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� Abstract
Several studies have reported high performance of
simple decision heuristics in multi-attribute
decision making. In this working paper, we focus
on situations where attributes are binary and
analyze the performance of
Deterministic-Elimination-By-Aspects (DEBA) and
similar decision heuristics. We consider
non-increasing weights and two probabilistic
models for the attribute values: one where attribute
values are independent Bernoulli random variables;
the other one where they are binary random
variables with inter-attribute positive correlations.
Using these models, we show that good
performance of DEBA is explained by the presence
of cumulative as opposed to simple dominance. We
therefore introduce the concepts of cumulative
dominance compliance and fully cumulative
dominance compliance and show that DEBA
satisfies those properties. We derive a lower bound
with which cumulative dominance compliant
heuristics will choose a best alternative and show
that, even with many attributes, this is not small.
We also derive an upper bound for the expected
loss of fully cumulative compliance heuristics and
show that this is moderate even when the number
of attributes is large. Both bounds are independent
of the values of the weights.

� Resumen
Varios estudios reportan altos rendimientos
asociados a reglas heurísticas simples para la toma
de decisiones en las que hay que tener en cuenta
múltiples criterios. En este documento de trabajo
nos centramos en el caso en que los criterios son
binarios y analizamos el rendimiento de la regla de
eliminación por aspectos deterministas (DEBA) y
otras heurísticas similares. Consideramos el caso
de pesos decrecientes y dos modelos
probabilísticos para los valores de los criterios: uno
en el que los valores son variables de Bernoulli
independientes, y otro en el que los valores binarios
poseen correlación positiva. Usando estos modelos,
demostramos que el buen rendimiento de DEBA se
puede explicar por la alta presencia de dominancia
acumulada, y no, en cambio, por la presencia de
dominancia simple. Después de introducir los
conceptos de conformidad con dominancia
acumulada y conformidad plena con dominancia
acumulada, demostramos que DEBA satisface
estas condiciones de conformidad. Derivamos
también cotas inferiores para la probabilidad de
que DEBA escoja la mejor alternativa y mostramos
que, incluso con muchos criterios, dicha cota no es
baja. También derivamos cotas superiores al
rendimiento esperado y mostramos que es
aceptable incluso cuando el número de criterios es
alto. Ambas cotas son independientes de los pesos.

� Key words
Multi-attribute decision making, binary attributes,
DEBA, cumulative dominance, performance
bounds.

� Palabras clave
Toma de decisiones con múltiples criterios, criterios
binarios, DEBA, dominancia acumulada, cotas de
rendimiento.
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1. Introduction

WE consider a standard multi-attribute choice problem having m
alternatives i, 1 ≤ i ≤ m, each characterized by k attributes xi,r, 1 ≤ r ≤ k.
The utility of the ith alternative, xi = (xi,1, xi,2, ..., xi,k), is defined as

Ui = w1xi,1 + w2xi,2 + ... + wkxi,k (1.1)

where the wr are positive weighting parameters subject to the constraint
w1 + w2 + ... + wk = 1. The problem is to identify which of the m
alternatives is best, i.e., has the largest value of Ui. This is a classical
decision problem (cf. Keeney and Raiffa 1993). We make the assumption
that the decision maker can order the weights by size such that, without
loss of generality, w1 ≥ w2 ≥ ... ≥ wk ≥ 0 but that the exact values of the
weights are unknown. This assumption is realistic in many scenarios.
Consider, for instance, a situation in which a committee has to choose one
of several candidates to fill a job opening. Typically, members of the
committee will agree on which attributes of the candidates are relevant
and may easily agree to take the decision using a linear utility function
where each attribute is given a positive weight. Moreover, whereas
committee members might disagree as to what values should be given to
the weights, they can agree on their relative importance.

Since the exact values of the weights are unknown, a reasonable
approach is to use a heuristic. In this working paper, we will obtain results
regarding the performance of a class of heuristics to solve this decision
problem. We will make the assumption that the xi,r are, non-necessarily
independent, random variables with support [0, 1]. While some of our
results are general and do not require additional assumptions on xi,r, most
assume that the xi,r are binary random variables taking only the values 0
and 1. That more particular setting has interest on its own. For example, it
is common to have alternative features that are either present or absent
(e.g., the candidate has good knowledge or not of a given foreign
language), or that take two values (e.g., the candidate is male or female).
Even if the attribute is multi-valued, the decision-maker may be able to
distinguish between zero and non-zero values, but be insensitive to the
actual magnitude of the attribute (Hsee and Rottenstreich, 2004). Also, in
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order to simplify the decision, the decision-maker may use a cut-off to
partition the range between high and low regions. Here, several choices
are available depending on the cut-off values chosen to separate between
high (xi,r = 1) and low (xi,r = 0) values. One could use a low cut-off
representing a minimum acceptable level. Alternatively, one could assign a
value 1 only to those attribute values with the best level on that attribute.
Those two choices yield, respectively, the LEX and the EBA heuristics
discussed by Payne et al. (1993).

A possible decision rule we will consider would make use of the
attribute ordering in a lexicographic fashion. Specifically, at the first stage,
alternatives with non-greatest value in the first attribute would be
eliminated (unless all alternatives had the same value for the first
attribute). If a single alternative remains, it would be chosen. Otherwise,
the values of the second attribute would be examined and alternatives with
non-greatest value in that second attribute would be eliminated. This
procedure would continue until only one alternative remains or all
attributes have been examined. If only one alternative remains, that
alternative would be chosen. If several alternatives remain after all
attributes have been examined, then the choice between them would be
made at random. This model is a deterministic variant of the EBA
(Elimination-By-Aspects) heuristic proposed by Tversky (1972). We
therefore call it DEBA (Deterministic-Elimination-By-Aspects). It differs
from EBA in that the attributes (aspects) used to eliminate alternatives at
each stage of the process are selected by a deterministic as opposed to a
probabilistic procedure. As a procedure, DEBA generalizes —to more than
two alternatives— the lexicographic binary-choice model Take-The-Best
(TTB) proposed by Gigerenzer and Goldstein (1996). There is a small
difference, however: in TTB, the attributes are ordered by their validities,
which are computed using a database of previous instances of alternatives,
while in DEBA the ordering of the attributes by decreasing weights is
assumed known.

The DEBA heuristic is easy to use. In many situations, for example,
there is no need to look beyond the first one or first two attributes to make
a decision. Several studies have shown DEBA to be effective in relation to
alternative simple decision heuristics (Gigerenzer and Goldstein, 1996;
Czerlinski et al., 1999; Martignon and Hoffrage, 1999, 2002) as well as
having desirable properties for both binary and multivariate choice
(Hogarth and Karelaia, 2003; Katsikopoulos and Martignon, 2003;
Katsikopoulos and Fasolo, in press). Even when attributes are continuous
variables, the model can be quite effective under some circumstances
(Gigerenzer, Todd et al., 1999; Hogarth and Karelaia, 2005a). Most of
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these studies are restricted to the case of two or three alternatives. Finally,
there is empirical evidence that people do sometimes use DEBA-like
strategies in decision making (see, e.g., Bröder, 2000; Newell and Shanks,
2003; Newell et al., 2003).

Our goal is to understand the observed good performance of DEBA
and other related heuristics. The effectiveness of the decision heuristic can
be measured using two metrics: 1) the probability that the heuristic will
select a best alternative and, 2) the expected loss of the heuristic, i.e. the
expected difference between the utility of a best alternative and the utility
of the alternative chosen by the heuristic. The exact values of those metrics
depend, of course, on the exact values of the weights wr, 1 ≤ r ≤ k, and on
the probabilistic model underlying the values of the attributes xi,r,
1 ≤ i ≤ m, 1 ≤ r ≤ k. We will explain the good performance of DEBA and
other related heuristics by deriving a lower bound for the probability that
the heuristic will choose a best alternative and an upper bound for the
expected loss independent of the weights. Moreover, we show that, even with
many attributes, the former is large and the latter small. This will be done
for two probabilistic models for the attributes: one in which the attribute
values xi,r are assumed to be binary independent Bernoulli random
variables with a common parameter p and one in which the attributes xi,r

are assumed to be binary random variables with positive inter-attribute
correlation, i.e. in which the values of the attributes of a given alternative
are positively correlated.

The use of the simple dominance concept is a first, trivial trial. An
alternative i simply dominates alternative j if each attribute value of i is
non-smaller than each attribute value of j. It is clear that, irrespective of
the values of the weights and, therefore, not depending on the values of
the weights being non-increasing, whenever an alternative simply
dominates all other alternatives both that alternative will have the largest
utility and DEBA will choose that alternative. Then, the probability that an
alternative simply dominates all other alternatives provides a lower bound
on the probability that DEBA will choose a best alternative. However, as we
shall show, that probability can be very small when the number of
attributes is large. Thus, simple dominance does not explain the observed
good performance of DEBA.

