Fundación **BBVA**

Documentos de Trabajo

2008

Iván Arribas Fernández Francisco Pérez García Emili Tortosa-Ausina

On the Dynamics of Globalization

Fundación BBVA

On the Dynamics of Globalization

Iván Arribas Fernández ¹ Francisco Pérez García ^{1,2} Emili Tortosa-Ausina ^{2,3}

¹UNIVERSITY OF VALENCIA ²INSTITUTO VALENCIANO DE INVESTIGACIONES ECONÓMICAS (Ivie) ³UNIVERSITY JAUME I

Abstract

How has the process of international economic integration advanced over the last four decades? What will the foreseeable future look like? This working paper attempts to answer this sort of question by considering some methods which have scarcely been used in the literature on globalization. First, we consider a set of indicators which measure not only the degree of openness of economies, but also how connected they are to each other, following Arribas, Pérez and Tortosa-Ausina (2007). Second, we assess how these indicators have evolved over time, what the likely steady state distribution might be, and whether results differ depending on a variety of weighting schemes (gross domestic product [GDP] and population). Results show that, under current trends, the future world will be much more integrated, especially in the case of the most heavily populated countries. However, there is still a long way to go before the Standard of Perfect International Integration (SPII) can be achieved.

Resumen

¿Cómo ha evolucionado la integración económica internacional durante las últimas cuatro décadas? ;Hasta dónde llegará el avance de la globalización? Este documento de trabajo trata de dar respuestas a este tipo de preguntas a través de algunos métodos que apenas han sido utilizados por la literatura sobre globalización. En primer lugar, se considera un conjunto de indicadores que miden no sólo el grado de apertura entre economías, sino también cómo están conectadas entre sí, siguiendo las aportaciones de Arribas, Pérez y Tortosa-Ausina (2007). En segundo lugar, se analiza la evolución temporal de estos indicadores, cuál será la distribución correspondiente al estado estacionario, y si los resultados diferirían dependiendo de una serie de condicionamientos (producto interior bruto [PIB] y población). Los resultados indican que, de continuar las tendencias actuales, el comercio internacional estará mucho más integrado, especialmente para los países más densamente poblados. Sin embargo, existe todavía un largo camino por recorrer hasta que el estándar de integración internacional perfecta (Standard of Perfect International Integration [SPII]) pueda alcanzarse.

Palabras clave

Integración económica internacional, globalización, comercio internacional, análisis de redes, dinámica de las distribuciones.

Key words

International economic integration, globalization, international trade, network analysis, distribution dynamics. Al publicar el presente documento de trabajo, la Fundación BBVA no asume responsabilidad alguna sobre su contenido ni sobre la inclusión en el mismo de documentos o información complementaria facilitada por los autores.

The BBVA Foundation's decision to publish this working paper does not imply any responsibility for its content, or for the inclusion therein of any supplementary documents or information facilitated by the authors.

La serie Documentos de Trabajo tiene como objetivo la rápida difusión de los resultados del trabajo de investigación entre los especialistas de esa área, para promover así el intercambio de ideas y el debate académico. Cualquier comentario sobre sus contenidos será bien recibido y debe hacerse llegar directamente a los autores, cuyos datos de contacto aparecen en la *Nota sobre los autores*.

The Working Papers series is intended to disseminate research findings rapidly among specialists in the field concerned, in order to encourage the exchange of ideas and academic debate. Comments on this paper would be welcome and should be sent direct to the authors at the addresses provided in the About the authors section.

Todos los documentos de trabajo están disponibles, de forma gratuita y en formato PDF, en la web de la Fundación BBVA. Si desea una copia impresa, puede solicitarla a través de publicaciones@fbbva.es.

All working papers can be downloaded free of charge in pdf format from the BBVA Foundation website. Print copies can be ordered from publicaciones@fbbva.es.

La serie Documentos de Trabajo, así como información sobre otras publicaciones de la Fundación BBVA, pueden consultarse en: http://www.fbbva.es

The Working Papers series, as well as information on other BBVA Foundation publications, can be found at: http://www.fbbva.es

On the Dynamics of Globalization

© Iván Arribas Fernández, Francisco Pérez García and Emili Tortosa-Ausina, 2008 © de esta edición / *of this edition:* Fundación BBVA, 2008

EDITA / PUBLISHED BY Fundación BBVA, 2008 Plaza de San Nicolás, 4. 48005 Bilbao

DEPÓSITO LEGAL / LEGAL DEPOSIT NO.: M-16.463-2008 IMPRIME / PRINTED BY: RÓGAT, S. A.

Impreso en España - Printed in Spain

La serie Documentos de Trabajo de la Fundación BBVA está elaborada con papel 100% reciclado, fabricado a partir de fibras celulósicas recuperadas (papel usado) y no de celulosa virgen, cumpliendo los estándares medioambientales exigidos por la legislación vigente.

The Working Papers series of the BBVA Foundation is produced with 100% recycled paper made from recovered cellulose fibre (used paper) rather than virgin cellulose, in conformity with the environmental standards required by current legislation.

El proceso de producción de este papel se ha realizado conforme a las normas y disposiciones medioambientales europeas y ha merecido los distintivos Nordic Swan y Ángel Azul.

The paper production process complies with European environmental laws and regulations, and has both Nordic Swan and Blue Angel accreditation.

CONTENTS

1. Introduction	5
2. Methodology	9
2.1. Integration indicators: definitions and properties	9
3. Dynamics	13
3.1. Weighted transition probability matrices	15
3.2. Ergodic distributions	15
3.3. Transition path analysis and mobility indices	16
3.4. Statistical significance	17
3.5. The external shape of distributions	17
4. Data and sample	20
5. Result	21
6. Conclusions	42
References	47
About the Authors	51

1. Introduction

INTEREST in the international integration of economies and the wide perception that we are entering an advanced phase of globalization have stirred up important debates among academics and institutions, of which we find three worth mentioning. The first discusses the speed at which the integration process is advancing, its regularity from a historic point of view and its consequences for growth and income convergence among countries (Baldwin and Martin, 1999; Crafts, 2000; Milanovic, 2006; O'Rourke and Williamson, 2002; Rodríguez and Rodrik, 2001; Williamson, 1996). The second focuses on the singular characteristics of the most recent wave of globalization, the implications of its present technological basis and its effects on winners and losers in the new competitive setting (Bhagwati, 2004a, 2004b; Rodrik, 1998a, 1998b; Stiglitz, 2002, 2006; Wolf, 2005). The third debate is prospective and is more evident among institutions; it discusses the key factors (demographic, financial, commercial, technological and political) that determine in which settings the world economy will be situated if the trends of recent decades persist for another generation, and the obstacles that might threaten the continuity of this process (World Bank, 2007; OECD, 2007; Goldman Sachs, 2004).

The renewed interest in the advance of integration ¹ and the singularities of the most recent wave of globalization are not, as yet, reflected in substantial improvements to the quantitative indicators referring to these processes. On the one hand, when evaluating the advance of globalization, integration indicators in the strict sense and the variables that represent the causes, consequences and obstacles to it, are not sufficiently distinguished (Frankel, 2000; Frankel and Rose, 2000; Rauch and Casella, 2003; Rodrik, 1998c, 2000; Salvatore, 2004; Stiglitz, 2002). On the other hand, the most commonly used quantitative reference to measure integration contin-

^{1.} Although we will use the terms *globalization* and *international economic integration* as synonymous we recognize that they are not exactly the same since, as indicated by Rodrik (2000), the latter has a distinct meaning which is self-evident for economists, whereas the former is used in different ways by different analysts. Therefore, when referring to globalization we will be referring solely to its economic aspects.

ues to be the external, commercial or financial degree of openness, an unsatisfactory variable in two important aspects: generally, it does not correct the bias derived from country size, and neither does it reveal one of the most important characteristics of integration today, namely, the development of much denser networks among countries or, as termed by Kali, Méndez and Reyes (2007), the structure of trade, which refers to the number of trade partners and the concentration of trade among trading partners.

A recent study (Arribas, Pérez and Tortosa-Ausina, 2007) proposes axiomatic and globalization measures of international economic integration (hereafter IEI) based on distinguishing and combining the degrees of openness and of connection-both direct and indirect-of the underlying economies in the foreign trade networks. This approach allows us to define a precise Standard of Perfect International Integration (SPII) (Frankel, 2000), which characterizes the situation in which economies trade among themselves as though no barriers and transaction costs existed. In a world in which technology and the removal of obstacles to commerce make costs of trading with external agents irrelevant, the weight of a country in the demand of another is essentially determined by its size. The SPII provides for a situation in which exchanges take place as if the world operated as a true global village, and allows us to measure the level of integration or globalization reached in its regard. It also enables us to estimate the extent to which the two determining factors of integration contribute to its evolution, these factors being openness of economies and the changes in their commercial networks with other countries.

Following this methodology, Arribas, Pérez and Tortosa-Ausina (2007) estimate the degree of openness, of connection and of integration for 59 economies that represent 96.7% of world output, during the period 1967-2004. On the basis of these estimations it will be possible to conduct future analyses of the determinants of the different levels of integration reached and their consequences. According to already available results, the advance of international integration in recent decades has been substantial, evaluated between 75 and 100%, depending on the importance given to the increase of indirect relationships among economies, facilitated by Information and Communication Technologies (ICT) and improvements in transport. However, the distance between the current situation and the SPII is still notable, as we are not yet halfway, due, above all, to the greater domestic bias of the largest economies, for which the degree of openness is limited. Nevertheless, one of the results observed in the cited study is the diversity of situations among countries, both in the degree of integration reached in their paths of

advance. In both aspects the differences among countries are noticeable in terms of their degree of openness, but also in the characteristics of their networks (i.e., their trade structures). Thus, there are not only more open or closed countries, but also economies with more stable structures of foreign trade or with a greater bias towards certain trading partners, generally towards the region of the world to which they belong.

The aim of this study, based on the international economic integration (IEI) measures of Arribas, Pérez and Tortosa-Ausina (2007), is to conduct an in-depth analysis of the dynamics of globalization in three directions:

- 1. To characterize the evolution of the set of integration indicators and project their tendencies, in order to identify the stylized facts of the scenario we are heading towards.
- 2. To study the speed of the globalization process in the period analyzed and the time required to achieve a substantial increase in the level of IEI towards which we are moving, under current trends.
- 3. To evaluate the acceleration in integration that appears to have been happening since the nineties, as a result of technological changes and of the economic orientation of numerous economies during this period.

These objectives are pursued using a variety of techniques. First, we consider the methods by Arribas, Pérez and Tortosa-Ausina (2007) to measure integration, which combine the traditional degree of openness with a new measure, inspired by network analysis, designed to compute the degree of connection among economies. This focus is not entirely new in international economics, and has received considerable attention in recent studies (Combes, Lafourcade and Mayer, 2005; Greaney, 2003; Pandey and Whalley, 2004; Kali and Reyes, 2007; Rauch, 1999, 2001; Rauch and Trindade, 2002; Rauch and Casella, 2003).

In a second stage, in order to assess how integration indicators evolve over time, and to characterize their dynamics, we consider a variety of techniques which have been widely employed in the field of empirical growth and convergence (see Durlauf and Quah, 1999), and in the field of inequality measurement (Shorrocks, 1978).

These techniques enable us to examine a variety of issues related to globalization dynamics. For instance, they provide answers to the question of how the external shape of the degree of openness distribution (for instance) evolves over time, and what type of distribution will emerge in the long run. Clearly, one may infer that multiple scenarios might arise; a few of these possibilities may be a future world in which most economies are very open, or very closed, or a polarized world in which many economies are very open, but many others are quite closed.

Additionally, we can also weigh in the question of whether substantial intra-distribution mobility exists, i.e., in the case of the degree of openness, whether open economies typically stay open, and whether closed economies typically stay closed. Assuming that an economy lies in the lower tail of the distribution of, say, degrees of openness, what would be the probability over a given period of time (1, 5, 10 years, etc.) that this economy will remain in the same place? What is the probability that it will move to the upper tail of the distribution? That question may likewise be posed with regard to the other sets of indicators, so as to achieve an enhanced view of how globalization evolves throughout time.

