# La práctica del análisis de correspondencias

**MICHAEL GREENACRE** 

Catedrático de Estadística en la Universidad Pompeu Fabra

Separata del apéndice B

# Cálculo del análisis de correspondencias

Primera edición: julio 2008 ISBN: 978-84-96515-71-0

Traducción: Jordi Comas Angelet Revisión: Carles M. Cuadras Avellana

© Michael Greenacre, 2008 © de la edición en español, Fundación BBVA, 2008

www.fbbva.es



# Cálculo del análisis de correspondencias

En este apéndice veremos el cálculo del AC utilizando el lenguaje de programación R, un software de alto nivel que podemos bajar libremente de la página web:

http://www.r-project.org

Supondremos que el lector ya tiene algunos conocimientos básicos sobre este lenguaje, que se ha convertido de facto en el software estándar para el cálculo estadístico. En caso contrario, en el sitio de Internet mencionado podemos encontrar muchos recursos para aprenderlo. Los programas que veremos en este apéndice se hallan también en el web de la red CARME (siglas en inglés de *Correspondence Analysis and Related MEthods*):

http://www.carme-n.org

Al final de este apéndice veremos también algunos programas comerciales y describiremos diferentes opciones para la creación de mapas.

## Contenido

| El programa R                |
|------------------------------|
| Intrada de datos en R        |
| extos R para cada capítulo   |
| El paquete <b>ca</b>         |
| Programas R de Fionn Murtagh |
| (LSTAT                       |
| )pciones gráficas            |

El programa R

El programa R proporciona todas las herramientas necesarias para obtener mapas de AC. La más importante es la descomposición en valores singulares (DVS). Estas herramientas son las *funciones* R. Algunas funciones y material relacionado los encontramos en forma de *paquetes* R. Así, el paquete **ca** nos permite llevar a cabo todas las modalidades del AC que hemos descrito en este libro. Lo iremos viendo en este apéndice. También veremos el paquete **rgl** que nos permite crear mapas en tres dimensiones. De todas formas, empezaremos paso a paso haciendo algunos cálculos sencillos utilizando R. Con la letra tipo Courier indicaremos las instrucciones y las salidas en R. Por ejemplo, vamos a crear la matriz (13.2) de la página 137. Calcularemos su DVS y la guardamos en un objeto R tipo «svd». Luego visualizaremos la parte del objeto etiquetada como «d» (los valores propios):

(Las instrucciones las expresamos en color marrón, y los datos y resultados en color verde.)

- Entrada de datos en R La entrada de datos en R tiene sus peculiaridades. Sin embargo, una vez dominadas éstas, ¡el resto es muy fácil! La funcion read.table() es muy útil para introducir matrices de datos. Las fuentes de datos más fácilmente manejables son los archivos de texto o los archivos Excel. Por ejemplo, supongamos que queremos introducir la tabla de datos de 5 × 3 sobre los tipos de lectura que mostramos en la tabla de la imagen 3.1. Veamos tres opciones para leer estos datos.
  - 1. Supongamos que los datos se hallan en un archivo texto como el siguiente:

|    | C1 | C2 | C3 |
|----|----|----|----|
| E1 | 5  | 7  | 2  |
| E2 | 18 | 46 | 20 |
| E3 | 19 | 29 | 39 |
| E4 | 12 | 40 | 49 |
| E5 | 3  | 7  | 16 |

que llamamos reader.txt y que hemos guardado en el directorio de trabajo R. Para leer los datos ejecutaremos la instrucción R siguiente:

```
read.table("reader.txt")
```

2. Otra posibilidad es seleccionar la tabla con el procesador de textos o con Word y luego copiarlo en el portapapeles utilizando la opción copiar del menú de Edit o clicando el botón de la derecha del ratón (suponiendo una plataforma Windows). Para leer directamente la tabla contenida en el portapapeles ejecutaremos la instrucción siguiente:

```
read.table("clipboard")
```