The approach we will follow to justify theoretically the effectiveness
of DEBA and other related heuristics is the use of the use of the concept of
cumulative dominance (Kirkwood and Sarin 1985). An alternative i is said to
cumulative dominate alternative j if the accumulated values of the
attributes of i are non-smaller than the accumulated values of the
attributes of j. To illustrate, consider alternatives x1 = (1, 0, 1) and
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x2 = (0, 1, 1). Then, alternative x1 cumulative dominates alternative x2

because x1,1 ≥ x2,1, x1,1 + x1,2 ≥ x2,1 + x2,2, and
x1,1 + x1,2 + x1,3 ≥ x2,1 + x2,2 + x2,3. As we will show, since the weights are
non-increasing, an alternative which cumulative dominates another
alternative alternative necessarily has a non-smaller utility than the
cumulative dominated alternative. We observe next that DEBA complies
with cumulative dominance, i.e. in the event that some alternative
cumulative dominates all other alternatives, DEBA is guaranteed to choose
one of those alternatives. Then, the probability that some alternative
cumulative dominates all other alternatives is a lower bound to the
probability with which DEBA will choose a best alternative. Contrary to
simple dominance, the probability that some alternative exhibits
cumulative dominance over all other alternatives is not small even when
the number of attributes is large. This provides a first justification of the
observed good performance of DEBA. The approach we take to provide an
upper bound for the expected loss of DEBA is to compute an upper bound
for the loss of DEBA conditioned on the maximum attribute index for
which some alternative cumulative dominates all others. That upper
bound is computed using the fact that DEBA will necessarily choose one of
the alternatives in the set of alternatives that cumulative dominate all other
alternatives up to the highest possible attribute index, a property which is
called fully cumulative dominance compliance. That upper bound does not
depend on the attributes being binary: it only depends on the attribute
values having support [0, 1]. Those upper bounds, combined with the
computation of the probability distribution of the maximum attribute
index for which some alternative cumulative dominates all others, allows
the computation of an upper bound for the expected loss of DEBA. As the
computation of the lower bound for the probability that DEBA will choose
a best alternative, our computation of that probability distribution is
particular for the assumed probabilistic models underlying the attribute
values. We show that the upper bound for the expected loss remains
reasonable even when the number of attributes is large, providing a
second justification for the observed good performance of DEBA.

The performance justifications just exposed are not restricted to the
DEBA heuristic. It applies as well to any heuristic that complies/fully
complies with cumulative dominance. For instance, it applies (partially) to
the EWn/DEBA heuristic, which is cumulative dominance compliant but
not fully cumulative dominance compliant. The EWn/DEBA heuristic first
chooses the alternatives with the highest total sum of attributes up to
attribute n, and then breaks ties using DEBA. The results given in the
paper regarding the performance of DEBA and any other cumulative/fully
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cumulative dominance compliant heuristics are, however, restricted to the
assumed probabilistic models underlying the attribute values. It is an open
problem to justify the good performance of DEBA and other
cumulative/fully cumulative dominance compliant heuristics under other
probabilistic models, in particular when the attributes are continuous
random variables.

The rest of the working paper is organized as follows. In section 2 we
define the two probabilistic models underlying the attribute values which
will be used throughout the working paper. In section 3 we obtain, for the
two probabilistic models under consideration, the probability of simple
dominance and show that the presence of that kind of dominance does
not justify the observed good performance of DEBA. In section 4 we
introduce the concepts of cumulative dominance compliance and fully
cumulative dominance, show that DEBA satisfies both properties, give
examples of other heuristics satisfying those properties, derive a lower
bound for the probability that any cumulative dominance compliant
heuristic will choose a best alternative, derive an upper bound for the
expected loss in any fully cumulative dominance compliant heuristic, and
using those metrics justify the observed good performance of DEBA and
other related heuristics. Section 5 concludes the working paper and
highlights directions for future work.
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2. Probabilistic
Models

TWO probabilistic models for the values of the attributes xi,r, 1 ≤ i ≤ m,
1 ≤ r ≤ k will be considered:

ZIAC (Zero Inter-Attribute Correlation) model: The xi,r are independent
Bernoulli random variables with parameter p, 0 < p < 1.

PIAC (Positive Inter-Attribute Correlation) model: The xi,r are obtained
as xi,r = ziy

h
i,r + (1− zi)yl

i,r, where the zi, yh
i,r, and yl

i,r are
independent Bernoulli random variables with parameters p,
ph = p +

√
ρ(1− p), and pl = p−√ρp, respectively, for some

0 < p < 1 and some 0 ≤ ρ < 1.

The ZIAC model is a simple model without need for justification. We
note that E[xi,j ] = p. Thus, the parameter p of the common Bernoulli
distributions can be looked at as measuring the average quality of the
attributes: higher values of p model attributes of higher average quality.
The PIAC model is intuitively appealing: if there is positive correlation
among the attributes of a given alternative, it is because there is some
common cause shifting the average quality of the attributes of a given
alternative. In the PIAC model, this is captured by the alternatives
belonging to a “good” population (with averaged values for the attribute
values equal to ph = p +

√
ρ(1− p)) with probability p and to a “bad”

population (with averaged values for the attribute values equal to
pl = p−√ρ(1− p)) with probability 1− p. In the PIAC model E[xi,j ] = p
and the attribute values of any given alternative have positive correlation ρ.
The ZIAC model can be seen as a particular case of the PIAC model with
ρ = 0. Since

∑k
r=1 wr = 1, in both models the expected value of the utility

of any given alternative i is E[Ui] = p.

10



3. Simple
Dominance Does
Not Justify the
Good
Performance of
DEBA

AN alternative i is said to exhibit simple dominance up to attribute r over
alternative j, denoted by dr(i, j), if and only if xi,s ≥ xj,s, 1 ≤ s ≤ r. An
alternative i is said to exhibit simple dominance over alternative j if and
only if dk(i, j), i.e. if and only if alternative i exhibits simple dominance up
to attribute k over alternative j. For 1 ≤ r ≤ k, let Dr denote the set of
alternatives that exhibit simple dominance over any other alternative up to
attribute r, i.e.

Dr = {1 ≤ i ≤ m : dr(i, j), 1 ≤ j ≤ m} (3.1)

Obviously, D1 ⊃ D2 ⊃ · · · ⊃ Dk. Also all alternatives i in Dr have
identical attribute profiles up to attribute r, xi,1, xi,2, . . . , xi,r. Since the
weights are non-negative, any alternative i which exhibits simple
dominance over another alternative j will have largest utility Ui than the
utility Uj of j. Then, it is clear that when Dk 6= ∅ the alternatives in Dk,
with identical attribute profiles, will be best. It is also clear that when
Dk 6= ∅, DEBA will choose an alternative from Dk. Then, when Dk 6= ∅,
DEBA will choose a best alternative and the probability [PB]lbs = P [Dk 6= ∅]
will be a lower bound for the probability with which DEBA will choose a
best alternative. In this section we will develop efficient computational
procedures for [PB]lbs for the two probabilistic models under
consideration. Using these computational procedures, we will compute
[PB]lbs for a wide range of model parameters and will discuss the extent to
which the presence of simple dominance is able to explain the observed
good performance of DEBA.
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GRAPHIC 3.1: State transition diagram of Y for the case m = 3

We will start by deriving an efficient computational scheme for
[PB]lbs for the ZIAC model. Consider the discrete-parameter stochastic
process with truncated parameter Y = {Yr; 0 ≤ r ≤ k} with state-space
{0, 1, . . . ,m} defined by Y0 = m and Yr = |Dr|, 1 ≤ r ≤ k. The following
theorem establishes that Y is a homogeneous discrete-parameter Markov
chain (with truncated parameter) and gives its one-step transition
probabilities. Graphic 3.1 gives the state transition diagram of Y for the
case m = 3.

Theorem 1. Y = {Yr; 0 ≤ r ≤ k} is a homogeneous discrete-parameter Markov
chain (with truncated parameter) with state space {0, 1, . . . ,m}, initial state m,
and one-step transition probabilities Qi,j = P [Yr+1 = j | Yr = i] given by:

Q0,0 = 1
Q0,j = 0 for 1 ≤ j ≤ m

Qi,0 = (1− p)i[1− (1− p)m−i] for 1 ≤ i < m

Qi,j =
(

i

j

)
pj(1− p)i−j for 1 ≤ i ≤ m, 1 ≤ j < i

Qi,i = pi + (1− p)m for 1 ≤ i ≤ m

Qi,j = 0 for 1 ≤ i ≤ m, i < j ≤ m

Proof. See the appendix.
Theorem 1 allows the numerical computation for the ZIAC model of
[PB]lbs = P [Dk 6= ∅] =

∑m
i=1 P [Yk = i] using standard discrete-parameter

Markov chain analysis techniques. However, given the values of the
one-step transition probabilities of Y , it is possible to obtain a simple
closed-form expression for [PB]lbs. We start by deriving a closed-form

12



C U M U L A T I V E D O M I N A N C E A N D H E U R I S T I C P E R F O R M A N C E I N B I N A R Y M U L T I -A T T R I B U T E C H O I C E

expression for P [Yr = i], 1 ≤ r ≤ k, 1 ≤ i ≤ m:

Proposition 1. For 1 ≤ r ≤ k and 1 ≤ i ≤ m:

P [Yr = i] =
(

m

i

) m∑
j=i

(
m− i

j − i

)
(−1)j−i[pj + (1− p)m]r

Proof. We start by proving that the one-step transition probabilities Qi,j

for 1 ≤ i ≤ m, 1 ≤ j < i and Qi,i, 1 ≤ i ≤ m given by Theorem 1 can be
formulated in a more compact way as:

Qi,j =
(

i

j

) i∑
l=j

(
i− j

l − j

)
(−1)l−j [pl + (1− p)m] , 1 ≤ i ≤ m, 1 ≤ j ≤ i

(3.2)
To make the proof, we rewrite the previous expression as:(

i

j

) i−j∑
l=0

(
i− j

l

)
(−1)l[pj+l + (1− p)m]