This model, although very intensely used by the empirical growth and convergence literature, has not been considered so far to measure the prospects of globalization, despite its potential for providing answers to some relevant questions such as those raised by Rodrik (2000) as to *how much more integration could there be?*, or whether international economic integration remains limited, or perhaps some rationale that prevents us from more than *speculating wildly* on the perspectives of international economic integration. The specifics of the dynamics of globalization have received little systematic attention, and the methodologies applied here try to fill the gap.

After this introduction, the remainder of the study is structured as follows. Section 2 summarizes the methodology used to determine the integration indicators employed, and their definitions and properties, following Arribas, Pérez and Tortosa-Ausina (2007). Section 3 presents the criteria and the formal tools used to study the distribution dynamics of the globalization indicators, based on Quah (1993, 1996b, 1996d) and Redding (2002). Section 4 describes the database used and section 5, the results. Section 6 concludes.

2. Methodology

2.1. Integration indicators: definitions and properties

Arribas, Pérez and Tortosa-Ausina (2007) introduce measures for international economic integration and globalization starting from a set of basic axioms and the definition of a set of indicators conceived to achieve two objectives: to uncover the role of the network and to define a *Standard of Perfect International Integration (SPII)*. These axioms are as follows:

- 1. Uncovering the role of the network implies accepting that the advance of international economic integration operates through both higher openness and higher connectedness to other economies, following both direct and indirect paths.
- 2. Any attempt to characterize a scenario in which economies are entirely integrated/globalized (SPII) is to describe the conditions under which the world economy would operate as a global village.

Therefore, this approach would enable us to assess the distance that separates the current level of international economic integration from the scenario of complete globalization.

The components of the economic network follow. Let *N* be the set of nodes or economies and *g* the number of elements in *N*. We denote by X_{ij} the flow from economy to economy *i* and by Y_j the size (GDP) of economy *j*. The flow from economy *i* to economy *j*, X_{ij} , can be measured both through the imports and through the exports of goods and services, and in general it can be evaluated through any other flow measured in the same units as Y_i .

In order to control for home bias, we define \hat{Y}_i as the exports' share of GDP taking into account the weight in the world economy of the economy considered $\hat{Y}_i = Y_i - a_i Y_j$, where a_i is the economy *i*'s relative weight with respect to the world economy, $a_i = Y_i / \sum_{j \in N} Y_j$. We also assume that $X_{ii} = 0$ for all economies $i \in N$.

To determine the degree of integration, we proceed in three stages, where different indicators will be defined.

as

Stage 1. Degree of openness

In the first stage we characterize the degree of openness. We start with the usual definition found in the literature but corrected for home bias so as to take into account the different sizes of the economies under analysis.

If X_{ij} is the trade from economy *i* to economy *j*, then

$$DO(X)_{ij} = \frac{X_{ij}}{\hat{Y}_i},\tag{2.1}$$

is the relative flow or **degree of openness** between economies *i* and *j* which, for the sake of simplicity, will be denoted as DO_{ij} . Given that $X_{ii} = 0$, it follows that $DO_{ij} = 0$.

Definition 1. Given an economy $i \in N$ we define its degree of openness, DO_i ,

$$DO_i = \sum_{j \in N} DO_{ij} = \frac{\sum_{j \in N} X_{ij}}{\hat{Y}_i}$$
(2.2)

The degree of openness yields results (in general) within the (0,1) interval, where a value of 0 indicates that the economy is closed (compared to the measure of flow chosen) and a value of 1 indicates a lack of home bias in the economy (total openness).

Stage 2. Degree of total connection

In the economic network, the relative flow from economy i to economy j, in terms of the total flow of economy i is given by

$$\alpha_{ij} = \frac{X_{ij}}{\sum_{j \in N} X_{ij}}, \qquad (2.3)$$

where $A = (\alpha_{ij})$ is the matrix of relative flows.

Furthermore, a world economy is perfectly connected if the above value is equal to the relative weight of economy j in a world where economy i is excluded,

$$\beta_{ij} = \frac{Y_j}{\sum_{k \in N \setminus i} Y_k} \cdot$$

Note that β_{ij} is the degree of openness between economies *i* and *j* in a perfectly connected world, where $\beta_{ii} = 0$; $B = (\beta_{ij})$ is the degree of openness matrix.

Let $\gamma \in (0,1)$ be the share of trade (on average) between two countries which remains in the importing country for internal consumption, whereas $1 - \gamma$ is the share of trade between these two countries which is reexported from the importing country to a third country, possibly after some re-elaboration. Alternatively, we can interpret the inverse of γ as the number of trades (on average) for each commodity, from the first exporting country up to the last importing country.

The total volume of exports from a given economy *i* to another economy *j* is the sum of the direct and indirect flows between the two economies, and can be estimated as 2

$$A^{\infty} = (\alpha_{ij}^{\infty}) = \sum_{n=1}^{\infty} \gamma \ (1-\gamma)^{n-1} A^n,$$

$$B^{\infty} = (\beta_{ij}^{\infty}) = \sum_{n=1}^{\infty} \gamma \ (1-\gamma)^{n-1} B^n.$$
(2.4)

Definition 2. Given an economy $i \in N$ we define the degree of total connection of i as

$$DTC_{i} = \frac{\sum_{j \in N} \alpha_{ij}^{\infty} \beta_{ij}^{\infty}}{\sqrt{\sum_{j \in N} (\alpha_{ij}^{\infty})^{2}} \sqrt{\sum_{j \in N} (\beta_{ij}^{\infty})^{2}}} .$$

The degree of total connection is within the (0,1) interval, and it measures the distance between an economy's current flows (either exports or imports) and those it would have in a perfectly connected world. It should approach 1 if the flows of the economy are proportional to the size of the

$$\begin{split} A^{\infty} &= \frac{\gamma}{1-\gamma} \left(\left[I - (1-\gamma) \ A \right]^{-1} - I \right), \\ B^{\infty} &= \frac{\gamma}{1-\gamma} \left(\left[I - (1-\gamma) \ B \right]^{-1} - I \right), \end{split}$$

where I is the identity matrix of order g (see Arribas, Pérez, Tortosa-Ausina, 2007).

^{2.} It can be proved that one way to compute A^{∞} and B^{∞} is by using the expressions:

receiving economies, and be close to zero if the largest economies receive no commodities and the smallest receive all of them.

However, *DTC* hinges on the γ parameter, which measures how indirect flows affect connections among economies. Thus, the degree of total connection for any economy *i* is a decreasing function of γ so that the larger the weight of the indirect flows, the larger the *DTC* will be.

Stage 3. Degree of integration

Definition 3. Given an economy $i \in N$ we define the degree of integration of i as

$$DI_i = \sqrt{DO_i DTC_i} \cdot$$

The degree of integration of an economy is the geometric average of both its degrees of openness and total connection; thus *DI* hinges on both the openness of the economy and the balance in its direct and indirect flows. Therefore, we are taking into account not only how open an economy is, but also its trade structure, namely, how many partners it has, the concentration of trade among partners, how large its partners are, and whether they might re-export to other countries. This means that our measures take into account both traditional measures of openness (export and import volume or shares) and also other measures that could be reflecting trade strategies, including those emerging after the establishment of different trade agreements (see Kali, Méndez and Reyes, 2007).

3. Dynamics

WE use a set of instruments to measure globalization dynamics essentially drawn from the literature on empirical growth and convergence and the literature on economic inequality (see Quah, 1993, 1996b, 1996d; Shorrocks, 1978; Kremer, Onatski and Stock, 2001).

In our particular setting, we can refer to $s_{i,t}$ as country *i*'s indicator (either *DO*, *DTC* or *DI*) in period *t*, whereas $F_t(s)$ refers to the cumulative distribution of $_ts_i$, across countries, and corresponding to $F_t(s)$ we can define a probability measure λ_t subject to:

$$\lambda_t((-\infty, s]) = F_t(s), \,\forall s \in \mathbf{R}.$$
(3.1)

In this context, λ_t is the probability density function for each indicator across countries in period *t*, and the model analyzes the dynamics of λ_t , i.e., the dynamics of the cross-section distribution of either *DO*, *DTC* or *DI* for which we consider a stochastic difference equation:

$$\lambda_t = P^* (\lambda_{t-1}, u_t), \text{ integer } t, \tag{3.2}$$

where $\{u_i: \text{ integer } t\}$ is the sequence of disturbances of the entire distribution, and P^* is the operator mapping disturbances and probability measures into probability measures. In other words, the P^* operator would reveal information on how the distribution of, for instance, the degrees of openness (DO) at time t - 1 (DO_{t-1}) transforms into a different distribution at time t (DO_t) .

Following Redding (2002), we may assume that the stochastic difference equation is first order and that operator P^* is time invariant. Thus, setting null values to disturbances and iterating in (3.2) we obtain the future evolution of the distribution:

$$\lambda_{t+\tau} = (P^* \cdot P^* \cdot \dots \cdot P^*) \lambda_t = (P^*)^{\tau} \lambda_t.$$
(3.3)

If we divide, or discretize, the set of possible values of *s* into a finite number of cells $k \in \{1, ..., K\}$, then *P** becomes a transition probability matrix

$$\lambda_{t+1} = P^* \cdot \lambda_t, \tag{3.4}$$

where λ_t is now a $K \times 1$ vector of probabilities that a given country indicator *(DO, DTC,* or *DI)* is located in a given grid at time *t*.

In the case studied here, discretization is meant to divide the space of possible F_t values into several discrete grid cells, or states, e_k , k = 1, ..., K. Then, after classifying each country-year observation into one of the Kstates, we build up a 20 \times 20 matrix whose p_{kl} entries indicate the probability that a country initially in state k will transit to state l during the period or periods considered (T). Thus each row of the matrix constitutes a vector of transition probabilities, which add up to unity. We choose the boundaries between grid cells such that country-year observations are divided approximately equally between the cells, and each cell corresponds to approximately one twentieth of the distribution of either DO, DTC, or DI across countries and time. Therefore, in the case of DO, observations in the first state refer to the more closed countries. This criterion has been followed, amongst many others, by Redding (2002), or Lamo (2000), and constitutes a reasonable choice in the absence of other theoretical justifications. Others have followed different criteria such as choosing the grid arbitrarily yet (according to their advocates) reasonably (Kremer, Onatski and Stock, 2001; Quah, 1993). An alternative strategy to avoid the discretization problem is to consider stochastic kernels (Quah, 1996c), which may be thought of conditional density estimation (Bashtannyk and Hyndman, 2001); however, there are some difficulties in estimating the ergodic, or stationary distribution. We deal with this issue further on in the paper.

Therefore, through these transition probability matrices we can measure the probability that a country with a certain degree of openness, degree of total connection, or degree of integration, may move to a higher (or lower) position. To calculate the transition probability matrices we start by discretizing or dividing the set of observations of the variable into a certain number of states e_k . For example, state $e_k = (0.2, 0.4)$ would include those countries with degrees of openness between 0.2 and 0.4 The value of each entry in the matrix indicates the probability that a given country will transit out during the period or periods considered from its initial state to other states.

Transitions are estimated by counting the number of transitions out of and into each cell, i.e., for each p_{kl} cell:

$$p_{kl} = \frac{1}{T-1} \sum_{t=1}^{T-1} \frac{n_{kl}^t}{n_k^t},$$
(3.5)

where *T* is the number of years or periods, n_{kl}^{t} is the number of countries moving during one period from class *k* to class *l*, and n_{k}^{t} is the total number of countries that started the period in class *l*.

Some authors have claimed that the arbitrary discretization of the state space into a given number of states may affect the results. For instance, Quah (1997) and Bulli (2001) indicate that the process of discretizing the state space of a continuous variable is necessarily arbitrary and can alter the probabilistic properties of the data. Some other authors (Reichlin, 1999) also argue that the apparent long-run implications of the dynamic behavior of the distribution in question are also sensitive to discretization.

