.7:   Symmetric map of “Barents fi sh” data set, both samples and species 
in principal coordinates, with higher than average contributing 
samples and species in larger symbols and font sizes  .......................  175

Exhibit 14.1:   Compositional data matrix (a) and a subcomposition (b), after 
eliminating the last component .........................................................  178

Exhibit 14.2:   Correlations between the columns of the compositional data matri-
ces in Exhibit 14.1  ..............................................................................  178



 MULTIVARIATE ANALYSIS OF ECOLOGICAL DATA

316

Exhibit 14.3:   Logarithms of ratios between all pairs of components and the root 
mean sum of squares of the log-ratios as a measure of proximity  ...  179

Exhibit 14.4:   Part of 42  25 data matrix of fatty acid compositions, expressed as 
percentages: each set of 25 values in the rows sums to 100%. The mean 
and standard deviation of each column is given, as well as the mean of 
the squares of log-ratios for pairs of samples in each column  .............  180

Exhibit 14.5:   Row-principal LRA biplot of “fatty acid” data set. 84.7% of the log-
ratio variance is explained. The seven higher-than-average contrib-
uting fatty acids are shown in larger font. Notice the different scales 
for sample points and fatty acid points  .............................................  182

Exhibit 14.6:   Scatterplot of two log-ratios suggested by the biplot in Exhibit 14.5, 
perfectly separating the three groups of copepods. A third log-ratio 
combining the two describes a diagonal axis in the plot  .................  183

Exhibit 14.7:   Row-principal CA biplot (asymmetric map) of “fatty acid” data. 
Explained variance is 79.3%  ..............................................................  184

Exhibit 14.8:   Actual compositional value (as a percentage) of fatty acid 18:00 
and estimated values from the CA biplot of Exhibit 14.7. The 
dashed line represents perfect reconstruction. The correlation is 
0.928, thus the variance explained in 18:00 by the two dimensions 
is 0.9282 = 0.861, i.e., 86.1%  ...............................................................  185

Exhibit 14.9:   CA of the “complete fatty acid” data set of 42 copepods and 40 fatty 
acids. The row-principal biplot is shown and the explained variance 
in this two-dimensional solution is 74.2%. Compared to Exhibit 
14.7, the additional 15 fatty acids are coloured in gray  ...................  186

Exhibit 14.10:  Scatterplot of fatty acids 16:1(n-7) and 16:1(n-9) of the “complete 
fatty acids” data set, showing that 16:1(n-7) is the more important 
one for separating out group C of copepods. The rare fatty acid 
16:1(n-9) has only three small positive percentages, coinciding with 
three copepods in group C  ................................................................  187

Exhibit 14.11:  CA contribution biplot of “complete fatty acid” data set. The six 
high contributing fatty acids stand out from the rest  ......................  187

Exhibit 15.1:   CA biplot of the biological data in the “bioenv” data set, with 
samples in principal coordinates and species in contribution co-
ordinates. The one discrete and three continuous environmental 
variables are shown according to their regression coeffi cients and 
the discrete variable’s categories are additionally shown (in black) 
at the centroids of the samples in the corresponding categories  ....  191



317

LIST OF EXHIBITS 

Exhibit 15.2:   Canonical correspondence analysis triplot of “bioenv” data. The 
row-principal scaling with species in contribution coordinates is 
again shown, as well as the environmental variables regressed onto 
the ordination axes. Percentages of inertia explained are with re-
spect to the restricted inertia  .............................................................  193

Exhibit 15.3:   Weighted averages of the environmental variables, using the rela-
tive abundances of each species across the samples as weights  .......  195

Exhibit 15.4:   CCA of “Barents fi sh” data, showing highly contributing species in 
larger font and the two continuous environmental variables accord-
ing to their regressions on the axes. The 89 sampling sites are not 
shown, but their averages in the eight regional groupings are  .......  196

Exhibit 15.5:   CCA triplot of “Barents fi sh” data, with environmental variables 
coded into fuzzy categories. Again, sample sites are not shown 
(see Exhibit 15.6) but the weighted averages of all the fuzzy coded 
categories are, including the nine fuzzy spatial categories (eight 
compass points and central category)  ...............................................  197

Exhibit 15.6:   Positions of 89 samples in the CCA of Exhibit 15.5. Each category 
is at the weighted average of the sample positions, using the fuzzy 
values as weights. The positive values for category d4 are shown 
numerically at the respective sample positions .................................  198

Exhibit 16.1:   Schematic explanation of the decomposition of total variance into 
parts. First, variance is decomposed from largest to smallest parts 
(1, 2,…) along successive principal axes. Then each  can be 
decomposed into contributions either from the rows or from the 
columns. These part contributions to each axis provide diagnostics 
for interpretation of the results  .........................................................  206