=
(

i

j

)
pj

i−j∑
l=0

(
i− j

l

)
(−p)l +

(
i

j

) i−j∑
l=0

(
i− j

l

)
(−1)l(1− p)m

For 1 ≤ j < i, the previous expression gives(
i

j

)
pj(1− p)i−j +

(
i

j

)
(1− 1)i−j(1− p)m =

(
i

j

)
pj(1− p)i−j

which is the expression for Qi,j , 1 ≤ i ≤ m, 1 ≤ j < i given by Theorem 1.
For j = i, the expression gives

pi + (1− p)m

which is the expression for Qi,i, 1 ≤ i ≤ m given by Theorem 1.
Using (3.2), the proof of the proposition is by induction on r. For

r = 1, using Y0 = m and (3.2), we obtain

P [Y1 = i] = Qm,i =
(

m

i

) m∑
j=i

(
m− i

j − i

)
(−1)j−i[pj + (1− p)m]

completing the base case. For the induction step, assume the result holds
for r = s ≥ 1 and let us prove the result for r = s + 1. Using Theorem 1,
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the induction step, (3.2), and the identity
(
m
k

)(
j
i

)
=
(
m
i

)(
m−i
j−i

)
:

P [Ys+1 = i] =
m∑

j=0

P [Ys = j] Qj,i =
m∑

j=i

P [Ys = j] Qj,i

=
m∑

j=i

(m

j

) m∑
l1=j

(
m− j

l1 − j

)
(−1)l1−j [pl1 + (1− p)m]s


(j

i

) j∑
l2=i

(
j − i

l2 − i

)
(−1)l2−i [pl2 + (1− p)m]


=

m∑
j=i

(
m

j

)(
j

i

) m∑
l1=j

(
m− j

l1 − j

)
(−1)l1−j [pl1 + (1− p)m]s


 j∑

l2=i

(
j − i

l2 − i

)
(−1)l2−i [pl2 + (1− p)m]


(

m

i

) m∑
j=i

(
m− i

j − i

) m∑
l1=j

(
m− j

l1 − j

)
(−1)l1−j [pl1 + (1− p)m]s


 j∑

l2=i

(
j − i

l2 − i

)
(−1)l2−i [pl2 + (1− p)m]


which can be written as

P [Ys+1 = i] =
m∑

l2=i

m∑
l1=l2

C(l1, l2)[pl1 + (1− p)m]s[pl2 + (1− p)m] (3.3)

with

C(l1, l2) =
(

m

i

) l1∑
j=l2

(
m− i

j − i

)(
m− j

l1 − j

)(
j − i

l2 − i

)
(−1)l1−j(−1)l2−i

Using the identity
(
m−i
j−i

)(
m−j
l1−j

)(
j−i
l2−i

)
=
(
m−i
l1−i

)(
l1−i
l2−i

)(
l1−l2
j−l2

)
:

C(l1, l2) =
(

m

i

)(
m− i

l1 − i

)(
l1 − i

l2 − i

)
(−1)l2−i

l1∑
j=l2

(
l1 − l2
j − l2

)
(−1)l1−j

14
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=
(

m

i

)(
m− i

l1 − i

)(
l1 − i

l2 − i

)
(−1)l2−i

l1−l2∑
j=0

(
l1 − l2

j

)
(−1)l1−l2−j

Then, we have

C(l2, l2) =
(

m

i

)(
m− i

l2 − i

)
(−1)l2−i

and, for l2 > l1,

C(l1, l2) =
(

m

i

)(
m− i

l1 − i

)(
l1 − i

l2 − i

)
(−1)l2−i(1− 1)l1−l2 = 0

Plugging those results into (3.3):

P [Ys+1 = i] =
(

m

i

) m∑
l2=i

(
m− i

l2 − i

)
(−1)l2−i[pl2 + (1− p)m]s+1

completing the induction step.
The closed-form expression for [PB]lbs for the ZIAC model is given

by the following theorem:

Theorem 2. For the ZIAC model,

[PB]lbs =
m∑

i=1

(
m

i

)
(−1)i−1[pi + (1− p)m]k

Proof. Using [PB]lbs =
∑m

i=1 P [Yk = i] and Proposition 1:

[PB]lbs =
m∑

i=1

P [Yk = i] =
m∑

i=1

(
m

i

) m∑
j=i

(
m− i

j − i

)
(−1)j−i[pj + (1− p)m]k

=
m∑

j=1

j∑
i=1

(
m

i

)(
m− i

j − i

)
(−1)j−i[pj + (1− p)m]k

Using the identity
(
m
i

)(
m−i
j−i

)
=
(
m
j

)(
j
i

)
:

[PB]lbs =
m∑

j=1

(
m

j

)
[pj + (1− p)m]k

j∑
i=1

(
j

i

)
(−1)j−i

=
m∑

j=1

(
m

j

)
[pj + (1− p)m]k

(
j∑

i=0

(
j

i

)
(−1)j−i − (−1)j

)
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=
m∑

j=1

(
m

j

)
[pj + (1− p)m]k((1− 1)j − (−1)j)

=
m∑

j=1

(
m

j

)
(−1)j−1[pj + (1− p)m]k

We will consider next the PIAC model. For that model we have not
been able to derive a closed-form expression for [PB]lbs and will content
ourselves with a recurrent computational scheme. Let G be the subset of
good alternatives (those whose attribute values are independent Bernoulli
random variables with parameter ph). Since each alternative is
independently good with parameter p, the number of good alternatives |G|
has a binomial distribution with parameters m and p. Then, conditioning
on |G|:

[PB]lbs = P [Dk 6= ∅] =
m∑

g=0

(
m

g

)
pg(1− p)m−gP [Dk 6= ∅||G| = g] (3.4)

By symmetry, all P [Dk 6= ∅|G = G′], |G′| = g are equal and,
therefore, P [Dk 6= ∅||G| = g] = P [Dk 6= ∅|G = G′], |G′| = g. Following
ideas similar to the ones used for the ZIAC model we can formalize the
computation of P [Dk 6= ∅|G = G′] in terms of the transient behavior of an
homogeneous discrete-parameter Markov chain (with truncated
parameter). Let

Dg
r = {i ∈ G : xi,s ≥ xj,s, 1 ≤ j ≤ m, 1 ≤ s ≤ r}

and

Db
r = {i ∈ {1, 2, . . . ,m} −G : xi,s ≥ xj,s, 1 ≤ j ≤ m, 1 ≤ s ≤ r}

i.e., Dg
r collects the good alternatives which exhibit simple dominance over

any other alternative up to attribute r and Db
r collects the bad alternatives

which exhibit simple dominance over any other alternative up to attribute
r. Given a set of good alternatives G, let Y G = {Y G

r ; 0 ≤ r ≤ k} be the
discrete-parameter stochastic process (with truncated parameter) with
state space {(i, j), 0 ≤ i ≤ |G|, 0 ≤ j ≤ m− |G|} defined by
Y G

0 = (|G|,m− |G|) and Y G
r = (|Dg

r |, |Db
r|), 1 ≤ r ≤ k. The following

theorem establishes that Y G is a homogeneous discrete-parameter Markov
chain (with truncated parameter) and gives its one-step transition

16
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probabilities. The proof of the Theorem is parallel to the proof of
Theorem 1.

Theorem 3. Y G = {Y G
r ; 0 ≤ r ≤ k} is a homogeneous discrete-parameter

Markov chain (with truncated parameter) with state space
{(i, j), 0 ≤ i ≤ |G|, 0 ≤ j ≤ m− |G|}, initial state Y G

0 = (|G|,m− |G|), and
one-step transition probabilities
Q(ig ,ib),(jg ,jb) = P [Y G

r+1 = (jg, jb) | Y G
r = (ig, ib)] given by:

Q(0,0),(0,0) = 1

Q(0,0),(jg ,jb) = 0 for 0 ≤ jg ≤ |G|, 0 ≤ jb ≤ m− |G|, (jg, jb) 6= (0, 0)

Q(ig ,ib),(0,0) = (1− ph)ig(1− pl)ib [1− (1− ph)|G|−ig(1− pl)m−|G|−ib ]

∗ for (ig, ib) 6= (0, 0), (ig, ib) 6= (|G|,m− |G|)

Q(ig ,ib),(jg ,jb) =
(

ig

jg

)
pjg

h (1− ph)ig−jg

(
ib

jb

)
pjb

l (1− pl)ib−jb

∗ for (ig, ib) 6= (0, 0), 0 ≤ jg ≤ ig, 0 ≤ jb ≤ ib

(jg, jb) 6= (0, 0), (jg, jb) 6= (ig, ib)

Q(ig ,ib),(ig ,ib) = pig

h pib

l + (1− ph)|G|(1− pl)m−|G| for (ig, ib) 6= (0, 0)

Q(ig ,ib),(jg ,jb) = 0 for (ig, ib) 6= (0, 0), ig ≤ jg ≤ |G|
ib ≤ jb ≤ m− |G|, (jg, jb) 6= (ig, ib)

Proof. See the appendix.
Clearly,:

P [Dk 6= ∅ | |G| = g] =
∑

0≤ig≤|G′|
0≤ib≤m−|G′|
(ig ,ib) 6=(0,0)

P [Y G′
k = (ig, ib)] , |G′| = g (3.5)

Using standard numerical techniques for transient analysis of
discrete-parameter Markov chains, we can obtain recurrent expressions for
P [Y G

r = (ig, ib)], 1 ≤ r ≤ k, |G| = g, 0 ≤ g ≤ m. Those expressions
together with (3.4) and (3.5) define a recurrent computational scheme for
[PB]lbs for the PIAC model. The result is:

Theorem 4. For the PIAC model,

[PB]lbs =
m∑

g=0

(
m

b

)
pg(1− p)m−gWg

17
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where
Wg =

∑
0≤ig≤g

0≤ib≤m−g
(ig ,ib) 6=(0,0)

Zg,k,ig ,ib

and the Zg,k,ig ,ib , 0 ≤ g ≤ m, 0 ≤ ig ≤ g, 0 ≤ ib ≤ m− g, (ig, ib) 6= (0, 0) can
be computed using, for increasing r, a set of recurrences giving Zg,r,ig ,ib ,
0 ≤ g ≤ m, 1 ≤ r ≤ k, 0 ≤ ig ≤ g, 0 ≤ ib ≤ m− g, (ig, ib) 6= (0, 0). The
initial values of the recurrences are:

Zg,0,g,m−g = 1 , 0 ≤ g ≤ m

Zg,0,ig ,ib = 0 , 0 ≤ g ≤ m, 0 ≤ ig ≤ g,

0 ≤ ib ≤ m− g, (ig, ib) 6= (g,m− g), (ig, ib) 6= (0, 0)

The recurrences are:

Zg,r+1,ig ,ib =
∑

ig≤jg≤g
ib≤jb≤m−g

(jg ,jb) 6=(ig ,ib)

(
jg

ig

)
pig

h (1− ph)jg−ig
(

jb

ib

)
pib

l (1− pl)jb−ibZg,r,jg ,jb

+ [pig

h pib

l + (1− ph)g(1− pl)m−g] Zg,r,ig ,ib

0 ≤ g ≤ m, 0 ≤ r < k, 0 ≤ ig ≤ g, 0 ≤ ib ≤ m− g, (ig, ib) 6= (0, 0)

Proof. The Zg,r,ig ,ib are P [Y G
r = (ig, ib)], |G| = g. Then, the recurrences

for Zg,r,ig ,ib and their initial values follow from Theorem 3 using
Zg,r+1,ib,ib =

∑
jg ,jb Zg,r,jb,jb Q(jg ,jb),(ig ,ig). Wg is P [Dk 6= ∅ | |G| = g]. Then,

the expression for Wg follows from (3.5). The expression for [PB]lbs in
terms of Wg follows from (3.4).

Theorems 2 and 4 give computationally efficient procedures for
[PB]lbs for, respectively, the ZIAC and the PIAC models. Using those
procedures, we can obtain [PB]lbs for quite large values of k and m.
Graphic 3.2 plots [PB]lbs, for values of k ranging from 2 to 10 and values of
m ranging from 2 to 10, for the ZIAC model with p = 0.2, 0.5, 0.8 and for
the PIAC model with p = 0.5 and ρ = 0.0, 0.2, 0.5. For a fixed number of
alternatives, m, [PB]lbs decays, in some cases rapidly, as the number of
attributes k increases. For a fixed number of attributes, k, [PB]lbs first
decreases with the number of alternatives m up to a certain value of m, m∗,
beyond which it increases with m. The explanation for that behavior is as
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follows. The addition of one alternative may have several effects. First, it
may happen that the new alternative simply dominates all others, making
the new Dk non-empty irrespectively of whether it was empty or not
before. Second, the new alternative may be simply dominated by some
alternative, leaving Dk unchanged. Third, it may also happen that the
additional alternative neither simply dominates all others nor is simply
dominated by any alternative, making empty the new Dk if it was
non-empty before. The first effect would force an increase with m of
[PB]lbs, while the third effect would force a decrease. As m increases, the
probability that the new alternative neither simply dominates all others nor
is simply dominated by any other alternative becomes small, and for large
enough m the third effect is negligible and [PB]lbs increases with m as a
result of the first effect. In fact, as m →∞, the probability that some
alternative will have all its attributes equal to 1 tends to 1, ensuring that
[PB]lbs → 1 as m →∞. The m∗ turning point seems to increase as the
number of attributes k increases and as the quality of the alternatives
decreases (p gets smaller). However, the more importance conclusion is
that, except when the average quality of the alternatives is very good (ZIAC
model, p = 0.8) or when the alternatives exhibit a strong positive
inter-attribute correlation (PIAC model, p = 0.5, ρ = 0.5), [PB]lbs decays
fast with k and has small values for large k. Thus, simple dominance does
not explain the observed good performance of DEBA.
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GRAPHIC 3.2: [PB]lbs for the ZIAC model (left) for several values of p and
the PIAC model (right) for p = 0.5 and several values of ρ

20



4. Cumulative
Dominance and
DEBA
Performance

AS shown in the previous section, the presence of simple dominance is
not enough to justify the good observed performance of DEBA. In this
section we will review the concept of cumulative dominance and use it to
explain, for the binary attribute case, the observed good performance of
DEBA. Our results are however not restricted to the DEBA heuristic. They
apply to classes of heuristics which we will call cumulative dominance
compliant heuristics and fully cumulative dominance compliant heuristics, and
examples of other heuristics belonging to those classes different from
DEBA will be given.

4.1. Definitions and basic results

The cumulative profile of an alternative i, 1 ≤ i ≤ m, is defined as
Xi,s =

∑s
t=1 xi,t, 1 ≤ s ≤ k. Cumulative dominance is identical to simple

dominance, but applied to the cumulative profile. Alternative i exhibits
cumulative dominance over alternative j up to attribute r, denoted by
cr(i, j), if and only if Xi,s ≥ Xj,s, 1 ≤ s ≤ r. Alternative i exhibits
cumulative dominance over alternative j if and only if ck(i, j), i.e. if
alternative i exhibits cumulative dominance over alternative j up to
attribute k. Graphic 4.1 illustrates cumulative dominance in the binary
attribute case. In the graphic, alternative 2 exhibits cumulative dominance
over alternative 3 up to attribute 2 and alternative 1 exhibits cumulative
dominance over alternatives 2 and 3. It is known that cumulative
dominance characterizes optimality for non-increasing weights (Kirkwood
and Sarin, 1985):

Proposition 2. Ui ≥ Uj for all weights w1 ≥ w2 ≥ · · · ≥ wk ≥ 0,
∑k

s=1 ws = 1
if and only if ck(i, j).
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GRAPHIC 4.1: Alternative profiles illustrating cumulative dominance in the
binary attribute case

Proof. Notice that

Ui =
k∑

s=1

wsxi,s =
k−1∑
s=1

(ws − ws+1)Xi,s + wkXi,k

so that

Ui − Uj =
k−1∑
s=1

(ws − ws+1) (Xi,s −Xj,s) + wk (Xi,k −Xj,k)

which is necessarily positive if alternative i cumulative dominates
alternative j and weights are non-increasing. For the converse, that∑k

s=1 wsxi,s ≥
∑k

s=1 wsxj,s holds for all weights w1 ≥ w2 ≥ · · · ≥ wk ≥ 0
implies that it holds for the sets of weights

(w1, w2, ..., wk) = (1, 0, 0, · · · , 0)

(w1, w2, ..., wk) =
(

1
2
,
1
2
, 0, · · · , 0

)
· · ·

(w1, w2, ..., wk) =
(

1
k
,
1
k
,
1
k
, · · · ,

1
k

)
yielding cr(i, j), 1 ≤ r ≤ k.

Note that Proposition 2 is not restricted to the binary attribute case.
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For 1 ≤ r ≤ k, let Cr denote the set of alternatives that exhibit
cumulative dominance over any other alternative up to attribute r, i.e.,

Cr = {1 ≤ i ≤ m : cr(i, j), 1 ≤ j ≤ m} (4.1)

Obviously, C1 ⊃ C2 ⊃ · · · ⊃ Ck. All alternatives in Cr have identical
cumulative attribute profiles up to attribute r and, therefore, they have
identical attribute profiles up to attribute r. More importantly, if Ck is
non-empty, then Proposition 2 guarantees that the alternatives in Ck will
have the largest utility. In the example of graphic 4.1, C1 = C2 = {1, 2}
and C3 = C4 = {1}. C1 will always be non-empty. In the binary attribute
case, C2 will be always non-empty also. This follows by noting that C2 can
only be empty if there exist two alternatives i, j with xi,1 > xj,1 and
xi,1 + xi,2 < xj,1 + xj,2, which, being xi,r and xj,r binary, is impossible. In
the non-binary attribute case, however, C2 may well be empty. For r ≥ 3,
there is no guarantee even in the binary attribute case that Cr will be
non-empty. Consider for instance the case of two alternatives with attribute
profiles x1,1 = 1, x1,2 = 0, x1,3 = 0 and x2,1 = 0, x2,2 = 1, x2,3 = 1. In that
case, we have C3 = ∅. We say that a heuristic is cumulative dominance
compliant if, whenever Ck 6= ∅, the heuristic chooses an alternative from
Ck. Then, according to Proposition 2 we can state:

Theorem 5. When Ck is non-empty any cumulative dominance compliant
heuristic will choose a best alternative.

Theorem 5 is not restricted to the binary attribute case.
The highest attribute index for which some alternative exhibits

cumulative dominance over all other alternatives deserves careful
attention. We will denote that index by r∗. Formally,

r∗ = max
1≤r≤k

{1 ≤ r ≤ n : Cr 6= ∅} (4.2)

By definition, Cr = ∅, r∗ < r ≤ k. Of course, Ck is non-empty if and only if
r∗ = k. In the binary attribute case, r∗ ≥ 2. For non-binary attributes, r∗

could be equal to 1. A heuristic is said to be fully cumulative dominance
compliant if it always chooses an alternative from Cr∗ . Fully cumulative
dominance compliance implies cumulative dominance compliance. The
motivation by introducing the notion of fully cumulative dominance
compliance is that results regarding the loss of those heuristics
independent of the weights will be obtained for heuristics satisfying this
property.