However, most of these claims are based on results for 5×5 matrices. We partly circumvent them by considering a much larger number of states (20) than the standard practice. Other methods proposed by the literature to avoid these criticisms (see Johnson, 2005) consider kernel smoothing methods. However, these methods also ultimately discretize, since the functions in which they are based have to be evaluated over a given set of points. If the set of points is large enough, we may end up with the visual impression that there is no discretization. Obviously, choosing an arbitrarily large number of states for the discrete Markov chain methods would yield analogous results.

3.1. Weighted transition probability matrices

Transitions are estimated by counting the number of countries moving from one state to another. However, due to the large disparities between countries observed both across their populations and their economic sizes (GDP), it may be equally relevant to estimate *weighted* transition probability matrices. The underlying idea is that the impact on world globalization will be greater if a larger country transits out than if a small country does so. Therefore, we count countries' transitions, but in this case each country is represented by its entire share of world population (in the case of population-weighted transition probability matrices), or its share of world GDP (in the case of GDP-weighted matrices). This issue is often ignored, although exceptions do exist such as Kremer, Onatski and Stock (2001) or Quah (2003).

3.2. Ergodic distributions

Operating with the information offered by the transition probability matrix, we can characterize the hypothetical long term, by means of ergodic, or stationary distribution. Several results or scenarios may arise: from a distribution with the probability mass concentrated mainly in the central class or classes (indicative of convergence *towards the mean*, if these central states contain that moment of the distribution) to a more polarized distribution, or one with the probability mass distributed in the extreme classes (tails) of the distribution. Therefore, ergodic, or stationary, distribution helps us to uncover the degree to which the set of countries in our sample presents a tendency to convergence, to polarization, or to other likely scenarios, for any of the indicators considered (*DO*, *DTC* or *DI*). Therefore, it provides information on the evolution of the external shapes of the distribution of the variables at hand.

3.3. Transition path analysis and mobility indices

Following Kremer, Onatski and Stock (2001) we can also assess the speed of convergence to the steady state, or ergodic distribution, by means of the asymptotic half-life of convergence, H - L, which reveals how long it takes (years) for the norm of the difference between the current (2004) distribution and the ergodic distribution to decrease by half. Its formula is as follows:

$$H - L = -\frac{\log 2}{\log |\lambda_2|},\tag{3.6}$$

where $|\lambda_2|$ is the second largest eigenvalue (after 1) of the transition probability matrix.

Finally, we also consider a mobility index from the literature on economic inequality (Shorrocks, 1978; Geweke, Marshall and Zarkin, 1986), which can be applied straightforwardly to our setting. As suggested by Quah (1996a), akin to measures of income inequality designed to collapse the information contained in an entire distribution into a single scalar, a mobility index summarizes the mobility information in a transition probability matrix into one number. We consider the proposals by Shorrocks (1978) and Geweke, Marshall and Zarkin (1986), summarized by Quah (1996a) and also employed by Redding (2002). This index satisfies certain properties; in particular, by defining the mobility index as a continuous real function $\mu(\cdot)$ over the set of transition matrices P, the index satisfies the properties of normalization, monotonicity, immobility, and perfect mobility (see Shorrocks, 1978). The index (μ^1) evaluates the trace of the transition probability matrix and, according to Shorrocks (1978), it discloses information on the relative magnitude of diagonal and off-diagonal terms, and it is identical to the inverse of the harmonic mean of expected durations of remaining in a certain state (Redding, 2002).

Following Quah (1996a), its particular expression is:

$$\mu_1(P^*) = \frac{K - tr(P^*)}{K - 1} = \left(\frac{K}{K - 1}\right) \left\{ K^{-1} \sum_j \left(1 - P^*_{jj}\right) \right\} = \frac{K - \sum_j \lambda_j}{K - 1},$$
(3.7)

where *K* is the number of states, P_{jj}^* denotes the *j*-diagonal entry of matrix P^* representing the probability of remaining in state *j*, and λ_j are the eigenvalues of P^{*3} . The μ_1 index suggests mobility, since larger values indicate less persistence, or more mobility, in P^* .

3.4. Statistical significance

We also examine the statistical significance of the differences between the transition probability matrices to be estimated. In particular, we examine the differences between unweighted and weighted transition probability matrices, and also between indices obtained for $\gamma = 1$ and for $\gamma = 0.5$. In each case, the null hypothesis is that the compared matrices are equal.

The statistic we use to evaluate the null hypothesis is distributed as:

$$M_1 = \sum_{i=1}^{K} \sum_{j=1}^{K} \pi_i \, p_{ij} \log_2 \frac{p_{ij}}{t_{ij}} \colon \chi^2_{K(K-1)}, \tag{3.8}$$

where p_{ij} and t_{ij} correspond to the ij cells of the matrices being compared, π_i is the ergodic distribution of the matrix being evaluated, and \log_2 is the base 2 logarithm.

3.5. The external shape of distributions

Although basic results include computation of transition probability matrices and ergodic distributions, we also consider it relevant to provide information on both the initial and final distributions for each of the indicators

^{3.} Quah (1996a) suggests some additional indices which might not always yield non-coincidental results, and are not directly related to each other; however, under some specific circumstances they can be identical (see Quah, 1996).

in section 2, in order to gain further insights on how distributions have evolved. Therefore, for all indicators we provide four sets of additional results, namely, transition probability matrices, ergodic distributions, initial distributions, and final distributions.

However, in their present form, all three sets of distributions share a common disadvantage, namely, they are discrete and probability is spread out across one set of states only. Although we have provided reasons why such a disadvantage may not be as restrictive as some authors suggest, we try to be as informative as possible by also providing the continuous counterpart to this discrete estimation, namely, the nonparametric estimation of density functions via kernel smoothing.

To do this, we consider a kernel estimator for each indicator:

3.7

$$\hat{f}(x) = \frac{1}{Nh^{i=1}}^{N} K\left(\frac{\|x - X\|_{x}}{h}\right),$$
(3.9)

where *x* is the point of evaluation, *X* is the indicator of interest, *N* is the number of observations (countries), *h* is the bandwidth, $P \cdot P_x$ is a distance metric on the space of *X*, and *K*(*x*) is a kernel function (see Härdle and Linton, 1994).

$$\int_{\mathbf{R}} K(x) dx = 1, \ \int_{\mathbf{R}} x K(x) dx = 0, \ \sigma_{K}^{2} = \int_{\mathbf{R}} x^{2} K(x) dx < \infty.$$
(3.10)

There are several choices for K(x), which may be defined in terms of univariate and unimodal probability density functions. For simplicity, we consider a Gaussian kernel:

$$K(x) = (1/\sqrt{2\pi}) e^{-\frac{1}{2}x^2}.$$
(3.11)

Weighting densities (in order to provide continuous counterparts to the weighted initial and final distributions) requires slight modifications. Few studies have considered this, despite its potential relevance in some specific contexts. Following Goerlich (2003), expression (3.9) is slightly modified to become:

$$\hat{f}_{\omega}(x) = \frac{1}{h} \sum_{i=1}^{N} \omega_i K \left(\frac{\|x - X_i\|_x}{h} \right),$$
(3.12)

where ω_i is the share of either world output or world population (depending on the type of weighting we consider) corresponding to country *i*.

Estimating the continuous version of the ergodic distributions or, in other words, the continuous state space approach, presents some extra difficulties. In this case, there is practically no related literature. Some studies provide estimations for ergodic densities (see Johnson, 2000, 2005). However, no studies provide, simultaneously, results on ergodic distributions yielded by transition probability matrices and ergodic densities. In order to obtain a fully compatible view between the transition probability matrices results and their continuous counterpart, we generated ergodic densities ties considering the information in the (discretized) ergodic distributions (1×20) .

Specifically, we generated normal distributions for each of the twenty states over which probability is spread out, with a number of observations proportional to each state's share of ergodic probability. This generates a pseudo-histogram in which we do not have bars, but normal distributions. Then we proceed in exactly the same way as when smoothing both initial and final distributions, i.e., by considering kernel methods to smooth the observations in each of these twenty states.

This algorithm yields ergodic densities which are fully consistent with the ergodic distributions computed from transition probability matrices. This continuous state approach turns out to naturally complement the view provided by discrete ergodic distributions, which tend to summarize too much information in too few states. Although the information provided by ergodic densities is essentially the same, it is far easier to analyze.

4. Data and sample

DATA were drawn from the CHELEM database ⁴ and correspond to 59 countries that together account for 96.7% of world output and 86.5% of international trade. The variables selected to measure flows between countries are volume of exports ⁵. The analysis is restricted to trade on goods only, as it was not possible to split data on service exports between the different exporting countries.

We perform our computations for the 1967-2004 period, for which we had complete information for the 59 countries selected. This period corresponds to what some authors have coined as the second wave of globalization (see O'Rourke and Williamson, 1999, 2002; Maddison, 2001).

All computations were performed for a 20×20 grid, which enables a more detailed assessment of how distributions evolve. However, in order to ease interpretation and understanding, results are displayed with 20×20 matrices converted into 5×5 matrices, summing over each group of four states in the 20×20 matrix. The limits of grids vary, depending on the indicator.

^{4.} Information on CHELEM (Comptes Harmonisés sur les Echanges et l'Economie Mondiale, or Harmonised Accounts on Trade and The World Economy) database is available at URL http://www.cepii.fr/anglaisgraph/bdd/chelem.htm.

^{5.} Some authors stress the much greater importance of imports than exports (see Rodrik, 1999). In our case, the computations for indicators based on imports do not alter the general results, although they may differ for some specific countries. These results are not reported due to space limitations, but are available from the authors upon request.

5. Result

FIGURES 5.1, 5.2 and 5.3 contain information on summary statistics for the three indicators of interest. Figure 5.1 shows that the average value for DO from 1967 to 2004 increases substantially, especially up to the first oil crisis in the seventies, and also from the early nineties onwards. By the end of the analyzed period the degree of openness approached, on average, 25% of the maximum attainable level, a relatively low value taking into account the fact that we have controlled for the home country bias explained by each economy's size. The coefficient of variation (figure 5.1, lower panel), which also considers the growing average effect, shows a slight tendency to converge in DO, with the remarkable exception of the first oil crisis.

The upper panel in figure 5.2 shows that the structure of trade, as measured by the degree of connection among economies, reaches values close to 0.60, and as such, higher than their degree of openness. We can also notice that indirect connections contribute to increasing the degree of connection among economies; note, for instance, that a single indirect connection ($\gamma = 0.5$), meaning that a product is traded twice, raises the degree of total connection to over 0.75 (DTC > 0.75). On the other hand, differences among countries, as measured by standard deviation and the coefficient of variation, are lessened if compared to DO, and they are further reduced if we consider indirect connections. However, this indicator shows no tendency to convergence among countries over time.

Finally, descriptive statistics regarding the level of international economic integration, as measured by the degree of integration (*DI*) are shown in figure 5.3. The *DI* index merges the effects of both *DO* and *DTC*, showing a steadily increasing path for the analyzed period, over which its value increased by more than 50%. Economic integration has reached levels over 40% higher than what could be attainable in a perfectly economic integrated world with no trade barriers and transaction costs; should we consider indirect connections, the percentage would approach 50%. This growing tendency contributes to reducing convergence among countries regarding *DI*, i.e., although the average tendency is of increasing degrees of integration, disparities are declining when measured by standard deviation, yet they increase slightly when measured by the coefficient of variation.

FIGURE 5.1: Descriptive statistics, DO (1967-2004)

FIGURE 5.3: Descriptive statistics, DI (1967-2004)

Building on the analysis of these two moments in the distributions (mean and standard deviation), we employed the techniques described in section 3 to explore more thoroughly the dynamics for the three indices, and also forecasted their evolution. Thus, we can disclose not only the ergodic distributions (i.e., distributions corresponding to the steady state) towards which the world economy will head under current trends, but also how long it will take to reach this steady state.

The discrete Markov chain methods introduced in section 3 provide a more thorough view on dynamics, by focusing on how different parts of the distribution evolve over time. Results on transition probability matrices are shown in tables 5.1-5.5. Each one contains information on both unweighted and weighted transitions (GDP-weighted and population-weighted), which are presented in three vertically-arrayed panels. In addition, information is displayed sequentially for all indices considered, i.e., degree of openness (table 5.1), degree of total connection (tables 5.2 and 5.3, for $\gamma =$ 1 and $\gamma = 0.5$, respectively), and degree of integration (tables 5.4 and 5.5, for $\gamma = 1$ and $\gamma = 0.5$, respectively).