Exhibit 16.2:   Tabulation of the contributions of fi ve species in data set “bioenv” 
to the four principal inertias of CA: the columns of this table sum to 
the eigenvalues (principal inertias) and the rows sum to the inertia 
of each species  ....................................................................................  207

Exhibit 16.3:   Contributions of the species to the principal inertias and the total in-
ertia (Exhibit 16.2 re-expressed as values relative to column totals)   207

Exhibit 16.4:   Contributions of the dimensions to the inertias of the species (Ex-
hibit 16.2 re-expressed as values relative to row totals). In the last 
row the principal inertias are also expressed relative to the grand 
total  .....................................................................................................  208

Exhibit 16.5:   (a) Raw contributions to four dimensions by the species in the CCA 
of the “bioenv” data (see Chapter 15). The row sums are the iner-



 MULTIVARIATE ANALYSIS OF ECOLOGICAL DATA

318

tias of the species in the restricted space, while the column sums 
are the principal inertias in the restricted space. (b) The contribu-
tions relative to their column sums (which would be the basis of the 
CCA contribution biplot. (c) The contributions relative to their row 
sums (i.e., squared correlations of species with axes)  ......................  209

Exhibit 16.6:   Squared correlations of each predictor variable with each CCA ordi-
nation axis. In computing the correlations the weights of the cases 
(sites in this example) are used. The values can be accumulated 
across the columns of this table to give proportions of variance 
explained by sets of dimensions  ........................................................  210

Exhibit 16.7:   Improved squared correlations of sediment categories with the four 
ordination axes of the CCA, considering them as supplementary 
row points that aggregate the species abundances in the sites cor-
responding to each category ..............................................................  210

Exhibit 17.1:   Permutation distribution for test of difference in means of two 
populations based on samples of size 22 and 8. Of the 10,000 per-
mutations 29 lie outside the limits of  2.48, hence the estimated 
p -value is 0.0029  .................................................................................  215

Exhibit 17.2:   Bootstrap distributions of the mean pollution for the gravel and 
clay/sand groups, based on 22 samples and 8 samples respectively, 
drawn with replacement 10,000 times from the original data. The 
right hand histogram is the bootstrap distribution of the differ-
ences, showing the limits for a 95% confi dence interval  .................  215

Exhibit 17.3:   Permutation distribution based on 9,999 estimates of the correla-
tion between depth and pollution, under the null hypothesis of no 
correlation, together with the observed value of –0.396. The values 
 0.396 are indicated – there are 315 values equal to or more ex-
treme, hence the p -value is 0.0315  ....................................................  216

Exhibit 17.4:   Bootstrap distribution of the correlation coeffi cient, showing the 
values for which 2.5% of the distribution is in each tail  ..................  217

Exhibit 17.5:   Three-dimensional views of the 30 samples in the unstandardized 
and standardized Euclidean space of the three variables. Clay, sand 
and gravel samples are colour coded as blue, red and green respec-
tively, and their group average positions denoted by C, S and G. 
Since depth has a much higher range of numerical values than the 
other two variables, it would dominate the computation of inter-
group difference if the data were not standardized in some way  ....  218

Exhibit 17.6:   Permutation distribution of measure of intergroup difference in 
standardized multivariate space. There are 32 of the simulated val-



319

LIST OF EXHIBITS 

ues greater than or equal to the observed value of 6.303, hence the 
p -value is 32/10,000 = 0.0032  ............................................................  219

Exhibit 17.7:   Permutation distributions for measure of intergroup difference 
based on single variables. The observed difference is indicated each 
time and the p-values are 0.0032, 0.0084 and 0.7198 respectively  .......  220

Exhibit 17.8:   Permutation distributions for measure of pairwise intergroup dif-
ferences based on depth and pollution. The observed difference is 
indicated each time and the p -values are 0.5845, 0.0029 and 0.0001 
respectively ..........................................................................................  222

Exhibit 17.9:   Scatterplot of percentages of variance on the fi rst two dimensions 
of 10,000 PCAs, one of which is based on the observed data set 
“climate” and the other 9,999 are computed using random matrices 
obtained by permutation  ...................................................................  224

Exhibit 17.10:  Permutation distribution of node 4 levels, corresponding to a three-
cluster solution, for the presence-absence data of Exhibit 5.6 – see 
the dendrogram on the right of Exhibit 7.8. There are 26 permuta-
tions (out of 10,000) that are less than or equal to 0.429, the value 
of the level in the dendrogram  .........................................................  226