Consider the DEBA heuristic. Let Ar, 1 ≤ r ≤ k be the set of
alternatives selected by the heuristic at its rth step. Remember that A1
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includes the alternatives i with largest xi,1: the ones with xi,1 = 1 if some
alternative has attribute 1 value 1 and all if xi,1 = 0, 1 ≤ i ≤ m. A2 includes
the alternatives i in A1 with largest xi,2, and so on. Obviously
A1 ⊃ A2 ⊃ · · · ⊃ Ak. The DEBA heuristic selects at random any alternative
in Ak 6= ∅. Informally speaking, an alternative exhibits cumulative
dominance over another when it has superior values in more important
attributes, possibly followed by inferior values in less important attributes.
But DEBA eliminates those alternatives that have inferior values in the
most important attributes, and hence it will never choose a cumulative
dominated alternative. More formally, that DEBA is fully cumulative
dominance compliant can be easy seen by noting the following important
relation between the subsets Ar and Cr, 1 ≤ r ≤ r∗:

Proposition 3. Ar = Cr, 1 ≤ r ≤ r∗.

Proof. That Cr ⊂ Ar, 1 ≤ r ≤ k, can be seen by induction on r. Obviously,
C1 = A1. Assume the result holds for r = s and consider the case
r = s + 1. Let i ∈ Cs+1. We have Xi,s+1 ≥ Xj,s+1, 1 ≤ j ≤ m, j 6= i. Since
Cs+1 ⊂ Cs, by the induction hypothesis i ∈ As. Assume i 6∈ As+1. Then,
there exists an alternative l ∈ As+1, l 6= i, with xl,s+1 > xi,s+1 and
xl,u = xi,u, 1 ≤ u ≤ s. But this implies Xi,s+1 < Xl,s+1 and, therefore,
i 6∈ Cs+1, a contradiction. That Ar ⊂ Cr for all r, 1 ≤ r ≤ r∗ can be seen by
contradiction. Take some r, 1 ≤ r ≤ r∗, and an alternative i such that
i ∈ Ar and i 6∈ Cr. Since all alternatives in Ar are identical up to attribute
r, this would imply Ar ∩ Cr = ∅, which by Cr ⊂ Ar, implies Cr = ∅, a
contradiction. Thus, Ar = Cr for all r, 1 ≤ r ≤ r∗.
Since DEBA chooses and alternative from Ak and Ak ⊂ Ar∗ = Cr∗ we have:

Theorem 6. DEBA fully complies with cumulative dominance.

DEBA is not alone in the classes of cumulative dominance compliant
heuristics and fully cumulative dominance compliant heuristics. An
example of a heuristic different from DEBA which is cumulative
dominance compliant is the EWn/DEBA (Equal-Weights n2 ≤ n ≤ k. That
heuristic first selects the alternatives i with largest Xi,n and from them
selects an alternative using DEBA. The EWn/DEBA heuristic has as special
case (n = k) the EW/DEBA
(Equal-Weights/Deterministic-Elimination-By-Aspects) heuristic and with
n = 2 reduces to DEBA for the binary attribute case. Since no alternative i
can cumulatively dominate all others if it does not have largest Xi,n, the
first phase of EWn/DEBA will select a superset, A, of Ck. Assume Ck 6= ∅.
Then, Ck will cumulative dominate all alternatives in A and, being DEBA
cumulative dominance compliant, in the second phase, EWn/DEBA will
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choose an alternative from Ck, implying that EWn/DEBA is cumulative
dominance compliant. However, EWn/DEBA is not fully cumulative
dominance compliant. Consider, for instance, the case with three
attributes and two alternatives with profiles x1 = (1, 0, 0) and x2 = (0, 1, 1).
In that case, r∗ = 2, and Cr∗ contains only alternative 1, but EW3/DEBA
(EW/DEBA) will choose alternative 2.

A heuristic different from DEBA which is fully cumulative dominance
compliant would be the heuristic which first selects the alternatives in Cr∗

and, then, selects among those alternatives one with largest Xi,k. We call
that heuristic CDS/EW (Cumulative-Dominance-Selection/Equal-Weights).
While more expensive to apply than DEBA, CDS/EW is intuitively
appealing, since it first maximizes with certainty the part of the utility
corresponding to attributes 1, 2 . . . , r∗, and, then, takes a more global view
than DEBA to try to maximize the part of the utility corresponding to the
attributes r∗ + 1, . . . , k, which might be advantageous if r∗ is not close to k.

4.2. A lower bound for the probability of choosing a
best alternative for cumulative dominance
compliant heuristics

Consider any cumulative dominance compliant heuristic. Since
alternatives in Ck have the largest utility and, by definition, when Ck 6= ∅,
the heuristic will choose an alternative from Ck. Hence,
[PB]lbc = P [Ck 6= ∅] is a lower bound for the probability with which the
heuristic will choose a best alternative. Since simple dominance implies
cumulative dominance, Ck ⊃ Dk, P [Ck 6= ∅] ≥ P [Dk 6= ∅], and [PB]lbc

might be significantly better (tighter) than [PB]lbs. [PB]lbc is a lower bound
on the probability PB that a cumulative dominance compliant heuristic
will choose a best alternative which only depends on the weights being
non-increasing. For a particular set of weights, that lower bound might not
be tight. In fact, if the weights are non-compensatory (wr ≥

∑k
s=r+1 ws,

1 ≤ r ≤ k − 2), then it can be shown that DEBA (Katsikopoulos and Fasolo,
in press, Martignon and Hoffrage, 1999, 2002) and EW/DEBA (Hogarth
and Karelaia, in press) choose the best alternative with probability one,
whereas, as we will see, [PB]lbc can be far from 1. However, we will show
(for the two probabilistic models considered in the working paper) that
the lower bound for PB does not decrease fast with m and k, implying that
PB will not decrease fast with m and k for any cumulative dominance
compliant heuristic and providing a first explanation of the observed good
performance of DEBA. On the other hand, PB may decrease fast with both
m and k for non cumulative dominance compliant heuristics. For
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instance, such behavior has been observed (Hogarth and Karelaia, 2003)
for the EW/RAN (Equal-Weights/Random) heuristic, which chooses at
random among the alternatives i with largest Xi,k.

In this section, we will compute [PB]lbc for the two probabilistic
models considered in the working paper. Since, as noted, for the binary
attribute case, C2 6= ∅, for k = 2, [PB]lbc = 1. We will therefore assume
k ≥ 3. Computation of [PB]lbc seems to be significantly harder than
computation of [PB]lbs. Essentially, this is because, in the case xi,r+1 = 0,
i ∈ Cr, whether Cr+1 is empty or not not only depends on xi,r+1,
i ∈ {1, 2, . . . ,m} − Cr. This prevents the use of discrete-parameter Markov
chain approaches similar to the ones used in section 3 to compute [PB]lbs

for the two probabilistic models considered in the working paper. We have
taken another approach, which profits from our binary set-up and uses
ROBDDs (Reduced Ordered Binary Decision Diagrams). A ROBDD (see
Bryant, 1986) is a directed acyclic graph having a single root note and two
terminal nodes (leaves), one labeled 0 and another labeled 1, which
represents an arbitrary given Boolean function of a given set of binary
variables. ROBDDs are called reduced because each node represents a
different Boolean function (the root node represents the given Boolean
function). They are called ordered because they depend on the ordering
of the binary variables. ROBDDs are canonical (unique) representations of
Boolean functions which only depend on the ordering of the binary
variables. That property has given to ROBDDs many applications, e.g.,
formal verification of digital circuits. Given a Boolean function
F (x1, x2, . . . , xn) of n independent Bernoulli random variables, we can
compute P [F (x1, x2, . . . , xn) = 1] by building the ROBDD of F () as a
function of x1, x2, . . . , xn and, then, traversing bottom-up the ROBDD. At
each step, we obtain the probability that the Boolean function represented
by a node is equal to 1 by multiplying the corresponding probability of the
0-edge node by the probability that the binary variable associated with the
processed node has value 0, multiplying the corresponding probability of
the 1-edge node by the probability that the binary variable has value 1, and
adding up those partial results. To build the ROBDD, a Boolean
expression for F () as a function of x1, x2, . . . , xn involving basic Boolean
functions like NOT, AND, OR is required.

The Boolean function we have to consider to compute [PB]lbc is the
indicator function of the event {Ck 6= ∅}. For the ZIAC model, the
Bernoulli random variables to be considered are xi,s, 1 ≤ i ≤ m, 1 ≤ s ≤ k
and an expression for Fm,k(x1,1, , x1,k, . . . , xm,1, . . . , xm,l) = 1Ck 6=∅ is:

Fm,k(x1,1, . . . , x1,r, . . . , xm,1, . . . , xm,r) =
m∨

i=1

m∧
j=1
j 6=i

k∧
s=1

1Xi,s≥Xj,s
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where the indicator functions 1Xi,s≥Xj,s can be expressed in terms of the
Bernoulli random variables xi,t, 1 ≤ i ≤ m, 1 ≤ t ≤ s using standard
implementations of binary adders and binary comparators. For the PIAC
model, the Bernoulli random variables to be considered are zi, 1 ≤ i ≤ m,
and y0

i,s, y1
i,s, 1 ≤ i ≤ m, 1 ≤ s ≤ k and an expression for

Fm,k(z1, . . . , zm, y0
1,1, . . . , y

0
m,r, y

1
1,1, . . . , y

1
m,r) = 1Ck 6=∅ is:

Fm,r(z1, . . . , zm, y0
1,1, . . . , y

0
m,r, y

1
1,1, . . . , y

1
m,r) =

m∨
i=1

m∧
j=1
j 6=i

k∧
s=1

1Xi,s≥Xj,s

xi,s = (1− zi) ∧ y0
i,s ∨ zi ∧ y1

i,s

where the indicator functions 1Xi,s≥Xj,s can be expressed in terms of the
Boolean functions xi,t, 1 ≤ i ≤ m, 1 ≤ t ≤ s using standard
implementations of binary adders and binary comparators.