3. De manera similar, podemos leer los datos de un archivo Excel,<sup>\*</sup> seleccionando los datos como mostramos a continuación:

| M 🖂 | 1icrosoft I     | Excel - I | E <b>x4</b> |       |                 |        |                 |       |                    |               |                 |
|-----|-----------------|-----------|-------------|-------|-----------------|--------|-----------------|-------|--------------------|---------------|-----------------|
| 1   | 🚰 🔒             | X         | ଌ   🖪       |       | <b>i</b> i      | b 🖺    | -   🎝 -         | E     | 😫 Σ                | - AZ↓         | 1 🛄 (           |
| 1   | 1 🖆 边           | 2 6       | • 🖄   🖗     | 3 X   | ) [ 🎽 🛛         | ħ (2   | ] <b>₩</b> ∂Res | ponde | er con <u>c</u> ar | nbios         | Ter <u>m</u> in |
| : 😫 | <u>A</u> rchivo | Edición   | ⊻er         | Inser | rtar <u>E</u> o | ormato | <u>H</u> errami | entas | Datos              | Ve <u>n</u> t | ana <u>?</u>    |
| 1   | 1 🔁 🐔           | Ţ         |             |       |                 |        |                 |       |                    |               |                 |
|     | A1              | -         | f           | è     |                 |        |                 |       |                    |               |                 |
|     | A               |           | В           |       | С               |        | D               |       | E                  |               |                 |
| 1   |                 | C         | 1           | 1     | C2              |        | C3              |       |                    |               |                 |
| 2   | E1              |           |             | - 5   |                 | - 7    |                 | 2     |                    |               |                 |
| 3   | E2              |           |             | 18    |                 | 46     |                 | 20    |                    |               |                 |
| 4   | E3              |           |             | 19    |                 | - 29   |                 | - 39  |                    |               |                 |
| 5   | E4              |           |             | 12    |                 | 40     |                 | 49    |                    |               |                 |
| 6   | E5              |           |             | 3     |                 | - 7    |                 | 16    |                    |               |                 |
| 7   |                 |           |             |       |                 |        |                 |       |                    |               |                 |
| 8   |                 |           |             |       |                 |        |                 |       |                    |               |                 |
| a   |                 |           |             |       |                 |        |                 |       |                    |               |                 |

y copiarlos en el portapapeles. A continuación ejecutaremos la siguiente instrucción:

```
table <- read.table("clipboard")</pre>
```

Con esta opción la tabla queda guardada como un *data frame* de R llamado table. Para indicar en la función read.table() que la primera línea contiene las etiquetas de las columnas y que la primera columna de las líneas posteriores contiene las etiquetas de las filas, tenemos que dejar un espacio vacío en la primera línea de la tabla copiada —así, podemos ver que hemos dejado una celda vacía en la esquina de arriba a la izquierda de la tabla Excel. Haríamos lo mismo si se tratara de un archivo de texto. Podemos ver el contenido de table ejecutando:

#### table

|    | C1 | C2 | C3 |
|----|----|----|----|
| E1 | 5  | 7  | 2  |
| E2 | 18 | 46 | 20 |
| E3 | 19 | 29 | 39 |
| E4 | 12 | 40 | 49 |
| E5 | 3  | 7  | 16 |

El objeto incluye las etiquetas de filas y columnas. Las podemos ver escribiendo rownames(table) y colnames(table), por ejemplo:

<sup>\*</sup> Utilizando el paquete **foreign** de R (que se distribuye con el programa) es posible leer otros formatos, como por ejemplo Stata, Minitab, SPSS, SAS, Systat y DBF.

```
rownames(table)
[1] "E1" "E2" "E3" "E4" "E5"
```

Textos R para cada capítulo

A continuación describiremos de forma sistemática cómo realizar con R los cálculos de cada uno de los capítulos del libro. Empezaremos por el capítulo 2 viendo las funciones más básicas de R y el paquete **rgl** de representación gráfica tridimensional. Dejaremos para más adelante las explicaciones del paquete **ca**, que realiza los cálculos del AC de una manera mucho más compacta.