Exhibit 18.1:   Many observations of a response variable y for different integer 
values of a predictor x. Every set of y values for a given x is a sam-
ple conditional distribution, with a mean and variance, and the 
red trajectory links the conditional sample means. Multiple linear 
regression assumes that the data are from normal distributions con-
ditional on x (a few are shown in green), with conditional means 
modelled as a straight line and with constant variances  ..................  230

Exhibit 18.2:   A sample of 50 observations of the response y and predictor x, show-
ing the estimated regression line  ......................................................  231

Exhibit 18.3:   Poisson regression, showing some observed response count data, 
three examples of the conditional distributions for x = 50, 75 and 
100, assumed to be Poisson, shown in green, with the dashed line 
showing the estimated regression relationship of the mean, where 
log means is modelled as a linear function of the predictor  ...........  233

Exhibit 18.4:   Logistic regression, showing some observed dichotomous data, 
three examples are shown in green of the conditional probabilities 
of a 1 and a 0, for x = 50, 75 and 100 (remember again that these 
probability distributions are shown on their sides, in this case 
there are only two probabilities for each distribution, the prob-
ability of a 0 and the probability of a 1). The dashed line shows the 
estimated regression of the means, in this case probabilities, where 



 MULTIVARIATE ANALYSIS OF ECOLOGICAL DATA

320

the logits of the probabilities are modelled as linear functions of 
the predictor  ......................................................................................  234

Exhibit 18.5:   A scatterplot of a continuous response y and a predictor x, showing 
a scatterplot smoother (brown line) which suggests a nonlinear 
relationship. The estimated quadratic relationship is shown by a 
dashed curve  .......................................................................................  236

Exhibit 18.6:   Same data as in Exhibit 18.5, with the estimated quadratic relation-
ship in gray, and the relationship according to (18.5) shown by 
black dashed lines  ..............................................................................  237

Exhibit 18.7:   Linear regression relationships (18.6) between diversity and tem-
perature that depend on the depth (illustrated for three values of 
depth), showing an interaction effect (regression lines with differ-
ent slopes). If the interaction effect were absent, the three lines 
would be parallel and the effect of temperature would be the same 
(i.e., not contingent on depth)  .........................................................  239

Exhibit 18.8:   Generalized additive modelling of diversity as smooth functions of 
depth and temperature: depth is diagnosed as having a signifi cant 
quadratic relationship, while the slightly increasing linear relation-
ship with temperature is non-signifi cant. Both plots are centred verti-
cally at mean diversity, so show estimated deviations from the mean. 
Confi dence regions for the estimated relationships are also shown   240

Exhibit 18.9:   Contour plot (upper) and perspective plot (down) of the diag-
nosed interaction regression surface of depth and temperature, 
predicting the deviations from mean diversity. The concave rela-
tionship with depth is clearly seen as well as the slight relationship 
with depth. The difference between the model with or without 
interactions is, however, not signifi cant  ............................................  242

Exhibit 18.10:  Classifi cation tree model for predicting the presence of polar cod. 
The one branch which predicts their presence gives the rule: tem-
perature < 1.6 ºC and depth  306 m. This rule correctly predicts 
the presence of polar cod in 16 samples but misclassifi es 5 samples 
as having polar cod when they do not  ..............................................  243

Exhibit 18.11:  Comparison of misclassifi cation rates for the classifi cation tree of 
Exhibit 18.10, compared to that for logistic regression, using the 
same predictors. The classifi cation tree correctly predicts presence 
and absence in 79 of the 89 samples, while logistic regression cor-
rectly predicts 74  ................................................................................  244

Exhibit 18.12:  Regression tree predicting fi sh diversity from latitude and longi-
tude of sample positions. The terminal nodes give the average di-



321

LIST OF EXHIBITS 

versity of the samples that fall into them. This tree yields the spatial 
classifi cation of the sampling region given in Exhibit 18.13  ...........  244

Exhibit 18.13:  Map of Barents Sea showing the locations of the 89 sampling sites 
(see Exhibit 11.1) and the slicing up of the region according to the 
regression tree of Exhibit 18.12, and the average fi sh diversities in 
each block. Most of the slices divide the latitudes north to south, 
with just two east-west divisions of the longitudes. Dark locations 
show the 21 sites where polar cod were found  ...............................  245

Exhibit 19.1:   (a) Actual number of sample taken in three regions over a three-
year period, with overall proportions of samples in each region over 
the whole period. (b) Expected number of samples if in each year 
sampling had taken place in accordance with the overall propor-
tions. (c) The weights computed by dividing the values in table (b) 
by those in table (a)  ...........................................................................  250

Exhibit 19.2:   Sums of fuzzy-coded regional categories for each year and for 
all years. Columns are the eight compass points and a central 
region (C)  ..........................................................................................  252

Exhibit 19.3:   Weights for data according to year and fuzzy region  .......................  252