Each panel offers information which goes beyond that contained in the transitions of every 5×5 matrix. The first row in each panel provides information on the upper limits of each class. Therefore, table 5.1a) would suggest that the 20% of country-year pairs with the lowest degrees of openness have DO < 0.089, i.e., they export less than 9% of their GDP (corrected for home bias). On the other hand, the 20% of country-year pairs with the highest degrees of openness export more than 31.1% of their home biascorrected GDP (DO < 0.311). The left column of each 5×5 matrix contains the percentage of observations that started the period in a particular class. Therefore, in table 5.1a), 21% of observations started the period with DO < 0.089, and then remained in, or transited out to other (upper) states; whereas, on the opposite side, 18% of observations started with DO < 0.311and remained in, or transited out to other (lower) states. The upper-left cell of the matrix in table 5.1a) indicates that 73% remained in the lower class of DO whereas the remaining 20% transited to state 2 (containing observations with DO between 0.089 and 0.151, or 8.9 and 15.1%), 4% to state 3, 2% to state 4 and 1% to state 5. On the other hand, the lower-right cell suggests that only 9% of observations transited to state 4, whereas 89% of observations remained in the highest-degree of openness class. Interpretations are analogous for every cell in the matrix. The elements on the main diagonal provide information on persistence or mobility-if probability approaches 1 or 0, respectively. As we can see, transitions to upper states overshadow those to lower states. For instance, entry a_{22} in the matrix reveals

TABLE 5.1: Transition probability matrix and ergodic distribution,
degree of openness (DO), 1967 to 2004, 5-year transitions,
limits all years

(Share of observations)	Upper limit, all years					
	0.089	0.151	0.21	0.311	1.129	
(0.21)	0.73	0.20	0.04	0.02	0.01	
(0.21)	0.11	0.57	0.25	0.06	0.01	
(0.20)	0.01	0.11	0.56	0.30	0.02	
(0.20)	0.00	0.02	0.12	0.62	0.24	
(0.18)	0.00	0.01	0.01	0.09	0.89	
Initial distribution	0.37	0.31	0.19	0.05	0.08	
Final distribution	0.08	0.09	0.22	0.12	0.49	
Ergodic distribution	0.01	0.05	0.07	0.15	0.72	

a) Unweighted

b) GDP-weighted

	Upper limit, all years				
(Share of world GDP)	0.089	0.151	0.21	0.311	1.129
(0.40)	0.83	0.16	0.01	0.00	0.00
(0.27)	0.10	0.64	0.23	0.03	0.00
(0.16)	0.00	0.06	0.64	0.29	0.01
(0.12)	0.00	0.01	0.11	0.72	0.16
(0.05)	0.00	0.00	0.00	0.05	0.95
Initial distribution	0.71	0.14	0.12	0.02	0.01
Final distribution	0.31	0.16	0.22	0.04	0.27
Ergodic distribution	0.00	0.01	0.04	0.14	0.81

	Upper limit, all years					
(Share of world population)	0.089	0.151	0.21	0.311	1.129	
(0.56)	0.75	0.17	0.07	0.01	0.00	
(0.16)	0.11	0.55	0.23	0.11	0.00	
(0.14)	0.00	0.08	0.49	0.4	0.03	
(0.10)	0.00	0.01	0.12	0.6	0.27	
(0.04)	0.00	0.00	0.00	0.15	0.85	
Initial distribution	0.78	0.16	0.05	0.01	0.00	
Final distribution	0.08	0.27	0.13	0.08	0.44	
Ergodic distribution	0.00	0.01	0.07	0.31	0.61	

TABLE 5.2: Transition probability matrix and ergodic distribution, degree of total connection $(DTC^{\gamma = 1})$ with limits corresponding to $DTC^{\gamma = 0.5}$, 1967 to 2004, 5-year transitions, limits all years

(Share of observations)	Upper limit, all years				
	0.617	0.713	0.837	0.918	0.984
(0.51)	0.76	0.17	0.06	0.01	0.00
(0.10)	0.24	0.47	0.24	0.05	0.00
(0.12)	0.06	0.2	0.43	0.27	0.04
(0.15)	0.03	0.03	0.17	0.55	0.22
(0.12)	0.03	0.00	0.04	0.34	0.58
Initial distribution	0.61	0.12	0.08	0.07	0.12
Final distribution	0.46	0.14	0.19	0.19	0.03
Ergodic distribution	0.45	0.12	0.14	0.18	0.11

a) Unweighted

b) GDP-weighted

(Share of world GDP)	Upper limit, all years				
	0.617	0.713	0.837	0.918	0.984
(0.46)	0.74	0.25	0.01	0.00	0.00
(0.23)	0.25	0.62	0.11	0.01	0.00
(0.08)	0.08	0.18	0.5	0.19	0.04
(0.08)	0.00	0.02	0.18	0.44	0.36
(0.15)	0.00	0.00	0.04	0.32	0.64
Initial distribution	0.76	0.04	0.07	0.02	0.11
Final distribution	0.49	0.16	0.26	0.09	0.00
Ergodic distribution	0.34	0.28	0.12	0.13	0.13

c) Population-weighted

	Upper limit, all years					
(Share of world population)	0.617	0.713	0.837	0.918	0.984	
(0.36)	0.7	0.21	0.09	0.00	0.00	
(0.13)	0.14	0.34	0.33	0.18	0.01	
(0.19)	0.02	0.12	0.55	0.22	0.09	
(0.18)	0.00	0.07	0.15	0.53	0.25	
(0.14)	0.00	0.00	0.1	0.32	0.58	
Initial distribution	0.62	0.21	0.05	0.05	0.07	
Final distribution	0.21	0.04	0.39	0.32	0.04	
Ergodic distribution	0.07	0.1	0.26	0.31	0.26	

TABLE 5.3: Transition probability matrix and ergodic distribution,
degree of total connection $(DTC^{\gamma = 0.5})$, 1967 to 2004,
5-year transitions, limits all years

	Upper limit, all years				
(Share of observations)	0.617	0.713	0.837	0.918	0.984
(0.20)	0.76	0.21	0.02	0.00	0.01
(0.21)	0.17	0.63	0.19	0.01	0.00
(0.19)	0.01	0.11	0.65	0.21	0.02
(0.20)	0.00	0.01	0.12	0.64	0.23
(0.20)	0.00	0.00	0.02	0.22	0.76
Initial distribution	0.32	0.20	0.25	0.09	0.14
Final distribution	0.15	0.17	0.22	0.31	0.15
Ergodic distribution	0.05	0.08	0.17	0.33	0.37

a) Unweighted

b) GDP-weighted

	Upper limit, all years				
(Share of world GDP)	0.617	0.713	0.837	0.918	0.984
(0.10)	0.74	0.25	0.01	0.00	0.00
(0.30)	0.12	0.69	0.19	0.00	0.00
(0.21)	0.01	0.20	0.76	0.03	0.00
(0.20)	0.00	0.12	0.84	0.04	0.00
(0.19)	0.00	0.12	0.84	0.04	0.00
Initial distribution	0.14	0.21	0.50	0.04	0.11
Final distribution	0.04	0.08	0.51	0.34	0.03
Ergodic distribution	0.12	0.40	0.46	0.02	0.00

	Upper limit, all years					
(Share of world population)	0.617	0.713	0.837	0.918	0.984	
(0.07)	0.67	0.31	0.01	0.00	0.01	
(0.14)	0.20	0.48	0.31	0.01	0.00	
(0.21)	0.01	0.07	0.60	0.31	0.01	
(0.30)	0.00	0.00	0.08	0.57	0.35	
(0.28)	0.00	0.00	0.02	0.27	0.71	
Initial distribution	0.33	0.19	0.17	0.23	0.08	
Final distribution	0.09	0.02	0.14	0.63	0.12	
Ergodic distribution	0.00	0.01	0.07	0.41	0.51	

TABLE 5.4: Transition probability matrix and ergodic distribution,
degree of total connection $(DI^{\gamma = 1})$ with limits corresponding
to $DI^{\gamma = 0.5}$, 1967 to 2004, 5-year transitions, limits all years

(Share of observations)	Upper limit, all years				
	0.258	0.334	0.398	0.482	0.989
(0.32)	0.74	0.23	0.02	0.00	0.01
(0.24)	0.09	0.61	0.23	0.07	0.00
(0.17)	0.00	0.10	0.59	0.26	0.05
(0.14)	0.00	0.03	0.12	0.60	0.25
(0.13)	0.00	0.00	0.02	0.13	0.85
Initial distribution	0.58	0.27	0.1	0.03	0.02
Final distribution	0.10	0.20	0.24	0.15	0.31
Ergodic distribution	0.01	0.05	0.1	0.21	0.63

a) Unweighted

b) GDP-weighted

	Upper limit, all years				
(Share of world GDP)	0.258	0.334	0.398	0.482	0.989
(0.49)	0.92	0.08	0.00	0.00	0.00
(0.26)	0.04	0.75	0.19	0.02	0.00
(0.15)	0.00	0.11	0.64	0.24	0.01
(0.07)	0.00	0.02	0.16	0.61	0.21
(0.03)	0.00	0.00	0.01	0.13	0.86
Initial distribution	0.73	0.22	0.05	0.00	0.00
Final distribution	0.31	0.23	0.2	0.11	0.15
Ergodic distribution	0.01	0.07	0.12	0.23	0.57

		U	pper limit, all year	s	
(Share of world population)	0.258	0.334	0.398	0.482	0.989
(0.59)	0.77	0.21	0.02	0.00	0.00
(0.17)	0.09	0.56	0.21	0.14	0.00
(0.13	0.00	0.08	0.60	0.25	0.07
(0.07)	0.00	0.02	0.17	0.42	0.39
(0.04)	0.00	0.00	0.01	0.18	0.81
Initial distribution	0.86	0.11	0.02	0.01	0.00
Final distribution	0.08	0.34	0.13	0.08	0.37
Ergodic distribution	0.01	0.02	0.06	0.24	0.67

TABLE 5.5: Transition probability matrix and ergodic distribution,
degree of integration $(DI^{\gamma = 0.5})$, 1967 to 2004, 5-year transitions,
limits all years

		Ul	pper limit, all years	5	
(Share of observations)	0.258	0.334	0.398	0.482	0.989
(0.21)	0.70	0.23	0.04	0.02	0.01
(0.21)	0.11	0.52	0.30	0.06	0.01
(0.20)	0.02	0.13	0.52	0.30	0.03
(0.20)	0.00	0.01	0.14	0.57	0.28
(0.18)	0.00	0.00	0.00	0.14	0.86
Initial distribution	0.39	0.36	0.17	0.05	0.03
Final distribution	0.09	0.05	0.20	0.22	0.44
Ergodic distribution	0.01	0.01	0.04	0.14	0.80

a) Unweighted

b) GDP-weighted

		Upper	limit, all years		
(Share of world GDP)	0.258	0.334	0.398	0.482	0.989
(0.30)	0.63	0.36	0.01	0.00	0.00
(0.37)	0.15	0.6	0.23	0.02	0.00
(0.17)	0.00	0.17	0.56	0.26	0.01
(0.12)	0.00	0.00	0.20	0.55	0.25
(0.04)	0.00	0.00	0.00	0.11	0.89
Initial distribution	0.65	0.22	0.12	0.01	0.00
Final distribution	0.31	0.02	0.34	0.06	0.27
Ergodic distribution	0.00	0.02	0.08	0.18	0.72

		U	pper limit, all year	s	
(Share of world population)	0.258	0.334	0.398	0.482	0.989
(0.50)	0.70	0.28	0.01	0.00	0.00
(0.21)	0.11	0.45	0.29	0.14	0.01
(0.10)	0.01	0.14	0.41	0.42	0.02
(0.14)	0.00	0.01	0.11	0.57	0.31
(0.05)	0.00	0.00	0.00	0.14	0.86
Initial distribution	0.75	0.20	0.04	0.01	0.00
Final distribution	0.08	0.21	0.17	0.10	0.44
Ergodic distribution	0.00	0.01	0.03	0.21	0.75

that 57% of observations in state 2 (DO < 0.151) remained in that state of openness, 11% of observations transited to state 1, yet a bigger share transited out to upper states (25% to state 3 and 6% to state 4, respectively). This would suggest that once countries reach the highest openness categories, they tend to remain there, suggesting that openness is almost an absorbing state. This result would be consistent with a simple model in which countries seek policies which enhance their long-run openness (Kremer, Onatski and Stock, 2001).