Capítulo 2: Perfiles y espacio de perfiles En el capítulo 2 mostramos algunos diagramas triangulares correspondientes a los datos de mis viajes. Supongamos que hemos introducido los datos de los perfiles de la tabla de la imagen 2.1, como hemos descrito anteriormente, y que los guardamos en el *data frame* profiles de R:

```
profiles <- read.table("clipboard")
profiles</pre>
```

| I           | Dias_de_fiesta | Medias_jornadas | Jornadas_completas |
|-------------|----------------|-----------------|--------------------|
| Noruega     | 0.333          | 0.056           | 0.611              |
| Canada      | 0.067          | 0.200           | 0.733              |
| Grecia      | 0.138          | 0.862           | 0.000              |
| Francia/Ale | mania 0.083    | 0.083           | 0.833              |

Ejemplo de figura tridimensional utilizando el paquete **rgl** 

```
(Fijémonos en que no hay espacios en blanco en las etiquetas, si los hubiera, los datos no se habrían leído correctamente.) Podemos generar una imagen en tres dimensiones de los perfiles utilizando el paquete rgl<sup>*</sup> de la manera siguiente (suponemos que hemos instalado y cargado rgl):
```

```
rgl.lines(c(0,1.2), c(0,0),
                             c(0,0))
rql.lines(c(0,0), c(0,1.2), c(0,0))
rgl.lines(c(0,0),
                   c(0,0),
                             c(0,1.2))
rgl.lines(c(0,0),
                   c(0,1),
                             c(1,0), size = 2)
rgl.lines(c(0,1),
                   c(1,0),
                             c(0,0), size = 2)
                             c(1,0), size = 2)
rgl.lines(c(0,1),
                   c(0,0),
rgl.points(profiles[,3], profiles[,1], profiles[,2], size = 4)
rgl.texts(profiles[,3], profiles[,1], profiles[,2],
    text = row.names(profiles))
```

En la figura de la imagen B.1 mostramos el diagrama de dispersión tridimensional desde un determinado punto de visión. Presionando el botón de la izquierda del ratón podemos hacer girar la figura para dar una mejor sensación tridimensional. En la figura de la imagen B.2 mostramos una de estas rotaciones en la que

<sup>\*</sup> El paquete rgl no es uno de los paquetes proporcionados como estándar con R, hay que instalarlo bajándolo de la página web de R o de www.carme-n.org.





el punto de vista es plano con relación al triángulo que contiene los puntos correspondientes a los perfiles. La rueda del ratón permite acercar la imagen.



### Imagen B.2:

Rotación del espacio tridimensional para mostrar dónde se hallan los puntos correspondientes a los perfiles

Como ilustración de las figuras del capítulo 3, vamos a ver cómo dibujar utilizando R, el diagrama de coordenadas triangular de la imagen 3.2. Para calcular las posiciones (x, y) de los puntos necesitamos un poco de trigonometría.

Capítulo 3: Masas y centroide



Imagen B.3: Diagrama de los perfiles de cinco niveles educativos en el espacio de coordenadas triangular

La función apply() i

Supongamos que hemos leído la tabla como vimos al final de la página 267 y que tenemos los datos almacenados en el *data frame* table. Las siguientes instrucciones en R permiten obtener la figura de la imagen B.3. En la primera instrucción calculamos los perfiles de las filas mediante la función apply() y los guardamos en table.pro. Podemos aplicar la función apply() tanto a filas como a columnas. En nuestro caso el parámetro «1» indica filas, y sum la suma de sus elementos. En este caso dividimos los elementos de cada una de las columnas por la suma de los elementos de las correspondientes filas. En las dos líneas siguientes calculamos las coordenadas x e y de los cinco perfiles en un triángulo equilátero de lado 1. Para ello utilizamos los valores del primer y del tercer perfil (para situar los puntos sólo necesitamos dos de las tres coordenadas).

```
Ejemplo de figura table.pro <- table/apply(table, 1, sum)
bidimensional table.x <- 1 - table.pro[,1] - table.pro[,3]/2
table.y <- table.pro[,3] * sqrt(3)/2
plot.new()
lines(c(0,1,0.5,0), c(0,0,sqrt(3)/2,0), col = "gray")
text(c(0,1,0.5), c(0,0,sqrt(3)/2), labels = colnames(table))
text(table.x, table.y, labels = rownames(table))</pre>
```

Capítulo 4: Distancias ji-cuadrado e inercia En el capítulo 4 calculamos el estadístico  $\chi^2$ , la inercia y las distancias  $\chi^2$ . Vamos a ver cómo llevar a cabo cada uno de estos cálculos. Los realizaremos con los datos sobre los tipos de lectura que anteriormente guardamos en el *data frame* table.

```
— Estadístico \chi^2 e inercia total
table.rowsum <- apply(table, 1, sum)</pre>
table.colsum <- apply(table, 2, sum)</pre>
table.sum
            <- sum(table)
              <- tabla.rowsum %o% table.colsum / table.sum
table.exp
              <-sum((table - table.exp)^2 / table.exp)
chi2
chi2
[1] 25.97724
chi2 / table.sum
[1] 0.08326039
```

Fijémonos en la utilización del operador %0% de producto externo, en la cuarta línea del programa anterior. Multiplica cada elemento del vector situado a su izquierda por cada elemento del vector situado a su derecha.