Exhibit 19.4:   Correspondence analysis contribution biplot of the “Barents fi sh 
trend” data set. The upper plot shows the active data, the samples 
and species (high-contributing species are shown with bigger 
labels).The lower plot shows the centroids of all the categories, 
linking together categories of ordinal variables. 32.6% of the total 
inertia of 4.017 is explained by these two fi rst dimensions  ..............  254

Exhibit 19.5:   Canonical correspondence analysis of the “Barents fi sh trends” 
data. The format is the same as Exhibit 19.4, with the samples and 
species plotted in the upper biplot and an enlarged version of the 
category centroids in the lower plot. 58.5% of the restricted inertia 
is explained by these two dimensions  ...............................................  256

Exhibit 19.6:   Temporal trajectories in regional categories north, east, south and 
west. Time and regional centroids are at (weighted) averages of the 
corresponding category points: for example, S is at the average of 
the six points making up the trajectory for south, while 2004 is at 
the average of all the 2004 points (for all nine regions, only four 
shown here)  ...................................................................................257

Exhibit 19.7:   In descending order, the proportion of inertia explained, R2, and 
adjusted R2, of the fi ve categorical environmental variables; k is the 
number of categories  .........................................................................  257



 MULTIVARIATE ANALYSIS OF ECOLOGICAL DATA

322

Exhibit 19.8:   Scree plot of the inertias of successive dimensions in the con-
strained space of the CCA of the “Barents fi sh trends” data. The fi rst 
three dimensions clearly stand out from the rest  .............................  258

Exhibit 19.9:   Partitioning the total inertia in the abundance data into parts due 
to the spatial variables and other variables separately, and their part 
in common  .........................................................................................  259

Exhibit 20.1:   Part of the trait matrix coding the various functional character-istics 
of Barents Sea fi sh species  .................................................................  262

Exhibit 20.2:   CA of the trait matrix, part of which is shown in Exhibit 20.1. Traits 
are shown in principal coordinates in (a) and the fi sh species in 
principal coordinates in (b). 27.4% of the inertia is displayed  .........  264

Exhibit 20.3:   Hierarchical clustering of fi sh based on distances between fi sh, 
showing boxes indicating eight clusters  ............................................  265

Exhibit 20.4:   CA of the trait matrix aggregated according to the fi sh groups (G1 
to G8) that were defi ned in Exhibit 20.3. The solution optimizes 
the group differences, although the basic confi guration is similar 
to that of Exhibit 20.2 which optimized the fi sh differences. The 
functional traits are displayed in contribution coordinates in (a). 
52.4% of the inertia between fi sh groups is displayed  .....................  266

Exhibit 20.5:   (a) Histogram of the group-based FDs defi ned as Shannon-Weaver 
diversities on the aggregated abundances in 600 samples for eight 
functional groups; (b) Histogram of the tree-based FDs using pres-
ences only and summing the branches in the dendrogram for the 
subset of observed species, normalized with respect to the FD of the 
species pool; (c) Scatterplot of the two functional diversity indices 
(Spearman rho correlation = 0.300)  .................................................  268

Exhibit 20.6:   Permutation distribution of the species pool FD, under the null hy-
pothesis of no relationship between the traits. The observed value 
of 20.31 is the smallest and the associated p -value, based on 1,000 
permutations, is thus p = 0.001  ..........................................................  269

Exhibit 20.7:   Scatterplots of the two FD measures versus species richness (SR, 
the number of species in sample), showing the modelled quadratic 
relationships. The horizontal axis is marked with the value of SR, 
and below the number of sites with the corresponding value)  .......  270

Exhibit 20.8:   Scatterplots of the variables depth, slope, temperature, longitude 
and latitude with one another as well as with the two measures of 
functional diversity, based on the functional groups (FDgroup) 
and on the dendrogram (FDtree). Spearman rank correlations are 



323

LIST OF EXHIBITS 

shown in the upper triangle, with font size proportional to their 
absolute values . ...................................................................................  271

Exhibit 20.9:   Contour plots of the spatial component of functional diversity ac-
cording to the two defi nitions (fi rst row is the tree-based FD, second 
row is group-based FD) using two modelling methods (in columns, 
fi rst column is using fuzzy spatial categories, second is using GAM 
modelling). The northern border of Norway with Russia and the 
southern tip of Svalbard situate the region of interest  ....................  272

Exhibit 20.10:  Plot of regression coeffi cients for each year showing average esti-
mated year effects for the residuals of (tree-based) functional diver-
sities from the spatial model, with p -values for testing differences 
compared to the zero mean of the residuals (dashed line)  ............  273