The computational cost of the ROBDD based method is mainly
determined by the size (number of nodes) of the resulting ROBDD. It is
also affected by the peak number of reserved nodes. The ROBDD of the
function is built (Bryant, 1986) by traversing the description of the
Boolean function in terms of basic Boolean functions such as NOT, AND
and OR functions and combining the ROBDDs of the nodes of that
description. Then, the peak number of reserved nodes is the maximum
sum of the nodes in the ROBDDs which have to be held during the
process. The size of the ROBDD depends on the ordering chosen for the
variables on which the function depends and can be reduced by using
ROBDDs with complement edges (Brace et al., 1990). The variable
ordering is typically chosen using heuristics based on the Boolean
description of the function . We have used the topology heuristic
(Nikolskaia et al., 1998) with good results. Using that heuristic and
ROBDDs with complement 0-edges, we have been able to compute the
probabilities PC(r) for values of m and k as large as 10. As expected, the
size of the ROBDDs increased with both m and r. For m = 10 and k = 10,
the ROBDD for the ZIAC model had 320,558 nodes and its construction
resulted in a peak number of reserved nodes of 5,182,179. For the PIAC
model, the corresponding ROBDDs were a bit larger. For m = 10 and
k = 10, the ROBDD had 681,216 nodes and its construction resulted in a
peak number of reserved nodes of 11,639,367. To build the ROBDDs we
used the CU Decision Diagram Package (CU 2005).

Graphic 4.2 plots [PB]lbc, for values of k ranging from 3 to 10 and
values of m ranging from 2 to 10, for the ZIAC model for p = 0.2, 0.5, 0.8
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and for the PIAC model for p = 0.5 and ρ = 0.0, 0.2, 0.5. We can note that
in all cases [PB]lbc is significantly larger than [PB]lbs (graphic 3.2). As
[PB]lbs, for a fixed number of alternatives m, [PB]lbc decreases with k but,
contrary to [PB]lbs, [PB]lbc never decreases fast with k. As for [PB]lbs, for
fixed k, there exists a turning point, m∗, for m before which [PB]lbc decays
with m and beyond which [PB]lbc increases with m. The explanation of the
existence of those turning points is similar to the explanation of the
corresponding turning points for [PB]lbs but in terms of cumulative
dominance instead of in terms of simple dominance. For fixed k and m,
the values of [PB]lbc improve (increase) with the average quality of the
alternatives (higher p) and with a positive inter-attribute correlation
(higher ρ). It is noteworthy that [PB]lbc is very close to 1 when either the
alternatives have good average quality (ZIAC model, p = 0.8) or there
exists strong positive correlation among the attribute values of a given
alternative (PIAC model, p = 0.5, ρ = 0.5). In those cases, the presence of
cumulative dominance is enough to explain a very good performance of
any cumulative dominance compliant heuristic, including, of course,
DEBA. It is also noteworthy that, contrary to [PB]lbs and contrary to
intuition, [PB]lbc has a significant value even when the alternatives have a
poor quality and there does not exist any positive correlation among the
values of the attributes of a given alternative (ZIAC model, p = 0.2).

4.3. An upper bound for the expected loss of fully
cumulative dominance compliant heuristics

The probability that a heuristic chooses a best alternative is an important
metric of the performance of the heuristic. Guaranteeing that probability
will be close to 1 certainly shows that the heuristic is a good heuristic. The
expected loss of the heuristic, i.e. the expected difference between the
utility of a best alternative and the utility of the alternative chosen by the
heuristic is another relevant metric, which is specially useful when the
probability of chosen a best alternative is not close to 1. The reason is
simple: in many cases, we would be content with a non-best alternative as
far as its utility is reasonably close to the utility of a best alternative. With
that motivation, in this section, we will derive, for the two probabilistic
models under consideration, an upper bound for the expected loss of any
fully cumulative compliant heuristic, including, of course, DEBA. Since for
k = 2 any fully cumulative dominance compliant heuristic will choose a
best alternative with probability 1, and, therefore, the expected loss will be
0, we will assume k ≥ 3.

Let b the alternative chosen by the heuristic. Then, the loss of the
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GRAPHIC 4.2: [PB]lbc for the ZIAC model (left) for several values of p and
the PIAC model (right) for p = 0.5 and several values of ρ
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heuristic is
L = max

1≤i≤m
Ui − Ub (4.3)

We will derive an upper bound for L as a function of r∗. Note that L is a
random variable. The upper bound for the expected loss will follow by
conditioning on r∗ and taking expectations.

Since the heuristic is fully cumulative dominance compliant, we
know that b ∈ Cr∗ . Let i be any other alternative. Compared to b, how
much better can j be? To answer that question, it is useful to consider the
following formulation for the utility of an alternative Ui =

∑k
s=1 wsxi,s in

terms of its cumulative profile.

Ui =
k−1∑
s=1

(ws − ws+1)Xi,s + wkXi,k

According to this formulation, given a set of weights, the highest loss
occurs when the cumulative profile of i meets the following two
conditions: 1) Xi,s = Xb,s, 1 ≤ s ≤ r∗ (since b ∈ Cr∗ , Xi,s ≤ Xb,s,
1 ≤ s ≤ r∗), 2) Xi,s = Xb,s + (s− r∗), r∗ + 1 ≤ s ≤ k (which is possible,
since all xi,s, r∗ + 1 ≤ s ≤ k could be 1 and all xb,s, r∗ + 1 ≤ s ≤ k could be
0). Thus, for a given set of weights,

L ≤
k−1∑

s=r∗+1

(ws − ws+1)(s− r∗) + wk(k − r∗) =
k∑

s=r∗+1

ws

To find an upper bound for L independent of the weights, it remains to
maximize

∑k
s=r∗+1 ws subject to the restrictions which the ws,

r∗ + 1 ≤ s ≤ k have to satisfy. The restrictions are (the last one comes
from w1 ≥ w2 ≥ · · · ≥ wr∗+1 and

∑k
s=1 ws = 1):

wk ≥ 0

ws−1 ≥ ws , r∗ + 2 ≤ s ≤ k

(r∗ + 1)wr∗+1 +
k∑

s=r∗+2

ws ≤ 1

This is a linear programming problem with bounded domain and, as it is
well known, the maximum occurs at some vertex of the polyhedron
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defined by the restrictions. The vertices of the polyhedron are

(wr∗+1, wr∗+2, wr∗+3, . . . , wk) = (0, 0, 0, . . . , 0)

(wr∗+1, wr∗+2, wr∗+3, . . . , wk) =
(

1
r∗ + 1

, 0, 0, . . . , 0
)

(wr∗+1, wr∗+2, wr∗+3, . . . , wk) =
(

1
r∗ + 2

,
1

r∗ + 2
, 0, . . . , 0

)
· · ·

(wr∗+1, wr∗+2, wr∗+3, . . . , wk) =
(

1
k
,
1
k
,
1
k
, · · · ,

1
k

)
and, therefore, the maximum is

max
r∗+1≤s≤k

s− r∗

s
=

k − r∗

k

Then, we can state the following result:

Theorem 7. Any heuristic that fully complies with cumulative dominance will
have a loss with respect to a best alternative upper bounded by (k − r∗)/k.

Note that the upper bound for the loss given by Theorem 7 is not
restricted to the binary attribute case.

Recall that for n > 3, EWn/DEBA is not fully cumulative dominance
compliant. Hence, the upper bound on the expected loss does not apply.
Considering again the example with k = 3 and m = 2 given by
x1 = (1, 0, 0) and x2 = (0, 1, 1), the maximum loss guaranteed by any
heuristics that fully complies with cumulative dominance is
(k − r∗)/k = 1/3. DEBA chooses alternative 1 and, as expected, the
maximum loss in the most pessimistic weight scenario
(w1 = w2 = w3 = 1/3) is given by L = U2 − U1 = 1/3. In contrast,
EW3/DEBA chooses alternative 2, and for appropriate weights (w1 = 1−2ε,
w2 = w3 = ε), this choice may yield a loss of L = U1 − U2 = 1− 4ε ≈ 1.

As noted, in the binary attribute case 2 ≤ r∗ ≤ k. Let
P (r) = P [r∗ = r], 2 ≤ r ≤ k. Then, conditioning on the value of r∗ and
taking expectations:

E[L] =
k∑

r=2

P (r)E[L|r∗ = r]

and using Theorem 7, for any fully cumulative dominance compliant
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heuristic:

E[L] ≤
k−1∑
r=2

P (r)
k − r

k

This is the sought upper bound for the expected loss. Let us call it
[E[L]]ub. It remains to discuss a procedure for computing P (r),
2 ≤ r ≤ k − 1 for the two considered probabilistic models. Let
Q(r) = P [r∗ ≥ r]. We have

P (r) = Q(r)−Q(r + 1) , 2 ≤ r ≤ k − 1

Since r∗ ≥ 2, Q(2) = 1. The Q(r), 3 ≤ r ≤ k required to compute P (r),
2 ≤ r ≤ k − 1 can be obtained, noting that Q(r) = P [Cr 6= ∅], using the
ROBDD approaches described in section 4.2. for the computation of
[PB]lbc = Q(k) for the ZIAC and the PIAC probabilistic models with the
index k replaced by the index r.