Producto externo, el operador %0%

#### — Distancias $\chi^2$ de los perfiles fila al centroide

Vamos a ver cómo calcular el cuadrado de la distancia  $\gamma^2$  para la quinta fila de la tabla de perfiles, como vimos en (4.4). Para calcular la suma de los tres términos utilizamos la iteración for de R:

```
chidist <- 0
for(j in 1:3)
{chidist<-chidist + (table.pro[5,j] -</pre>
table.colmass[j]^2/table.colmass[j]}
chidist
       C1
0.1859165
```

Eiemplo de iteración en R utilizando for

R da la etiqueta C1 al valor de chidist, probablemente porque es la primera columna de la iteración. Otra posibilidad es calcular las cinco distancias de una vez. Para ello, tenemos que restar a cada fila de la matriz de perfiles el correspondiente valor de la columna que contiene las masas de las filas, elevar estas diferencias al cuadrado, y luego dividir otra vez cada fila por las masas para, finalmente, sumar las filas. Debido a que en R, las matrices se guardan como columnas de vectores, las operaciones con filas son ligeramente más complicadas. Una posible solución es: primero transponer la matriz de perfiles, utilizando la función de transposición t() para a continuación sumar las columnas del objeto transpuesto (anteriormente filas) utilizando la función apply() con los parámetros que indican las suma de columnas 2, sum:

Función de transposición t()

apply((t(table.pro)-table.colmass)^2/table.colmass,2,sum) E2 E3 E4 E5 E10.35335967 0.11702343 0.02739229 0.03943842 0.18591649 Función de distancia dist()

Adición de filas utilizando rbind()

> La versátil función sweep()

Podemos calcular todas las distancias  $\chi^2$  entre perfiles y, en particular, entre éstos y su perfil media, mediante la función dist() que, por defecto, calcula la distancia euclídea matricial entre las filas de una matriz. Vamos a añadir la fila que contiene las masas de las columnas (perfil fila medio) a la matriz de perfiles utilizando la función rbind() (adición de filas) para formar la matriz de perfiles de  $6 \times 3$ , tablec.pro. A continuación dividiremos cada elemento del perfil por la correspondiente raíz cuadrada de la media. Una alternativa a la utilización de la operación de transposición es utilizar la versátil función sweep(), similar a apply() pero con más opciones. En la tercera línea del texto en R que mostramos a continuación las opciones de la función sweep() son 2 (operar en columnas), sqrt(table.colmass)(el vector utilizado para la operación) y "/" (división):

```
tablec.pro <- rbind(tablec.pro, table.colmass)</pre>
rownames(tablec.pro)[6] <- "ave"</pre>
dist(sweep(tablec.pro, 2, sqrt(table.colmass), FUN="/"))
                           E2
                                        E3
                                                                   E5
              E1
                                                      E4
E2
       0.3737004
       0.6352512
E3
                    0.4696153
       0.7919425
                    0.5065568
                                 0.2591401
E4
E5
       1.0008054
                    0.7703644
                                 0.3703568
                                              0.2845283
       0.5944406
                    0.3420869
                                 0.1655062
                                              0.1985911
                                                           0.4311803
ave
```

El resultado de la función dist() es un objeto que contiene una matriz triangular con todas las distancias entre los cinco perfiles. La última línea de la salida del programa —que hemos etiquetado como "ave" (en la segunda línea del programa y que corresponde al perfil fila medio añadido)— muestra las distancias  $\chi^2$  de los perfiles a su media.