Exhibit 20.11:  GAM of tree-based FD as a smooth function of depth (p = 0.0001) 
and temperature (p  0.0001). To model these effects parametrically 
depth would be modelled as a quadratic and temperature linear  .... 274



 MULTIVARIATE ANALYSIS OF ECOLOGICAL DATA

324



325

Index

 Akaike information criterion, 235, 239, 241, 
272E, 273

AIC, see Akaike information criterion
analysis of covariance, 30
 of variance, 21, 23E, 28, 30, 99-101, 221, 

283, 305
ANCOVA, see analysis of covariance
ANOVA, see analysis of variance
association, test between two groups of vari-

ables, 221, 223, 227
 test between two variables, 82, 216, 217
average profi le, 55, 56E

barycentre, 169
barycentric relationship, 169
biplot, 10, 146, 155E, 156, 159, 161, 165, 

166, 175, 176, 181-183E, 184, 186 
 axis, 129, 130, 132, 143, 176, 181, 184, 

188, 192
 column-principal, 156, 157E, 161, 174
 contribution, 170-174, 177, 186, 187, 190, 

208, 209E, 211, 254E
 log-ratio, 181, 182, 188
 multidimensional scaling, 139-149
 regression, 127, 132-134E, 135, 137E-139, 

143, 190, 193
 row-principal, 155E, 156, 161, 168E, 

170, 171E, 174, 182E, 184E, 186E
 scaling, 171E
 support of, 135, 138, 190
Bonferroni correction, 20
bootstrap distribution, 215E-217E

bootstrapping, 215, 217, 226, 280, 288, 289
Box-and-whisker plot, 15, 19-20E, 23E, 24 

100, 304
Box-Cox transformation, 37E, 38, 42, 183, 

280
boxplot, 21, 304 
Bray-Curtis dissimilarity, 61-64E, 67, 73, 80, 

118, 120E, 141E, 166, 281, 284, 305
  between count variables, 81E
  compared to chi-square distance, 64-

66, 141
BSS, see sum of squares, between-group

CA, see correspondence analysis
CCA, see canonical correspondence analysis 
canonical correlation analysis, 135-138, 190
 correspondence analysis, 31, 32, 189-199, 

203, 209E-211, 221, 225, 256E, 258E, 
259, 288

   as analysis of weighted averages, 
194-195

   as discriminant analysis, 197-199
   of reweighted data, 253-255
   partial, 194, 199, 258, 288
categorical variable, 16-19, 24, 28-31, 38, 39, 

42, 57, 68, 72, 80-82, 85, 133, 282, 304
chi-square distance, 55-58, 63-68, 73, 81E, 

112E, 165, 166, 170, 174, 176, 263, 281, 
306

  between count variables, 80
  compared to Bray-Curtis dissimilarity, 

64-66, 141

Note: E after the page number indicates a reference to an Exhibit.



 MULTIVARIATE ANALYSIS OF ECOLOGICAL DATA

326

  on raw counts, 55, 63-66
city-block distance, 61, 67, 68E, 71, 73
classifi cation, 28, 29, 34E, 244E
 tree, 241, 243, 244
closure, 35, 188
clustering, 29, 89, 94, 95, 101, 104, 105, 

107, 114-116E, 225, 227, 275, 283, 289
 average linkage, 93, 94, 97, 104
 comparing two solutions, 104
 complete linkage, 94, 96E, 97, 104, 263, 

282
 hierarchical, 89-93E, 95-99, 102, 105, 

107, 225, 263-265E, 275, 282, 283, 305
 k -means, 99, 104-107, 283
 nonhierarchical, 99, 104-106, 282, 283, 

305
 of correlations, 95
 single linkage, 94, 97
 Ward, 99, 102-107, 263, 283, 305
 weighting the objects, 106
complete linkage, 94, 96E, 97, 104, 262, 282
composition, 177-180E, 280
compositional data, 26, 34E, 35, 139, 168, 

181, 185, 188, 194, 280, 281
  zeros in, 185-187
conditional distribution, 230-233E, 245, 290
 mean, 230E-234, 269, 290
confi rmatory data analysis, 33-36
continuous variable, 17-19E, 24, 27-31, 34, 

39E-43, 51, 52E, 55, 70-72, 80E, 99, 143-
149, 204, 262, 282, 304-306

contour, 129-132, 138, 144, 145E, 241, 
242E, 272E

 nonlinear, 144, 145, 149
contribution, 206-208
 biplot, 170-174, 186-188, 190, 208, 209-

211, 254E
 coordinates, 171, 172E, 174, 176, 191E, 

193E, 208, 211, 266E, 286, 305
 in constrained analysis, 209-211
coordinate, contribution, 171, 172E, 174, 