Graphic 4.3 plots [E[L]]ub, for values of k ranging from 3 to 10 and
values of m ranging from 2 to 10, for the ZIAC model for p = 0.2, 0.5, 0.8
and for the PIAC model for p = 0.5 and ρ = 0.0, 0.2, 0.5. For fixed number
of alternatives m, [E[L]]ub increases with k, but in no case does so fast. For
fixed k , there exist a turning point m∗ before which [E[L]]ub increases
with m and beyond which [E[L]]ub decreases with m . Not surprisingly, the
value of [E[L]]ub is very small when either the alternatives have good
average quality (ZIAC model, p = 0.8) or there exist strong positive
inter-attribute correlation (PIAC model, p = 0.5, ρ = 0.5). The values of
[E[L]]ub are reasonably small in the presence of a moderate positive
inter-attribute correlation (PIAC model, p = 0.5, ρ = 0.2) and are
moderate in all cases. Those observations complete the explanation of the
observed good performance of DEBA and make that good performance
extensible to any fully cumulative dominance compliant heuristic.
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GRAPHIC 4.3: [E[L]]ub for the ZIAC model (left) for several values of p and
the PIAC model (right) for p = 0.5 and several values of ρ
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5. Final Remarks
and Conclusions

USING the cumulative dominance concept we have justified, for the
binary attribute case and for two probabilistic models, the observed good
performance of the DEBA heuristic. The results obtained in the working
paper are applicable to any cumulative dominance compliant heuristic
and any fully cumulative dominance compliant heuristic and examples of
heuristics in those classes different from DEBA have been given. Our
results can be used to bound the performance of those heuristics
independently of the particular values of the weights, which are unknown.
Our computational procedures are feasible for quite large values of m and
k (we have given results for m up to 10 and k up to 10). Previous studies
concerning the performance of DEBA and EWn/DEBA (Hogarth and
Karelaia 2003) used simpler enumeration approaches and were restricted
to the ZIAC model with p = 0.5 and more modest values of m and k (m up
to 5 and k up to 5).

Our study is one more step in the direction of reducing the
descriptive–prescriptive gap in multi-attribute decision making. We have
shown that DEBA and other related heuristics achieve a good performance
in the binary attribute setting with a moderate number of attributes. This
strongly supports the insight that the key managerial skill is to identify and
rank the most relevant attributes or factors. Efforts to specify exact values
of weights and/or use a informational-intensive decision procedures may
have a minor return and be justified only for a small fraction of decisions
(Keeney, 2004). Since much may not be lost by the binary encoding of
attribute values (Hogarth and Karelaia, 2005b), our results can also justify
good performance of DEBA and related heuristics when the attribute are
continuous random variables.

Our analysis can be extended in several directions. First, it would be
interesting to analyze the impact of a negative inter-attribute correlation.
However, whereas this can be introduced in several ways, it is not a simple
task. Another, obvious, direction is the consideration of probabilistic
models in which attributes are continuous random variables, possibly
correlated. Another possibility is the consideration of different scenarios
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for the available knowledge about the values of the weights wi, 1 ≤ i ≤ k
(see Barron, 1992). Our analysis has been restricted to the case of
non-increasing weights. A possible extension is to consider the case where
the relative ranking of the first q weights is not known, i.e.
w1, w2, . . . wq ≥ wq+1 ≥ · · · ≥ wk ≥ 0. Picking up q = 1 puts us in the
non-increasing weights scenario assumed in the paper, which is optimally
characterized by cumulative dominance. Picking up q = k puts us in the
non-negative weights scenario, which is optimally characterized by simple
dominance. It is easy to check that the more general scenario is optimally
characterized by q-dominance: an alternative i exhibits q-dominance over
another alternative j if and only if dr(i, j) for all r, 1 ≤ r ≤ q and cr(i, j)
for all r, q + 1 ≤ r ≤ k. Using the q-dominance concept we could derive in
a similar way as it has been done in the paper performance measures for
q-dominance compliant heuristics and fully q-dominance compliant heuristics.
All those extensions are expected to be the subject of future work.
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Proofs

Proof of Theorem 1 That Y G
0 = (|G|,m− |G|) is by definition. We will

compute the probabilities P [Y G
1 = (jg, jb) | Y G

0 = (|G|,m− |G|)],
(jg, jb) ∈ {(i, j), 0 ≤ i ≤ |G|, 0 ≤ j ≤ m− |G|} and the probabilities
P [Y G

r+1 = (jg, jb) | Y G
r = (ig, ib) ∧ Y G

r−1 = (igr−1, i
b
r−1) ∧ · · · ∧ Y G

1 =
(ig1, i

b
1) ∧ Y G

0 = (|G|,m− |G|)], (ig1, i
b
1), . . . , (i

g
r−1, i

b
r−1), (i

g, ib), (jg, jb) ∈
{(i, j), 0 ≤ i ≤ |G|, 0 ≤ j ≤ m− |G|}. It will trun out that the former are
equal to Q(|G|,m−|G|),(jg ,jb) and the latter only depend on (ig, ib) and (jg, jb)
and are equal to Q(ig ,ib),(jg ,jb), thus proving that Y G = {Y G

r ; 0 ≤ r ≤ k} is
an homogeneous discrete-parameter Markov chain (with truncated
parameter) with one-step transition probabilities Q(ig ,ib),(jg ,jb).

Since Y G
0 = (|G|,m− |G|) with probability 1,

P [Y G
1 = (jg, jb) | Y G

0 = (|G|,m− |G|)] = P [Y G
1 = (jg, jb)]. First,

Y G
1 = (|G|,m− |G|) if and only if all alternatives have same attribute 1

value. Then, P [Y G
1 = (|G|,m− |G|) | Y G

0 = (|G|,m− |G|)] =
p
|G|
h p

m−|G|
l + (1− ph)|G|(1− pl)m−|G|. Second, Y G

1 = (jb, jb), 0 ≤ jg ≤ |G|,
0 ≤ jb ≤ m− |G|, (jg, jb) 6= (0, 0), (jg, jb) 6= (|G|,m− |G|) if and only if jb

of the |G| good alternatives have attribute 1 value 1, the remaining |G| − jg

good alternatives have attribute 1 value 0, jb of the m− |G| bad
alternatives have attribute 1 value 1, and the remaining m− |G| − jb bad
alternatives have attribute 1 value 0. Then, P [Y G

1 = (jg, jb) | Y G
0 =

(|G|,m− |G|)] =
(|G|

jg

)
pjg

h (1− ph)|G|−jg(m−|G|
jb

)
pjb

l (1− pl)m−|G|−jb
,

0 ≤ jb ≤ m− |G|, (jg, jb) 6= (0, 0), (jg, jb) 6= (|G|,m− |G|). Finally, Y G
1

cannot be (0, 0). Then, P [Y G
1 = (0, 0) | Y G

0 = (|G|,m− |G|)] = 0.

Let 0 < r < k. Assume (ig, ib) = (0, 0). Thus, Dg
r = Db

r = ∅. Since
Dg

r+1 ⊂ Dg
r and Db

r+1 ⊂ Db
r, Dg

r+1 = Db
r+1 = ∅, implying

P [Y G
r+1 = (0, 0) | Y G

r = (0, 0) ∧ Y G
r−1 = (igr−1, i

b
r−1) ∧ · · · ∧ Y G

1 =
(ig1, i

b
1) ∧ Y G

0 = (|G|,m− |G|)] = 1 and
P [Y G

r+1 = (jg, jb) | Y G
r = (0, 0) ∧ Y G

r−1 = (igr−1, i
b
r−1) ∧ · · · ∧ Y G

1 =
(ig1, i

b
1) ∧ Y G

0 = (|G|,m− |G|)] = 0, 0 ≤ jg ≤ |G|, 0 ≤ jb ≤ m− |G|,
(jg, jb) 6= (0, 0). Assume (ig, ib) 6= (0, 0). Thus, |Dg

r | = ig and |Db
r| = ib.