Apart from the intra-distribution mobility information contained in the transition matrix, each table also contains information on the shape of the distribution, along with its hypothetical stationary distribution. For the *DO* (unweighted) case table 5.1a), the three lower rows (right below the 5×5 matrix) contain data on the initial, final, and ergodic distributions, respectively. The initial distribution indicates that by 1967 most countries (37%) had degrees of openness below 0.089; a deeper scrutiny reveals that the overwhelming majority of countries had degrees of openness below 0.151 (68%). However, the shape of the final distribution offers quite a different aspect, with probability mass concentrating overwhelmingly in the upper state, i.e., state five, with *DO* > 0.311contains 49% of the probability mass. This information complements what summary statistics (mean and standard deviation) revealed, adding more precision, as we gain insights on how the *entire* distribution has evolved over the sample period.

However, this information is of discrete nature, i.e., the view we have on the distributions is reported in five states. In order to circumvent this disadvantage, figure 5.4 presents the continuous counterpart to the initial distribution, final distribution and ergodic distributions in table 5.1. It corroborates that dynamics are more complex than what summary statistics revealed, since by 2004 the density clearly shifts to higher levels of the *DO* index, and the aspect of the distribution reveals some intricacies: although state five contains almost half the probability mass, its contiguous state (state 4) contains only 12% of probability, whereas the middle state goes up again (22%). This finding would indicate that, as suggested, dynamics are involved, and in the most recent years most countries are becoming much more open, whereas a non-negligible group lags behind.

The ergodic distribution (shown in the last row of each table) offers a more radical view since, according to the discrete information, probability mass concentrates increasingly in the upper states, with state five containing the largest share of probability mass (72%), i.e., in the stationary state 72% of world economies will have degrees of openness of over 0.311.

FIGURE 5.4: Degree of openness (DO), densities, 1967 versus 2004 versus ergodic

a) Unweighted

b) GDP-weighted

c) Population weighted

Therefore, under current trends, the distribution of probability mass will reverse, since by 1967 almost 70% collapsed at lower states, whereas the steady state suggests a similar amount of probability will concentrate in an upper state only (state 5).

The lower panels in table 5.1 contain information on weighted transitions. Table 5.1.*b*) is the GDP-weighted counterpart to table 5.1*a*); therefore, it does not show transitions of countries but transitions of shares of world GDP. Accordingly, the first column in the table contains information on the share of world GDP starting in a particular state. For instance, 40% of world GDP pertained to countries that at some point in time had DO < 0.089 and five years later either remained or transited out to states of higher openness. On the other hand, those countries starting in the state of highest openness (which then either remained or transited out to other states) have only 5% of world GDP ⁶.

In this GDP-weighted case, in which for the sake of comparison the limits of the states are the same as for the unweighted case, entries off the main diagonal are lower, indicating higher persistence-entries on the main diagonal average to 0.76, compared to 0.67 for the unweighted case. This result is corroborated through table 5.6, which provides results on mobility indices showing that, indeed, mobility is stronger in the unweighted case. Differences are even more marked when comparing the distributions in the last rows of the table. For instance, the initial distribution shows that 37% of countries in state 1 (less openness) had 71% of world GDP; if we extend the selection to state 2, the share of world GDP goes up to 85%. In other words, by 1967 the richest countries were quite closed to trade, and only 15% (12, 2 and 1% in states 3, 4 and 5, respectively) exported more than 15.1% of their GDP. However, by 2004, the probability is, if not totally reversed, quite different, since even though a large share of world GDP is allocated in relatively closed countries (31 and 16% of probability mass are in states 1 and 2, respectively), a remarkable 27% of probability (world GDP) corresponds to state 5. Again, multi-modality is observed by 2004, both in this table and in figure 5.4b, since states 2 and 4 are those with lower amounts of probability mass.

^{6.} Although we refer to *world GDP*, we are considering the GDP corresponding to the 59 countries in our sample which, in any case, account for the largest share of world GDP.

Variable	Transition matrix	m 1	
DO	Unweighted	0.756	_
	GDP-weighted	0.723	
	Population-weighted	0.788	
$DTC^{\gamma=1}$	Unweighted	0.834	
	GDP-weighted	0.840	
	Population-weighted	0.848	
$DTC^{\gamma = 0.5}$	Unweighted	0.790	
	GDP-weighted	0.896	
	Population-weighted	0.823	
$DI^{\gamma=1}$	Unweighted	0.784	
	GDP-weighted	0.763	
	Population-weighted	0.811	
$DI^{\gamma=0.5}$	Unweighted	0.773	
	GDP-weighted	0.762	
	Population-weighted	0.789	

FABLE 5.0	i: Moł	oility	indices

Note: See main text for definition of $\mu_{\rm l}.$

Akin to the unweighted case, the ergodic distribution provides a smoother view in which bi-modality has faded away almost entirely, less corrupted by possible outliers or tendencies which might have accelerated only recently, i.e., if the dynamics of the sample years continue. The change in the situation predicted by the ergodic distribution is impressive: almost 81% of world GDP would correspond to the more open countries (with a level of openness similar to Germany in 2004), whereas only 1% (states 1 and 2) would correspond to the more closed ones. The density function corroborates this finding entirely, figure 5.4b), as probability mass concentrates primarily above 0.311, which corresponds exactly to state 5.

Table 5.1c) is the population-weighted counterpart to table 5.1a). In this case, the first column indicates the population corresponding to the countries initially in each of the five states, which then transit out to other states. Similarly to the GDP-weighted case, the largest number of people (56%) inhabits the countries with the lower degree of openness, which after five years transit out to other states. This matrix shows higher mobility, as entries on the main diagonal average to 0.65, even lower than in the unweighted case. However, more distinctive features of the population-weighted dynamics are revealed by the last three rows in table 5.1c). The initial distribution shows the probability mass almost entirely skewed to the left, since 94% of the world population lives in countries with the lowest degree of openness (states 1 and 2). As of

2004, the scenario is quite different, since by then the population tends to live in the most open countries, although to a more limited extent—state 5 comprises *only* 44% of the world population, compared to 78% in state 1 by 1967. Should these 38-year tendencies continue, the stationary distribution would suggest the population will live predominantly mostly in more open countries—i.e., 92% of probability lies in states 4 and 5.

Results corresponding to degree of total connection (*DTC*) are displayed in table 5.2 and table 5.3, for $\gamma = 1$ and $\gamma = 0.5$, respectively. Interpretations are analogous to those for *DO*. However, since we considered the same criterion for setting the limits between states, these are different, due to the marked discrepancies between the values for *DO* and *DTC*—regardless of the considered, i.e., whereas *DO* values are closer to zero, values for *DTC* are closer to unity, especially for lower values of γ . Accordingly, the first column of the first panel in each table, corresponding to unweighted transitions, contains a similar number of observations as in the first column in table 5.1*a*). Before proceeding it is worth noting the relevance of the limits between states, which are also different for different values of γ .

In the case of $\gamma = 1$ (table 5.2), results do not entirely mimic those obtained for *DO*. In this case, mobility is stronger when weighting by population (entries in the main diagonal average to 0.54, compared to 0.59 in the GDPweighted case, and 0.56 in the unweighted case), for which we find an ergodic distribution with probability collapsing at upper states—57% of the population would inhabit countries in state 4 and state 5, see last row in table 5.2*c*). In the GDP-weighted case probability tends to distribute in a sort of bimodality, but these correspond to lower values of *DTC* in the case of $\gamma = 1$.

All these dynamics refer to the unweighted case, table 5.2*a*), which shows more moderate annual transitions compared to table 5.1*a*), as revealed by ergodic distributions showing probability moderately concentrating at upper states (29% for both states 4 and 5, see table 5.2*a*). However, we should bear in mind the fact that the upper limits are higher in the case of *DTC*, either under $\gamma = 1$ or $\gamma = 0.5$. Comparing both weighting schemes to the unweighted case—i.e., tables 5.2*b*) and 2.*c*) versus table 5.2*a*)—provides us with some interesting findings, as both weighted cases show probability initially skewed to the left—i.e., both rich countries and heavily populated countries were rather closed—, whereas for 2004 it is skewed to the right yet only for the population-weighted case. Therefore, the structure of trade would seem to differ substantially between rich and most-populated countries, since the latter show more balanced connections with the rest of the world.

Results for different values of γ change, but the main tendencies hold for $\gamma = 0.5$ (see table 5.3). The most interesting result is that ergodic distribu-

tions show probability collapsing more strongly in the upper states for the unweighted case and, especially, in the population-weighted case, tables 5.3a) and 5.3c). However, for GDP-weighted transitions bimodality disappears and probability tends to accumulate more strongly and increasingly in the middle states, table 5.3b). These findings are corroborated through figure 5.5, which represents continuous counterparts (densities) to tables 5.2 and 5.3. They corroborate the discrete analysis for both γ 's considered, and for all weighting schemes. When all weighting schemes are compared the finding that the most-populated countries exhibit the most radical tendencies is especially remarkable, as probability mass tends to concentrate more tightly over time and for $\gamma = 0.5$.

Finally, tables 5.4 and 5.5, and figure 5.6, report results on DI, for the two values of γ considered, which merge results for DO and DTC. Again, interpretations should be made with care, since the grids differ from those considered for DO and DTC, and also between different values of γ , which represent a balance between the grids chosen for DO and DTC. Regardless of the γ considered, and the weighting scheme, ergodic distributions show probability collapsing more strongly in the upper states, after departing from initial distributions strongly skewed to the left, and final distributions with the opposite pattern. Differences across weighting schemes are as apparent as for DTC, suggesting that the sources of international economic integration for each country may be different: whereas for the most populated countries they come from a more balanced trade structure, richer countries seem to integrate when they are more open. In general, when accounting for indirect connections ($\gamma = 0.5$), the tendency to concentrate in the upper integration states is stressed for all economies, GDP and population. Specifically, the ergodic distribution predicts that 80% of countries, 72% of GDP and 75% of population will correspond to integration levels above 0.482, i.e., they will have completed half the way to maximum integration.

The continuous counterparts to tables 5.4 and 5.5 are shown in figure 5.6. The view they provide for the *DI*, analogous to the discrete case, is quite elucidating, as probability shifts rightwards for all instances—regardless of the γ considered and the weighting scheme. Comparing unweighted results (figure 5.6a) reveals that integration has shifted rightwards, yet probability is more spread by 2004, indicating an increased variety, which will eventually (ergodic distribution) turn into bi-modality ⁷. Weighting by GDP

^{7.} Bandwidth selection is critical for this finding, and it could be argued that the bi-modality found is simply a result of under-smoothing. However, the result was robust for several smoothing parameters.

FIGURE 5.5: Degree of connection (DTC), densities, 1967 versus 2004 versus ergodic

37

FIGURE 5.6: Degree of connection (DI), densities, 1967 versus 2004 versus ergodic

yields similar results, although multi-modality is not so obvious. However, it is in the case of weighting by population that results differ, as we depart from very low values (probability is strongly skewed to the left), it turns clearly bi-modal by 2004 (suggesting some very heavily populated countries are participating in the international integrating process, while others are doing so to a lesser extent), but in the hypothetical long run bi-modality will fade away. In addition, if we compare population-weighted results with either GDP-weighted or unweighted results, regardless of the γ considered, international economic integration will be stronger, suggesting that population will mostly inhabit integrated countries.

Tables 5.7 through 5.9 report results on statistical significance of differences across different matrices, which are all significant at 1% significance level.