176, 191E, 193E, 208, 211, 266E, 286, 
305

 principal, 156, 159E, 161, 174-176, 191E, 
264E, 283-286

 standard, 156, 161, 171, 174-176, 208, 
286, 287

correlation, 18-19
 as a scalar product, 77-79
 between points and axes, 208-209
 circle of, 158, 159E
 point biserial, 19
 Spearman rank, 79-80, 142E, 217, 271E, 

284, 304
correspondence analysis, 31, 165-176, 183, 

184E, 185E, 187E, 190, 191E, 211, 286
  of reweighted data, 253-255
count variable, 15, 18, 24, 36, 54, 55, 80, 

85, 120, 280
Cramer’s V coeffi cient, 82, 104

data set “Barents fi sh”, 139, 140, 175E
  “Barents fi sh trends”, 251-254E, 256E, 

258E
  “bioenv”, 15-17, 190-193E, 207E, 209E, 

213, 216, 221
  “climate”, 151-152, 154-157E, 159, 

160E
  “fatty acid”, 180-182E, 184-187E, 205
defuzzifi cation, 40
dendrogram, 89-97, 99, 102, 104, 109, 225, 

226E, 265-275, 282, 283, 289
deviance, 234, 235, 241
 null, 235
 residual, 235, 241
direct gradient analysis, 192
dissimilarity, 61, 67-73, 80, 82, 83, 89-98, 

112-116, 120E, 281-283
 Bray-Curtis, 61-64E, 67, 73, 80, 120E, 

141E, 166, 281, 284, 305
 Sørensen, 62, 63, 281
distance, 61, 281
 based on correlation, 79, 80
 between categories, 80-82, 85
 between count variables, 80
 chi-square, 55-58, 63-68, 73, 81E, 112E, 

165, 166, 170, 174, 176, 263, 281, 
306

 city-block, 61, 67, 68E, 71, 73



327

INDEX 

 defi nition, 61
 Euclidean, 47-59, 61, 68E, 73, 75, 80, 

97E, 103E, 109, 142, 153-158, 161, 
206, 281, 306

 for categorical data, 57-59
 for mixed-scale data, 70-72
 Manhattan, 67
 standardized Euclidean, 51, 53, 54, 59, 

97E, 103E, 153E, 154E, 281
 taxicab, 67
 weighted Euclidean, 53-55, 58, 59, 161, 

281
distribution, bivariate, 15, 17, 24, 216
 normal, 35, 36, 230E, 235, 288, 304
 Poisson, 42, 232, 233, 290
 univariate, 17, 24
dummy variable, 38-39, 42, 58, 71, 191-195, 

210, 280, 282

eigenvalue, 111-113, 120E, 123, 158-161, 
169, 170E, 206-208, 224-227, 284

Euclidean distance, 47-59, 61, 68E, 73, 75, 
80, 97E, 103E, 109, 142, 153-158, 161, 
206, 281, 306

 embeddable, 284
exploratory data analysis, 35, 36

FD, see functional diversity
F -statistic, 21, 23E, 101
F -test, 101
functional dispersion, 269
 diversity, 261, 263, 265, 267-272, 275
  group-based, 268E, 270E-275
  tree-based, 269-276
 trait, 261-267, 275
fuzzy coding, 39, 40, 135, 136E, 144-149, 

195-197, 236, 237, 251-253, 271, 282
  of interaction, 145-148
  of spatial coordinates, 147E, 148E

GAM, see generalized additive model 
general linear model, 28, 30

generalized additive model, 229, 237-240E, 
246, 271, 274E, 276, 290-291

 linear model, 30-32, 133, 229, 232, 233, 
245, 290

GLM, see generalized linear model 
Gower’s dissimilarity, 282
gradient, 30, 129, 130E, 132-138, 143E-146, 

171, 176
 analysis, direct, 192
  indirect, 190-192, 195

heteroscedastic, 231
hierarchical clustering, 89-99, 102, 263, 

265E, 275, 305
hinge points, 39E, 40 
histogram, 15, 17E, 18E, 24, 53, 83, 215E, 

267, 268E, 304
homoscedastic, 231

indirect gradient analysis, 190, 192, 195
inertia, 82, 169, 174, 175, 183, 190, 192-

195, 199, 203-211, 221, 223, 225, 227, 
234, 254E-260, 264E, 266E, 286, 288-290

 partialling out, see partialling out variance
 partitioning of, 258-260
inference, 36, 94, 213, 216, 226
interval variable, 34-35, 128, 281
isoline, 129

Jaccard index, 61, 69, 70, 73, 89, 90E-96E, 
225

k-means, 99, 104-106, 283
Kruskal-Wallis rank test, 217, 305

link function, 235, 245, 290, 305
loading, 208
logarithmic transformation, 36-38, 42, 195
logistic regression, 133-134, 138, 233-235, 