The values of |Dg
r+1| and |Db

r+1| depend on |Dg
r | = ig and |Db

r| = ib and the
values of the attributes r + 1 of the alternatives as follows. First, Db

r+1 ⊂ Db
r

and Dg
r+1 ⊂ Db

r imply |Dg
r+1| ≤ |Dg

r | = ig and |Db
r+1| ≤ |Db

r| = ib and,
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then, P [Y G
r+1 = (jg, jb) | Y G

r = (ig, ib) ∧ Y G
r−1 = (igr−1, i

b
r−1) ∧ · · · ∧ Y G

1 =
(ig1, i

b
1) ∧ Y G

0 = (|G|,m− |G|)] = 0, ig ≤ jg ≤ |G|, ib ≤ jb ≤ m− |G|,
(jg, jb) 6= (ig, ib). Second, for (ig, ib) 6= (|G|,m− |G|), |Dg

r+1| = 0 and
|Db

r+1| = 0 if and only if all alternatives in Dg
r have attribute r + 1 value 0,

all alternatives in Db
r have attribute r + 1 value 0, and some alternative in

{1, 2, . . . ,m} −Dg
r −Db

r has attribute r + 1 value 0. Then,
P [Y G

r+1 = (0, 0)|Y G
r = (ig, ib)∧Y G

r−1 = (igr−1, i
b
r−1)∧· · ·∧Y G

1 = (ig1, i
b
1)∧Y G

0 =
(|G|,m− |G|)] = (1− ph)ig(1− pl)ib [1− (1− ph)|G|−ig(1− pl)m−|G|−ib ].
Third, |Dg

r+1| and |Db
r+1| will have values jg and jb, respectively,

0 ≤ jg ≤ ig, 0 ≤ jb ≤ ib, (jg, jb) 6= (0, 0), (jg, jb) 6= (ig, ib) if and only if jb

alternatives in Dg
r have attribute r + 1 value 1, the remaining ib − jb

alternatives in Dg
r have attribute r + 1 value 0, jb alternatives in Db

r have
attribute r + 1 value 1, and the remaining ib − jb alternatives in Db

r have
attribute r + 1 value 0. Then,
P [Y G

r+1 = (jg, jb) | Y G
r = (ig, ib) ∧ Y G

r−1 = (igr−1, i
b
r−1) ∧ · · · ∧ Y G

1 =

(ig1, i
b
1) ∧ Y G

0 = (|G|,m− |G|)] =
(

ig

jg

)
pjg

h (1− ph)ig−jg(ib

jb

)
pjb

l (1− pl)ib−jb
,

0 ≤ jg ≤ ig, 0 ≤ jb ≤ ib, (jg, jb) 6= (0, 0), (jg, jb) 6= (ig, ib). Finally, |Dg
r+1|

will have value ig and |Db
r+1| will have value ib if and only if either all

alternatives in Dg
r ∪Db

r have attribute r + 1 value 1 or all alternatives have
attribute r + 1 value 0. Then,
P [Y G

r+1 = (ig, ib) | Y G
r = (ig, ib) ∧ Y G

r−1 = (igr−1, i
b
r−1) ∧ · · · ∧ Y G

1 =
(ig1, i

b
1) ∧ Y G

0 = (|G|,m− |G|)] = pig

h pib

l + (1− ph)|G|(1− pl)m−|G|.
Proof of Theorem 3 That Y G

0 = (|G|,m− |G|) is by definition. We will
compute the probabilities P [Y G

1 = (jg, jb) | Y G
0 = (|G|,m− |G|)],

(jg, jb) ∈ {(i, j), 0 ≤ i ≤ |G|, 0 ≤ j ≤ m− |G|} and the probabilities
P [Y G

r+1 = (jg, jb) | Y G
r = (ig, ib) ∧ Y G

r−1 = (igr−1, i
b
r−1) ∧ · · · ∧ Y G

1 =
(ig1, i

b
1) ∧ Y G

0 = (|G|,m− |G|)], (ig1, i
b
1), . . . , (i

g
r−1, i

b
r−1), (i

g, ib), (jg, jb) ∈
{(i, j), 0 ≤ i ≤ |G|, 0 ≤ j ≤ m− |G|}. It will turn out that the former are
equal to Q(|G|,m−|G|),(jg ,jb) and the latter only depend on (ig, ib) and (jg, jb)
and are equal to Q(ig ,ib),(jg ,jb), thus proving that Y G = {Y G

r ; 0 ≤ r ≤ k} is
an homogeneous discrete-parameter Markov chain (with truncated
parameter) with one-step transition probabilities Q(ig ,ib),(jg ,jb).

Since Y G
0 = (|G|,m− |G|) with probability 1,

P [Y G
1 = (jg, jb) | Y G

0 = (|G|,m− |G|)] = P [Y G
1 = (jg, jb)]. First,

Y G
1 = (|G|,m− |G|) if and only if all alternatives have same attribute 1

value. Then, P [Y G
1 = (|G|,m− |G|) | Y G

0 = (|G|,m− |G|)] =
p
|G|
h p

m−|G|
l + (1− ph)|G|(1− pl)m−|G|. Second, Y G

1 = (jb, jb), 0 ≤ jg ≤ |G|,
0 ≤ jb ≤ m− |G|, (jg, jb) 6= (0, 0), (jg, jb) 6= (|G|,m− |G|) if and only if jb

of the |G| good alternatives have attribute 1 value 1, the remaining |G| − jg

good alternatives have attribute 1 value 0, jb of the m− |G| bad
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alternatives have attribute 1 value 1, and the remaining m− |G| − jb bad
alternatives have attribute 1 value 0. Then, P [Y G

1 = (jg, jb) | Y G
0 =

(|G|,m− |G|)] =
(|G|

jg

)
pjg

h (1− ph)|G|−jg(m−|G|
jb

)
pjb

l (1− pl)m−|G|−jb
,

0 ≤ jb ≤ m− |G|, (jg, jb) 6= (0, 0), (jg, jb) 6= (|G|,m− |G|). Finally, Y G
1

cannot be (0, 0). Then, P [Y G
1 = (0, 0) | Y G

0 = (|G|,m− |G|)] = 0.
Let 0 < r < k. Assume (ig, ib) = (0, 0). Thus, Dg

r = Db
r = ∅. Since

Dg
r+1 ⊂ Dg

r and Db
r+1 ⊂ Db

r, Dg
r+1 = Db

r+1 = ∅, implying
P [Y G

r+1 = (0, 0) | Y G
r = (0, 0) ∧ Y G

r−1 = (igr−1, i
b
r−1) ∧ · · · ∧ Y G

1 =
(ig1, i

b
1) ∧ Y G

0 = (|G|,m− |G|)] = 1 and
P [Y G

r+1 = (jg, jb) | Y G
r = (0, 0) ∧ Y G

r−1 = (igr−1, i
b
r−1) ∧ · · · ∧ Y G

1 =
(ig1, i

b
1) ∧ Y G

0 = (|G|,m− |G|)] = 0, 0 ≤ jg ≤ |G|, 0 ≤ jb ≤ m− |G|,
(jg, jb) 6= (0, 0). Assume (ig, ib) 6= (0, 0). Thus, |Dg

r | = ig and |Db
r| = ib.

The values of |Dg
r+1| and |Db

r+1| depend on |Dg
r | = ig and |Db

r| = ib and the
values of the attributes r + 1 of the alternatives as follows. First, Db

r+1 ⊂ Db
r

and Dg
r+1 ⊂ Db

r imply |Dg
r+1| ≤ |Dg

r | = ig and |Db
r+1| ≤ |Db

r| = ib and,
then, P [Y G

r+1 = (jg, jb) | Y G
r = (ig, ib) ∧ Y G

r−1 = (igr−1, i
b
r−1) ∧ · · · ∧ Y G

1 =
(ig1, i

b
1) ∧ Y G

0 = (|G|,m− |G|)] = 0, ig ≤ jg ≤ |G|, ib ≤ jb ≤ m− |G|,
(jg, jb) 6= (ig, ib). Second, for (ig, ib) 6= (|G|,m− |G|), |Dg

r+1| = 0 and
|Db

r+1| = 0 if and only if all alternatives in Dg
r have attribute r + 1 value 0,

all alternatives in Db
r have attribute r + 1 value 0, and some alternative in

{1, 2, . . . ,m} −Dg
r −Db

r has attribute r + 1 value 0. Then,
P [Y G

r+1 = (0, 0)|Y G
r = (ig, ib)∧Y G

r−1 = (igr−1, i
b
r−1)∧· · ·∧Y G

1 = (ig1, i
b
1)∧Y G

0 =
(|G|,m− |G|)] = (1− ph)ig(1− pl)ib [1− (1− ph)|G|−ig(1− pl)m−|G|−ib ].
Third, |Dg

r+1| and |Db
r+1| will have values jg and jb, respectively,

0 ≤ jg ≤ ig, 0 ≤ jb ≤ ib, (jg, jb) 6= (0, 0), (jg, jb) 6= (ig, ib) if and only if jb

alternatives in Dg
r have attribute r + 1 value 1, the remaining ib − jb

alternatives in Dg
r have attribute r + 1 value 0, jb alternatives in Db

r have
attribute r + 1 value 1, and the remaining ib − jb alternatives in Db

r have
attribute r + 1 value 0. Then,
P [Y G

r+1 = (jg, jb) | Y G
r = (ig, ib) ∧ Y G

r−1 = (igr−1, i
b
r−1) ∧ · · · ∧ Y G

1 =

(ig1, i
b
1) ∧ Y G

0 = (|G|,m− |G|)] =
(

ig

jg

)
pjg

h (1− ph)ig−jg(ib

jb

)
pjb

l (1− pl)ib−jb
,

0 ≤ jg ≤ ig, 0 ≤ jb ≤ ib, (jg, jb) 6= (0, 0), (jg, jb) 6= (ig, ib). Finally, |Dg
r+1|

will have value ig and |Db
r+1| will have value ib if and only if either all

alternatives in Dg
r ∪Db

r have attribute r + 1 value 1 or all alternatives have
attribute r + 1 value 0. Then,
P [Y G

r+1 = (ig, ib) | Y G
r = (ig, ib) ∧ Y G

r−1 = (igr−1, i
b
r−1) ∧ · · · ∧ Y G

1 =
(ig1, i

b
1) ∧ Y G

0 = (|G|,m− |G|)] = pig

h pib

l + (1− ph)|G|(1− pl)m−|G|.
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