	$M^{DO}_{unweighted}$	$M^{\!\scriptscriptstyle DO}_{\!\scriptscriptstyle w\!eighted}$	$M^{po}_{POP\text{-}weighted}$
$M^{DO}_{unweighted}$			
(p-value)	_	0.169	0.251
		(0.000)	(0.000)
$M^{DO}_{GDP\text{-}weighted}$			
(<i>p</i> -value)			0.252
			(0.000)

TABLE 5.7: Statistical significance (χ^2) of matrices equality, degree of openness *(DO)*

Note: Null hypothesis is that the pair of matrices corresponding to each cell are the same. We test whether differences are statistically significant. Test statistic is distributed χ^2 (K (K-1)).

In order to assess whether the pace of the integration process has intensified from 1990, as figures 5.1 through 5.3 seem to suggest, we also computed ergodic distributions resulting from transitions between 1990 and 2004, for all cases considered. Results are displayed in table 5.10 where, in order to ease direct comparison, results for 1967-2004 are also displayed. In the case of *DO*, the pace speeds up, as probability mass concentrates more strongly in state 5 for the 1990-2004 distributions. Results for *DTC* are more difficult to interpret, suggesting that the balanced connections may have diminished over the last few years. Merging results for both *DO* and *DTC*, it seems that the evolution in the making of the *DI* is dominated by *DO*, as ergodic distributions for the *DI* index corresponding to the last sub-period tend to concentrate probability overwhelmingly in state 5. All differences between ergodic distributions are significant, as shown by the *p*-values in the last column of the table.

	$M_{unweighted}^{DTC^{\gamma = 1}}$	$M^{DTC^{\gamma}=1}_{GDP\text{-weighted}}$	$M_{POP\text{-weighted}}^{DTC^{\gamma}=1}$	$M_{unweighted}^{DTC\gamma = 0.5}$	$M_{GDP-weighted}^{DTC\gamma = 0.5}$	$M_{POP-weighted}^{DTC\gamma = 0.5}$
$M_{unweighted}^{DTC^{\gamma} = 1}$ (p-value)	_	0.336 (0.000)	0.387 (0.000)	0.248 (0.000)	1.261 (0.000)	0.572 (0.000)
$M_{GDP-weighted}^{DTC^{\gamma}=1}$ $(p-value)$		_	0.544 (0.000)	0.641 (0.000)	1.728 (0.000)	1.113 (0.000)
$M_{POP-weighted}^{DTC^{\gamma}=1}$ (p-value)			_	0.397	1.946	0.658
$M_{unweighted}^{DTC^{\gamma} = 0.5}$				_	1.996	0.312
$M_{GDP-weighted}^{DTCY=0.5}$						0.571
(p-value) $M_{POP-weighted}^{DTC\gamma = 0.5}$						(0.000)
(p-value)						

TABLE 5.8: Statistical significance (χ^2) of matrices equality, degree of total connection (*DTC*)

Note: Null hypothesis is that the pair of matrices corresponding to each cell are the same. We test whether differences are statistically significant. Test statistic is distributed $\gamma 2$ (K (K-1)).

Finally, we also assessed how long it may take to get close to the steady state, as implied by the structures of the transition probability matrices. As suggested in section 3.3, a useful criterion of speed of convergence to the ergodic distribution is the asymptotic half-life of convergence, H - L, whose results are displayed in table 6.2 and indicate how many periods (1 period = 5 years, since we compute five-year transitions) are necessary for the distance between the current (2004) and the ergodic distribution to decrease by half.

According to table 6.2, in the case of unweighted $DI^{y=1}$ it would take $5.646 \times 5 \approx 28.230$ years to reduce the distance between the ergodic and current (2004) distribution by half, whereas for $\gamma = 0.5$ it would take slightly longer (30.200 years). Results are different for the two weighting schemes. For the GDP-weighted case, the pace slows down, as it would take $8.682 \times 5 \approx 43.410$ years to reduce the same distance by half, while for population-weighted transitions the path accelerates ($3.827 \times 5 \approx 19.135$). Results are not entirely coincidental if we consider only the 1990-2004 period, according to which speeds of convergence are more alike for the three weighting

	$M_{unweighted}^{DTC^{\gamma}=1}$	$M^{DTC^{\gamma}=1}_{GDP\text{-weighted}}$	$M_{POP\text{-weighted}}^{DTC^{\gamma}=1}$	$M_{unweighted}^{DTC\gamma = 0.5}$	$M_{GDP-weighted}^{DTC\gamma = 0.5}$	$M_{POP-weighted}^{DTC^{\gamma} = 0.5}$
$M_{unweighted}^{DTC\gamma = 1}$	_	0.137	0.222	0.059	0.179	0.199
(p-value)		(0.000)	(0.000)	(0.000)	(0.000)	(0.000)
$M_{GDP-weighted}^{DTC\gamma = 1}$		_	0.258	0.207	0.249	0.333
(<i>p</i> -value)			(0.000)	(0.000)	(0.000)	(0.000)
$M_{POP-weighted}^{DTC\gamma = 1}$			_	0.253	0.334	0.262
(<i>p</i> -value)				(0.000)	(0.000)	(0.000)
$M_{unweighted}^{DTC^{\gamma} = 0.5}$				_	0.082	0.190
(<i>p</i> -value)					(0.000)	(0.000)
$M_{GDP-weighted}^{DTC\gamma = 0.5}$					_	0.157
(p-value)						(0.000)
$M_{POP \text{-weighted}}^{DTC\gamma = 0.5}$ (p-value)						_

TABLE 5.9: Statistical significance (χ^2) of matrices equality, degree of total integration *(DI)*

Note: Null hypothesis is that the pair of matrices corresponding to each cell are the same. We test whether differences are statistically significant. Test statistic is distributed χ^2 (K (K-1)).

schemes, especially under $\gamma = 0.5$, suggesting that the source of integration among the most-populated countries, namely, the degree of connection, has decreased over the recent years.

6. Conclusions

ACCORDING to many opinions, globalization is advancing and, should the underlying trends of recent decades continue, the world economy may be expected to achieve high levels of international economic integration (IEI) in the near future. The analysis carried out in this study corroborates this perception, based on instruments that enable careful interpretation of the nature of the process and their driving factors, contributing also to measuring their speed and, above all, to characterizing how economies have evolved in terms of degree of openness, degree of connection, and degree of integration. The point of departure for the research was the axiomatic definition of a Standard of Perfect International Integration (see Arribas, Pérez and Tortosa-Ausina, 2007), the arrival point for a world economy in which all countries would trade with no frictions, costs or any other type of impediment. Building on the measurement of the evolution from 1967 to 2004, we analyze the dynamics of the integration process with a set of techniques extensively used by the empirical literature on growth, in order to project those tendencies which have existed over the past decades onto the future and to assess the perspectives for IEI.

TABLE 6.1	: Ergodic distributi	ions, all	data ve	rsus 19	90-2004	: data						
						Ergodic dis	tributions					
				1967-2004						1990-2004		X ² (p-value)
DO	Upper limits	0.089	0.151	0.21	0.311	1.129	0.089	0.151	0.21	0.311	1.129	
	Unweighted	0.02	0.05	0.07	0.15	0.72	0.00	0.00	0.02	0.05	0.93	-0.086(0.000)
	GDP-weighted Population-weighted	000	0.01	0.04 0.07	$0.14 \\ 0.31$	0.81 0.61	0.00	0.00	0.01 0.03	0.03 0.30	0.96 0.67	-0.020(0.000) -0.010(0.000)
$DTC\gamma = 1$	Upper limits	0.617	0.713	0.837	0.918	0.984	0.617	0.713	0.837	0.918	0.984	
	Unweighted	0.45	0.12	0.14	0.18	0.11	0.51	0.19	0.13	0.13	0.04	-0.013(0.000)
	GDP-weighted	0.34	0.28	0.12	0.13	0.14	0.7	0.13	0.05	0.08	0.04	0.036(0.000)
	Population-weighted	0.07	0.10	0.26	0.31	0.26	0.21	0.06	0.30	0.26	0.17	0.283(0.000)
$DTC\gamma = 0.5$	Upper limits	0.617	0.713	0.837	0.918	0.984	0.617	0.713	0.837	0.918	0.984	
	Unweighted	0.05	0.08	0.17	0.33	0.37	0.12	0.04	0.25	0.35	0.25	0.032(0.000)
	GDP-weighted	0.12	0.40	0.46	0.01	0.00	0.00	0.00	0.86	0.08	0.06	0.690(0.000)
	Population-weighted	000	0.01	0.07	0.41	0.51	0.13	0.01	0.13	0.41	0.32	0.098(0.000)
$DI^{\gamma=1}$	Upper limits:	0.258	0.334	0.398	0.482	0.989	0.258	0.334	0.398	0.482	0.989	
	Unweighted	0.01	0.05	0.10	0.21	0.63	0.00	0.01	0.03	0.09	0.87	-0.041(0.000)
	GDP-weighted	0.01	0.07	0.12	0.23	0.57	0.00	0.00	0.02	0.08	0.90	-0.014(0.000)
	Population-weighted	0.01	0.02	0.06	0.24	0.66	0.00	0.00	0.02	0.26	0.72	-0.005(0.000)
$DI\gamma = 0.5$	Upper limits	0.258	0.334	0.398	0.482	0.989	0.258	0.334	0.398	0.482	0.989	
	Unweighted	0.00	0.01	0.04	0.14	0.8	0.00	0.00	0.02	0.05	0.93	-0.070(0.000)
	GDP-weighted	0.01	0.02	0.07	0.18	0.72	0.00	0.00	0.01	0.04	0.95	-0.015(0.000)
	Population-weighted	0.00	0.01	0.03	0.21	0.75	0.00	0.00	0.02	0.14	0.84	-0.002(0.000

1000-9004 data ll data 4 dicted 17 F 5 F

43

Variable	Transition matrix	H – L, 1967-2004	H – L, 1990-2004
	Unweighted	5.646	0.006
$DI^{\gamma=1}$ (limits $\gamma = 0.5$)	GDP-weighted	8.682	7.872
	Population-weighted	3.827	3.701
	Unweighted	0.006	4.991
$DI^{\gamma=0.5}$	GDP-weighted	8.235	0.004
	Population-weighted	3.621	4.053

TABLE 6.2: Transition path analysis (asymptotic half life of convergence)

Note: See main text for definition of H - L.

Results can be summarized following several lines:

- 1. The openness of economies doubled (on average) from 1967 to 2004, and the distribution dynamics for the degree of openness shows that, by 2004, almost twice the number of countries and population in our sample are situated in economies whose degrees of openness are larger than 30%. If this tendency were to continue, more than two thirds of countries, GDP and world population would be facing much more open scenarios. If we weight, either for economic size (GDP) or demography (population), the process is more intense, and the tendency for the degree of openness to increase is stronger.
- 2. The degree of connection measures how encompassing and balanced (according to their size) trade relations among economies are, and by the beginning of the 21st century it had reached a remarkably high level. The degree of connection is higher than 60% if we consider only direct connections, and it reaches 75% if we allow for indirect trade connections among countries. Distribution dynamics are strongly influenced by this fact, since most economies are already closely connected with the rest. Related to this, the biggest advances can be expected from an intensification of indirect connections, for which statistical information is not available, although one may reasonably conclude they are increasing (i.e., the γ parameter is decreasing). As a consequence, one may expect that for most economies the degree of connection will approach its highest level.
- 3. Both factors referred to above, i.e., degree of openness and degree of connection (trade structure) contribute to economic integra-

tion in different ways. The advance in the degree of international integration between 1967 and 2004 was substantial, and the degree of integration index is close to 50%. Should this tendency hold, the number of countries with high levels of IEI will become much higher, as well as the percentage of world population that inhabits these countries. The ergodic distribution corresponding to the degree of integration *(DI)* illustrates this finding, since probability mass concentrates more strongly over time in those states corresponding to the highest values of *DI*. Within fifty years, more than 70% of countries, world population and GDP will be half way to the steady state distribution, representing high degrees of integration, although prospects are not as rosy if we assume less indirect connections.