243-245, 290, 305



 MULTIVARIATE ANALYSIS OF ECOLOGICAL DATA

328

logit, 133, 234E, 245, 290
log-odds, see logit
log-ratio analysis, 139, 177, 180-185, 188, 

203, 205, 211, 284
  interpretation of, 181, 182
  relationship to correspondence analy-

sis, 182, 183
 transformation, 36, 179, 180, 188
LRA, see log-ratio analysis 

Manhattan distance, 67
map, 127, 139E-144, 148, 153-156, 168E, 

169, 175E, 176, 184E, 245E, 306 
matching coeffi cient, 58, 68, 70, 73, 89, 

281, 282
MDS, see multidimensional scaling 
mean-square contingency coeffi cient, 82
mixed-scale variables, 26
  distance, 70, 72
monotonic regression, 116, 118
multidimensional scaling, 109-122, 148, 161, 

283, 305
  classical, 110-113, 117E-121E, 123, 

153, 158, 165, 283, 284
  nonmetric, 114-123, 141E, 151, 166, 

284
  weighted, 166, 167, 305
multiple correspondence analysis, 58, 305
multivariate test of group difference, 219-

221, 288

nominal variable, 18, 24, 34, 279
nonhierarchical clustering, 99, 104-106, 

282, 283, 305
normal distribution, 35, 36, 230E, 235, 288, 

304
null distribution, 226, 227, 288, 289

odds ratio, 205, 211
ordinal variable, 18, 24, 34E, 254, 279, 281
ordination, 29-31, 146E, 189, 192
 constrained, see ordination restricted

 restricted, 192, 194
overdispersion, 55

partial least squares, 31, 32
partialling out variance, 259
PCA, see principal component analysis 
permutation distribution, 83, 84E, 214-216, 

219-227, 269E
 test, 18, 19, 83-85, 101, 104, 213, 214, 

216-219, 223-226, 255, 258, 260, 263, 
288-290

  for clustering, 225, 263
permutation testing, 18, 19, 35, 83, 217, 

226, 260, 288-290, 304
point biserial, 19
Poisson distribution, 42, 232, 233, 290
 regression, 31, 133, 134E, 138, 143, 232, 

233, 245, 290, 305
power transformation, 37E, 38, 42, 55, 183, 

280
principal axes, 159, 161, 206, 211, 284, 305
 component analysis, 151, 154-156, 159E-

161, 165-170, 176, 180, 181, 194, 203-
211, 224E, 225, 284-289

 coordinate, 156, 159E, 161, 174-176, 
191E, 193, 264E, 283, 284

  analysis, 283
 inertia, 169, 174, 175, 206-209
 variance, 206
Procrustes analysis, 142
 correlation, 142, 173E, 174, 183
profi le, 55, 56E, 59, 85, 166, 168-171, 174, 

176, 177, 191, 287
 average, 55, 170
 unit, 168
Pythagoras’ theorem, 47-50, 59

redundancy analysis, 31, 194, 306
regression, 20, 22E, 27-31, 38, 113, 127-

131E, 133-139, 143E, 154E-156, 161, 
166, 192, 194-196E, 230-246, 253, 257, 
287, 305

 algebra of, 127, 128



329

INDEX 

 biplot, 127, 132, 138, 139, 143, 148, 149, 
156, 170, 190, 193

  scaling of, 156, 158
 coeffi cient, 128, 129, 132, 133, 138, 143, 

151, 153, 156, 157, 174, 190-193, 273, 
287

  geometry of, 128-131
 logistic, 31, 133, 134E, 138, 233-235, 

243, 244E, 290, 305
 monotonic, 116, 118
 multiple linear, 30, 31, 127, 128, 132, 

138, 230, 245, 276, 286
 Poisson, 31, 133, 143E, 166, 232, 233, 

245, 290, 305
 tree, 28, 229, 243-246, 290, 291, 306

sampling bias, 249-253
scalar product, 75, 77, 78, 127, 130, 283
scaling, 29, 30, 109, 113, 123, 156, 170, 171, 176
scatterplot, 18-22E, 24, 65, 80, 81E, 127, 

138, 142E, 182, 183E, 187E, 224E, 236E, 
268E, 270E, 271E, 304

scree plot, 159-161, 170E, 258E, 289
Shannon-Weaver diversity, 238, 239E, 268E, 

275
 index, 267
Shapiro-Wilks test, 214, 304
shifted log transformation, 55
singular value, 285, 286
 vector, 285
singular value decomposition, 155, 284-286
Spearman rank correlation, 79, 142E, 217, 

271E, 284, 304
species pool, 267-269E 
 richness, 269, 270E
standard coordinate, 156, 161, 169, 171, 

174-176, 208, 287
standardization, 33, 36, 39-43, 51-54, 59, 73, 

219, 279-282
standardized regression coeffi cient, 128, 

133, 156-161, 174
stress, 118, 120, 123, 284
structural equation modelling, 31, 32
subcomposition, 177-180, 188

subcompositional coherence, 177, 179, 180, 
183, 186, 188

sum of squares, between-group, 100, 105, 
106, 288

 total, 101, 102E
 within-group, 100, 106
supervised learning, 29
supplementary point, 133, 134E, 136E, 191, 

287
 variable, 286-288
support, 135-139, 190
SVD, see singular value decomposition 

taxicab distance, 67
terminal nodes, 243, 244
transformation, Box-Cox, 37E, 38, 42, 183, 

280
 logarithmic, 36-38, 42, 195, 263, 280
 log-ratio, 36, 179, 185
 power, 37E, 38, 55, 280
 shifted log, 55
triangle inequality, 62E-64, 67, 73, 118, 123, 

281
  violation of, 63
triplot, 138, 192-199, 213-216
TSS, see sum of squares, total
t -test, 18, 84, 213, 214

unit variable, 77-79, 85
unsupervised learning, 29

variable, categorical, 16-19, 24, 28-31, 38, 
39, 42, 57, 68, 72, 80-82, 85, 133, 282, 
304

 compositional, 34E, 35, 177-182, 188, 
280

 continuous, 17-19E, 24, 27-31, 34, 39E-
43, 51, 52E, 55, 70-72, 80E, 99, 143-
149, 204, 262, 282, 304-306

 count, 18, 24, 36, 54, 55, 80, 85, 120, 280
 dummy, 38-39, 42, 58, 71, 191-195, 210, 

280, 282



 MULTIVARIATE ANALYSIS OF ECOLOGICAL DATA

330

 explanatory, 26-31, 127-131E, 190-195, 
211, 229, 234-238, 245, 255, 260, 287-
291, 305, 306

 interval, 34-35, 128, 281
 latent, 26E, 27, 29-31, 93
 nominal, 18, 24, 34, 279
 ordinal, 18, 24, 34E, 279, 254, 281
 predictor, see variable, explanatory
 ratio, 34E-36, 232, 279, 281, 308
 response, 26E-31, 127, 131E, 138, 158, 

190, 192, 229, 230E, 235, 241, 245, 
290, 305, 306

 unit, 77-79, 85

variance, 21, 30, 39-43, 54, 55, 71, 77, 99-101, 
111-114E, 118, 123, 129, 133, 151-161, 
168E, 169, 180-186E, 189-195, 203-211, 
224E-238, 257, 260, 265, 275, 281-289 

variation, coefi cient, 41

weighted average, 40, 53-54, 59, 72, 120, 
133, 135-138, 144, 146E, 151, 168E, 169, 
171, 194-198E, 204, 253, 257E

 Euclidean distance, 53-54, 59
Welch test, 214, 216
WSS, see sum of squares, within-group 



331

About the Authors

 Michael Greenacre, Professor of Statistics at the Pompeu Fabra University in 
Barcelona and research collaborator with the BBVA Foundation, obtained his 
master degree in his country of birth, South Africa, and then his doctorate in Paris 
at the Pierre et Marie Curie University (Paris VI). He specialized in the visualiza-
tion of multivariate data, principally in the social and environmental sciences, 
and spent sabbatical research periods at Rothamsted Experimental Station (UK); 
Bell Laboratories, University of Rochester and Stanford University (USA); the 
École des Mines (France); and the Norwegian Polar Environmental Centre (now 
the FRAM centre) in Tromsø (Norway). Besides co-editing several books on data 
visualization, he has written four books on correspondence analysis and related 
methods: for example, Biplots in Practice was published by the BBVA Foundation 
in 2010. He has produced over 80 publications, in major journals such as Applied 
Statistics and Ecology, including invited contributions to several encyclopedias.

Raul Primicerio, Associate Professor of Ecology, Evolutionary Biology and Epi-
demiology at the University of Tromsø, obtained his master degree in his country 
of birth, Italy, and later his doctorate in Norway. His research and teaching focus 
on quantitative biology, and he has been training graduate students and profes-
sionals at several research institutions in scientifi c method, statistical inference 
and modelling. He has coordinated ecological modelling activities at the High 
North Research Centre for Climate and the Environment (FRAM, Tromsø), and 
has collaborated and helped to coordinate several research projects on global 
environmental change impact funded by the Norwegian and European research 
councils. He has produced over 50 papers on both basic and applied issues, such 
as harvesting and climate change impact, including publications in the multidis-
ciplinary journals Science and PNAS.