- 4. The weighted results regarding countries' GDP show that a progressive increase in the weight of economies with high degrees of integration will occur. Some economic areas with average, or low, levels of integration are still important for the world economy, yet with a decreasing weight. But the pace of advance toward world economic integration will accelerate in most countries—especially in the most populated but also in others with high weight in terms of GDP.
- 5. In the framework of these general trends, the analysis of the distribution dynamics undertaken shows that differences have existed and will not completely vanish in the near future, as shown both by the values of the transition probability matrices, which do not abandon the main diagonal easily, and the ergodic distributions. The ergodic densities (the continuous counterpart to the discrete ergodic distributions) corroborate these findings and, simultaneously, provide further details to the analysis.

In sum, the speed at which IEI is advancing is noteworthy, and the ergodic distribution may quickly be approached, although there is a remarkable heterogeneity among countries in this respect. Most economies are achieving degrees of trade openness and trade structure (degree of connection) which lead to high economic integration levels. However, in many cases this result is still far from the *Standard of Perfect Economic Integration* as defined. This finding coincides with some of the ideas disseminated by Rodrik (2000), who considered that we are still a long way from a world in which markets for goods, services, and factors of production are perfectly integrated, *contrary to conventional wisdom and much punditry*, or with Frankel (2000), who points out that globalization of trade and finance is *less impressive than most non-economists think*. The question still remaining relates to which factors and barriers (geographic, political, historical, cultural, or economic) explain, for each different case, the difficulties in obtaining a higher level of integration without costs and without frictions, or oppose it altogether. The results obtained and methods used in our study may provide a base on which to deal with this question.

References

- Arribas Fernández, I., F. Pérez García and E. Tortosa-Ausina (2007): "Measuring International Economic Integration: Theory and Evidence of Globalization", Working Paper 24, Bilbao, BBVA Foundation.
- BALDWIN, R. and P. MARTIN (1999): "Two Waves of Globalisation: Superficial Similarities, Fundamental Differences", Working Paper 6904, National Bureau of Economic Research.
- BASHTANNYK, D. M. and R. J. HYNDMAN, (2001): "Bandwidth Selection for Kernel Conditional Density Estimation", *Computational Statistics & Data Analysis*, 36, 279-298.
- BHAGWATI, J. (2004a): "Anti-Globalization: Why?", Journal of Policy Modeling, 26, 439-463.
- (2004b): In Defense of Globalization, Oxford, Oxford University Press.
- BULLI, S. (2001): "Distribution Dynamics and Cross-Country Convergence: A New Approach", Scottish Journal of Political Economy, 48, 226-243.
- COMBES, P.-P., M. LAFOURCADE and T. MAYER (2005): "The Trade-Creating Effects of Business and Social Networks: Evidence from France", *Journal of International Economics*, 66, 1.29.
- CRAFTS, N. (2000): "Globalization and Growth in the Twentieth Century", Working Paper 44, IMF, Washington.
- DURLAUF, S. N. and D. T. QUAH (1999): "The New Empirics of Economic Growth", in *Handbook of Macroeconomics*, volume 1A, 231-304, North Holland, Amsterdam.
- FRANKEL, J. A. (2000): "Globalization of the Economy", Working Paper 7858, NBER, Cambridge, Massachusetts.
- and A. K. ROSE (2000): "Estimating the Effects of Currency Unions on Trade and Output", Working Paper 7857, NBER, Cambridge, Massachusetts.
- GEWEKE, J., R. C. MARSHALL and G. A. ZARKIN (1986): "Mobility Indices in Continuous Time Markov Chains", *Econometrica*, 54 (6), 1407-1423.
- GOERLICH, F. J. (2003): "Weighed, Kernel Density Estimators and Convergence", *Empirical Economics*, 28 (2), 335-351.
- GOLDMAN SACHS (2004): "Dreaming with BRICS: The Path to 2050", *Global Economics*, 99, Goldman Sachs Group, Inc.
- GREANEY, T. M. (2003): "Reverse Importing and Asymmetric Trade and FDI: A Networks Explanation", *Journal of International Economics*, 61, 453-465.
- HÄRDLE, W. and O. LINTON (1994): "Applied Nonparametric Methods", in R. Engle, and D. McFadden (eds.), *Handbook of Econometrics*, volume 4, North Holland, Amsterdam.
- JOHNSON, P. A. (2000): "A Nonparametric Analysis of Income Convergence Across the US States", *Economics Letters*, 69, 219-223.

- JOHNSON, P. A. (2005): "A Continuous State Space Approach to 'Convergence by Parts'", *Economics Letters*, 86, 317-321.
- KALI, R. and J. REYES (2007): "The Architecture of Globalization: A Network Approach to International Economic Integration", *Journal of International Business Studies*, 38, 595-620.
- F. MÉNDEZ and J. REYES (2007): "Trade Structure and Economic Growth", Journal of International Trade & Economic Development, 16 (2), 245-269.
- KREMER, M., A. ONATSKI and J. STOCK (2001): "Searching for Prosperity", Carnegie-Rochester Conference Series on Public Policy, 55, 275-303.
- LAMO, A. (2000): "On Convergence Empirics: Some Evidence for Spanish Regions", *Investiga*ciones Económicas, 24, 681-707.
- MADDISON, A. (2001): "The World Economy: A Millenial Perspective", Development Centre Studies, OECD.
- MILANOVIC, B. (2006): "Economic Integration and Income Convergence: Not Such a Strong Link?", *Review of Economics and Statistics*, 88 (4), 659-670.
- OECD (ORGANISATION FOR ECONOMIC CO-OPERATION AND DEVELOPMENT) (2007): Financial arket Trends: Ageing and Pension System Reform, Implications for Financial Markets and Economic Policies, volume 2005, Paris, OECD.
- O'ROURKE, K. H. and J. G. WILLIAMSON (1999): *Globalization and History: The Evolution of a 19th Century Atlantic Economy*, MIT Press, Cambridge, Massachusetts.
- and G. WILLIAMSON (2002): "When Did Globalization Begin?", European Review of Economic History, 6, 23-50.
- PANDEY, M. and J. WHALLEY (2004): "Social Networks and Trade Liberalization", Working Paper 10769, National Bureau of Economic Research, Cambridge, Massachusetts.
- QUAH, D. T. (1993): "Empirical Cross-Section Dynamics in Economic Growth", European Economic Review, 37, 426-434.
- (1996a): "Aggregate and Regional Disaggregate Fluctuations", *Empirical Economics*, 21, 137-159.
- (1996b): "Empirics for Economic Growth and Convergence", *European Economic Review*, 40, 1353-1375.
- (1996c): "Regional convergence clusters across Europe", *European Economic Review*, 40, 951-958.
- (1996d): "Twin Peaks: Growth and Convergence in Models of Distribution Dynamics", *Economic Journal*, 106 (437), 1045-1055.
- (1997): "Empirics for Growth and Distribution: Stratification, Polarization and Convergence Clubs", *Journal of Economic Growth*, 2 (1), 27-59.
- (2003): "One Third of the World's Growth and Inequality", in T. S. Eicher and S. J. Turnovsky (eds.), *Inequality and Growth. Theory and Policy Implications*, chapter 2, 27-58, The MIT Press, Cambridge, Massachusetts.
- RAUCH, J. E. (1999): "Networks Versus Markets in International Trade", *Journal of International Economics*, 48, 7-35.

- RAUCH, J. E. (2001): "Business and Social Networks in International Trade", *Journal of Economic Literature*, 39, 1177-1203.
- and A. CASELLA (2003): "Overcoming Informational Barriers to International Resource Allocation: Prices and Ties", *The Economic Journal*, 113, 21-42.
- and V. TRINDADE (2002): "Ethnic Chinese Networks in International Trade", *Review of Economics and Statistics*, 84 (1), 116-130.
- REDDING, S. (2002): "Specialization Dynamics", *Journal of International Economics*, 58 (2), 299-334.
- REICHLIN, L. (1999): Discussion of "Convergence as Distribution Dynamics" (by Danny Quah), in R. Baldwin, D. Cohen, A. Sapir and A. Venables (eds.), *Market Integration, Regionalism, and the Global Economy*, 328-335, Cambridge University Press, Cambridge.
- RODRÍGUEZ, F. and D. RODRIK (2001): "Trade Policy and Economic Growth: A Skeptic's Guide to the Cross-National Evidence", in B. Bernanke and K. S. Rogoff (eds.), *Macroeconomics Annual 2000*, MIT Press for NBER, Cambridge, Massachusetts.
- RODRIK, D. (1998a): "Globalisation, Social Conflict and Economic Growth", World Economy, 21 (2), 143-158.
- (1998b): "Symposium on Globalization in Perspective: An Introduction", *Journal of Economic Perspectives*, 12 (4), 3-8.
- (1998c): "Who Needs Capital-Account Convertibility?", in *Essays in International Finance*, number 207, Princeton University, Princeton, NJ.
- (1999): "The New Global Economy and Developing Countries: Making Openness Work", in *Policy Essays*, number 24, Overseas Development Council, Washington, DC.
- (2000): "How Far Will International Economic Integration Go?", *Journal of Economic Perspectives*, 14 (1), 177-186.
- SALVATORE, D. (2004): "Globalization, Growth and Poverty: Editor's Introduction", Journal of Policy Modeling, 26, 421-424.
- SHORROCKS, A. F. (1978): "The Measurement of Mobility", Econometrica, 46 (5), 1013-1024.
- STIGLITZ, J. E. (2002), "Globalization and Its Discontents", Norton, New York and London.
- (2006), Making Globalization Work, Norton, New York.
- WILLIAMSON, J. (1996): "Globalization, Convergence and History", Journal of Economic History, 56 (2), 277-306.
- WOLF, M. (2005): *Why Globalization Works*, Yale University Press, New Haven. WORLD BANK (2007): *Global Economic Prospects*, Washington.

A B O U T T H E A U T H O R S*

IVÁN ARRIBAS FERNÁNDEZ graduated in mathematics (statistics and operation research) and holds a PhD in economics from the University of Valencia, and is a professor in the Department of Economic Analysis of the said university. He has also taught on the MBA of the National University of Mar del Plata (Argentina) and has lectured in the Central Bank of the Dominican Republic (analysis and modelling of time series to forecast main economic outcomes, training in mathematical models focused on macroeconomics, etc.). His specialised fields are game theory and network games. He has published various articles in international specialized journals. He has participated in many Spanish and international congresses. E-mail: ivan.arribas@uv.es

FRANCISCO PÉREZ GARCÍA holds a PhD in economics from the University of Valencia where he is currently professor of fundamentals of economic analysis. He has also been research director at the Instituto Valenciano de Investigaciones Económicas (Ivie) since the time of its foundation. His specialist fields are financial economics, banking and public finance, economic growth, regional economics and economics of education. He has published more than twenty books and over a hundred articles in Spanish and international journals. E-mail: francisco.perez@ivie.es

Any comments on the contents of this paper can be addressed to Emili Tortosa-Ausina at tortosa@uji.es.

^{*} This working paper is a result of the BBVA Foundation and Instituto Valenciano de Investigaciones Económicas (FBBVA-Ivie) Research Program. All authors acknowledge financial support from the Spanish Science and Education Ministry SEJ2004-07554, SEJ2005-02776 and SEJ2005-01163, respectively. Emili Tortosa-Ausina also acknowledges the financial support of the Valencian Regional Government ACOMP06/047.

EMILI TORTOSA-AUSINA graduated in economics from the University of Valencia and holds a PhD in economics from the University Jaume I (Castelló de la Plana), where he is currently a lecturer in applied economics. He has also taught in the Department of Economic Analysis at the University of Alicante (1994-1995) and has received scholarships from various institutions (Fundación Caja Madrid, among others). He has recently held posts as visiting researcher in the Business Economics Department of the Autonomous University of Barcelona, the School of Economics of the University of New South Wales (Sydney, Australia), and the Department of Economics of Oregon State University (Corvallis, Oregon, USA). His specialized fields are banking economics and the analysis of efficiency and productivity. He has published various books in collaboration with others and his articles have appeared in specialized journals. He has participated in many Spanish and international congresses and is an associate researcher of the National Research Project Reestructuración productiva y movilidad en la Nueva Economía. E-mail: tortosa@uji.es

Fundación **BBVA**

DOCUMENTOS DE TRABAJO

NÚMEROS PUBLICADOS

DT 01/02	Trampa del desempleo y educación: un análisis de las relaciones entre los efectos
	desincentivadores de las prestaciones en el Estado del Bienestar y la educación
	Jorge Calero Martínez y Mónica Madrigal Bajo
DT 02/02	Un instrumento de contratación externa: los vales o cheques.
	Análisis teórico y evidencias empíricas
	Ivan Planas Miret
DT 03/02	Financiación capitativa, articulación entre niveles asistenciales
	y descentralización de las organizaciones sanitarias
	Vicente Ortún-Rubio y Guillem López-Casasnovas
DT 04/02	La reforma del IRPF y los determinantes de la oferta laboral
	en la familia española
	Santiago Álvarez García y Juan Prieto Rodríguez
DT 05/02	The Use of Correspondence Analysis in the Exploration
	of Health Survey Data
	Michael Greenacre
DT 01/03	¿Quiénes se beneficiaron de la reforma del IRPF de 1999?
	José Manuel González-Páramo y José Félix Sanz Sanz
DT 02/03	La imagen ciudadana de la Justicia
	José Juan Toharia Cortés
DT 03/03	Para medir la calidad de la Justicia (I): Abogados
	Juan José García de la Cruz Herrero
DT 04/03	Para medir la calidad de la Justicia (II): Procuradores
	Juan José García de la Cruz Herrero
DT 05/03	Dilación, eficiencia y costes: ¿Cómo ayudar a que la imagen de la Justicia
	se corresponda mejor con la realidad?
	Santos Pastor Prieto
DT 06/03	Integración vertical y contratación externa en los servicios
	generales de los hospitales españoles
	Jaume Puig-Junoy y Pol Pérez Sust
DT 07/03	Gasto sanitario y envejecimiento de la población en España
	Namkee Ahn, Javier Alonso Meseguer y José A. Herce San Miguel

DT 01/04	Métodos de solución de problemas de asignación de recursos sanitarios
	Helena Ramalhinho Dias Lourenço y Daniel Serra de la Figuera
DT 01/05	Licensing of University Inventions: The Role of a Technology Transfer Office
	Inés Macho-Stadler, David Pérez-Castrillo y Reinhilde Veugelers
DT 02/05	Estimating the Intensity of Price and Non-price Competition in Banking:
	An Application to the Spanish Case
	Santiago Carbó Valverde, Juan Fernández de Guevara Radoselovics, David Humphrey
	y Joaquín Maudos Villarroya
DT 03/05	Sistemas de pensiones y fecundidad. Un enfoque de generaciones solapadas
	Gemma Abío Roig y Concepció Patxot Cardoner
DT 04/05	Análisis de los factores de exclusión social
	Joan Subirats i Humet (Dir.), Ricard Gomà Carmona y Joaquim Brugué Torruella (Coords.)
DT 05/05	Riesgos de exclusión social en las Comunidades Autónomas
	Joan Subirats i Humet (Dir.), Ricard Gomà Carmona y Joaquim Brugué Torruella (Coords.)
DT 06/05	A Dynamic Stochastic Approach to Fisheries Management Assessment:
	An Application to some European Fisheries
	José M. Da-Rocha Álvarez y María-José Gutiérrez Huerta
DT 07/05	The New Keynesian Monetary Model: Does it Show the Comovement
	between Output and Inflation in the U.S. and the Euro Area?
	Ramón María-Dolores Pedrero y Jesús Vázquez Pérez
DT 08/05	The Relationship between Risk and Expected Return in Europe
	Ángel León Valle, Juan Nave Pineda y Gonzalo Rubio Irigoyen
DT 09/05	License Allocation and Performance in Telecommunications Markets
	Roberto Burguet Verde
DT 10/05	Procurement with Downward Sloping Demand: More Simple Economics
	Roberto Burguet Verde
DT 11/05	Technological and Physical Obsolescence and the Timing of Adoption
	Ramon Caminal Echevarria
DT 01/06	El ejecto de la inmigración en las oportunidades de empleo
	de los trabajadores nacionales: Evidencia para España
DT 00/06	Raquel Carrasco Perea, Juan Francisco Jimeno Serrano y Ana Caronna Ortega Masague
DT 02/06	Inimigración y pensiones: ¿Que sabemos:
DT 02/00	A Survey Study of Factors Influencing Pick Taking Rehavior
DT 03/06	in Pral World Designer under Unewtainty
	Manal Bayealls Alibás y Cristina Pata
	Measurement of Social Capital and Crowth:
21 04/00	An Economic Methodology
	Francisco Pérez García. Lorenzo Serrano Martínez. Vicente Montesinos Santalucía
	v Juan Fernández de Guevara Radoselovics

DT 05/06	The Role of ICT in the Spanish Productivity Slowdown
	Matilde Mas Ivars y Javier Quesada Ibáñez
DT 06/06	Cross-Country Comparisons of Competition and Pricing Power
	in European Banking
	David Humphrey, Santiago Carbó Valverde, Joaquín Maudos Villarroya y Philip Molyneux
DT 07/06	The Design of Syndicates in Venture Capital
	Giacinta Cestone, Josh Lerner y Lucy White
DT 08/06	Efectos de la confianza en la información contable sobre el coste de la deuda
	Belén Gill de Albornoz Noguer y Manuel Illueca Muñoz
DT 09/06	Relaciones sociales y envejecimiento saludable
	Ángel Otero Puime, María Victoria Zunzunegui Pastor, François Béland,
	Ángel Rodríguez Laso y María Jesús García de Yébenes y Prous
DT 10/06	Ciclo económico y convergencia real en la Unión Europea:
	Análisis de los PIB per cápita en la UE-15
	José Luis Cendejas Bueno, Juan Luis del Hoyo Bernat, Jesús Guillermo Llorente Álvarez,
	Manuel Monjas Barroso y Carlos Rivero Rodríguez
DT 11/06	Esperanza de vida en España a lo largo del siglo xx:
	Las tablas de mortalidad del Instituto Nacional de Estadística
	Francisco José Goerlich Gisbert y Rafael Pinilla Pallejà
DT 12/06	Convergencia y desigualdad en renta permanente y corriente: Factores determinantes
	Lorenzo Serrano Martínez
DT 13/06	The Common Agricultural Policy and Farming in Protected Ecosystems:
	A Policy Analysis Matrix Approach
	Ernest Reig Martínez y Vicent Estruch Guitart
DT 14/06	Infrastructures and New Technologies as Sources of Spanish Economic Growth
	Matilde Mas Ivars
DT 15/06	Cumulative Dominance and Heuristic Performance
	in Binary Multi-Attribute Choice
	Manel Baucells Alibés, Juan Antonio Carrasco López y Robin M. Hogarth
DT 16/06	Dynamic Mixed Duopoly: A Model Motivated by Linux versus Windows
	Ramon Casadesus-Masanell y Pankaj Ghemawat
DT 01/07	Social Preferences, Skill Segregation and Wage Dynamics
	Antonio Cabrales Goitia, Antoni Calvó-Armengol y Nicola Pavoni
DT 02/07	Stochastic Dominance and Cumulative Prospect Theory
	Manel Baucells Alibés y Franz H. Heukamp
DT 03/07	Agency Revisited
	Ramon Casadesus-Masanell y Daniel F. Spulber
DT 04/07	Social Capital and Bank Performance:
	An International Comparison for OECD Countries
	José Manuel Pastor Monsálvez y Emili Tortosa-Ausina

DT 05/07	Cooperation and Cultural Transmission in a Coordination Game
	Gonzalo Olcina Vauteren y Vicente Calabuig Alcántara
DT 06/07	The Extended Atkinson Family and Changes in Expenditure Distribution:
	Spain 1973/74 – 2003
	Francisco J. Goerlich Gisbert, María Casilda Lasso de la Vega Martínez
	y Ana Marta Urrutia Careaga
DT 07/07	Análisis de la evolución de la dependencia en la tercera edad en España
	David Casado Marín
DT 08/07	Designing Contracts for University Spin-offs
	Inés Macho-Stadler, David Pérez-Castrillo y Reinhilde Veugelers
DT 09/07	Regional Differences in Socioeconomic Health Inequalities in Spain
	Pilar García Gómez y Ángel López Nicolás
DT 10/07	The Evolution of Inequity in Access to Health Care in Spain: 1987-2001
	Pilar García Gómez y Ángel López Nicolás
DT 11/07	The Economics of Credit Cards, Debit Cards and ATMs:
	A Survey and Some New Evidence
	Santiago Carbó-Valverde, Nadia Massoud, Francisco Rodríguez-Fernández,
	Anthony Saunders y Barry Scholnick
DT 12/07	El impacto comercial de la integración europea, 1950-2000
	Luis Fernando Lanaspa Santolaria, Antonio Montañés Bernal,
	Marcos Sanso Frago y Fernando Sanz Gracia
DT 13/07	Proyecciones de demanda de educación en España
	Andrés M. Alonso Fernández, Daniel Peña Sánchez de Rivera
	y Julio Rodríguez Puerta
DT 14/07	Aversion to Inequality and Segregating Equilibria
	Antonio Cabrales Goitia y Antoni Calvó-Armengol
DT 15/07	Corporate Downsizing to Rebuild Team Spirit
	Antonio Cabrales Goitia y Antoni Calvó-Armengol
DT 16/07	Maternidad sin matrimonio: Nueva vía de formación de familias en España
	Teresa Castro Martín
DT 17/07	Immigrant Mothers, Spanish Babies: Childbearing Patterns of Foreign Women
	in Spain
	Marta Roig Vila y Teresa Castro Martín
DT 18/07	Los procesos de convergencia financiera en Europa y su relación con el ciclo económico
	José Luis Cendejas Bueno, Juan Luis del Hoyo Bernat, Jesús Guillermo Llorente Álvarez,
	Manuel Monjas Barroso y Carlos Rivero Rodríguez
DT 19/07	On Capturing Rent from a Non-Renewable Resource International Monopoly:
	A Dynamic Game Approach
	Santiago J. Rubio Jorge

DT 20/07	Simulación de políticas impositivas medioambientales:
	Un modelo de equilibrio general de la economía española
	Antonio Manresa Sánchez y Ferran Sancho Pifarré
DT 21/07	Causas del crecimiento económico en Argentina (1990-2004):
	Otro caso de «tiranía de los números»
	Ariel Alberto Coremberg
DT 22/07	Regional Financial Development and Bank Competition:
	Effects on Economic Growth
	Juan Fernández de Guevara Radoselovics y Joaquín Maudos Villarroya
DT 23/07	Política fiscal e instituciones presupuestarias en los países
	de la reciente ampliación de la Unión Europea
	Carlos Mulas-Granados, Jorge Onrubia Fernández y Javier Salinas Jiménez
DT 24/07	Measuring International Economic Integration:
	Theory and Evidence of Globalization
	Iván Arribas Fernández, Francisco Pérez García y Emili Tortosa-Ausina
DT 25/07	Wage Inequality among Higher Education Graduates:
	Evidence from Europe
	José García Montalvo
DT 26/07	Governance of the Knowledge-Intensive Firm
	Vicente Salas Fumás
DT 27/07	Profit, Productivity and Distribution: Differences Across Organizational Form
	Emili Grifell-Tatjé y C. A. Knox Lovell
DT 28/07	Identifying Human Capital Externalities: Theory with Applications
	Antonio Ciccone y Giovanni Peri
DT 01/08	A Multiplicative Human Development Index
	Carmen Herrero Blanco, Ricardo Martínez Rico y Antonio Villar Notario
DT 02/08	Real Exchange Rate Appreciation in Central and Eastern European Countries:
	Why the Balassa-Samuelson Effect Does Not Explain the Whole Story
	José García Solanes
DT 03/08	Can International Environmental Cooperation Be Bought?
	Cristina Fuentes Albero y Santiago J. Rubio Jorge

Fundación **BBVA**

Gran Via, 12 48001 Bilbao España Tel.: +34 94 487 52 52 Fax: +34 94 424 46 21

Paseo de Recoletos, 10 28001 Madrid España Tel.: +34 91 374 54 00 Fax: +34 91 374 85 22

publicaciones@fbbva.es www.fbbva.es