Capítulo 5: Representación de distancias ji-cuadrado En el capítulo 5 visualizamos las distancias  $\chi^2$  comprimiendo los ejes de coordenadas mediante factores inversamente proporcionales a las raíces cuadradas de sus correspondientes masas. Para hacer la representación gráfica seguiremos una secuencia de codificación similar a la que vimos anteriormente para el diagrama tridimensional del capítulo 2, con la excepción de que dividiremos cada coordenada por sqrt(table.colmass). Un detalle importante para reproducir la figura de la imagen 5.2 es decidir qué elementos del perfil van en cada dimensión. Lo dejamos como ejercicio para el lector (de todas formas, en la página web que mencionamos podemos encontrar el texto del programa).

Capítulo 6: Reducción de la dimensionalidad En el capítulo 6 consideramos el AC como un método que permite reducir dimensiones. Vamos a llevar a cabo nuestra primera descomposición en valores singulares (DVS). Para ello, en primer lugar, introducimos los datos sobre la autopercepción de la salud en health. A continuación, seguimos los pasos que vimos en la página 266 del apéndice A. Las pasos preliminares (A.1-A.3) son los siguientes:

```
health.P <-health/sum(health)
health.r <-apply(health.P, 1, sum)
health.c <-apply(health.P, 2, sum)
health.Dr <-diag(health.r)
health.Dc <-diag(health.c)
health.Drmh <-diag(1/sqrt(health.r))
health.Dcmh <-diag(1/sqrt(health.c))</pre>
```

Las dos últimas instrucciones anteriores crean  $\mathbf{D}_{r}^{-\frac{1}{2}}$  y  $\mathbf{D}_{c}^{-\frac{1}{2}}$ , respectivamente. Posteriormente necesitaremos estas matrices de forma repetida (el nombre de objeto mh viene de "minus half"). Para poder llevar a cabo el producto de matrices (A.4), tenemos que transformar el *data frame* health.P en una matriz del entorno R. Efectuaremos el producto de matrices utilizando el operador %\*%. Realizamos la DVS indicada en (A.5) con la función svd().

Calculamos las coordenadas principales y estándares (pc y sc) como vimos en (A.6-A.9):

```
health.rsc <-health.Drmh %*% health.svd$u
health.csc <-health.Dcmh %*% health.svd$v
health.rpc <-health.rsc %*% diag(health.svd$d)
health.cpc <-health.csc %*% diag(health.svd$d)</pre>
```

¡Y esto es todo! Las 14 instrucciones en R anteriores constituyen el algoritmo de cálculo del AC; para calcular coordenadas del mapa de AC simplemente tenemos que sustituir health por cualquier otro objeto.

Por ejemplo, para ver los valores de las coordenadas principales de las filas en el primer eje escribiremos:

```
health.rpc[,1]
[1] -0.37107411 -0.32988430 -0.19895401 0.07091332 0.39551813 ...
```

(Fijémonos en que los signos están cambiados con relación al mapa de la imagen 6.3. Ello ocurre a menudo cuando utilizamos distintos softwares. Podemos cambiar sin problemas los signos de todas las coordenadas.)

En el capítulo 7 vimos las propiedades del escalado óptimo del AC. Por tanto, en este capítulo no realizamos cálculos complicados. Simplemente ilustramos el cálculo de la transformación de la escala óptima (7.5) utilizando las funciones R

Capítulo 7: Escalado óptimo

287

La función diag() para obtener matrices diagonal

multiplicación de matrices %\*%

Operador para la

Ejemplo de DVS, la función svd ( ) para el cálculo de valores máximos y mínimos. (Debido al cambio de signos de las coordenadas del primer eje, hemos invertido la escala. Es decir, la escala transformada va de 0 = muy buena a 100 = muy mala. Restando 100 a los valores resultantes obtenemos los valores de la tabla de la imagen 7.2.):

Capítulo 8: Simetría entre el análisis de filas y el de columnas En el capítulo 8 vimos más propiedades de los resultados del AC. La figura de la imagen 8.5 no la creamos utilizando R, la creamos directamente en LATEX (véanse las descripciones sobre la composición gráfica al final de este apéndice). A continuación veremos cómo utilizando algunas instrucciones R, podemos ilustrar las propiedades de máxima correlación del AC. Por ejemplo, la ecuación (8.2) de la página 92. Así, podemos calcular la correlación entre los valores de edad y de salud en la primera dimensión,  $\phi^T \mathbf{P} \gamma$ , donde  $\phi$  y  $\gamma$  son las coordenadas estándares en la primera dimensión, y  $\mathbf{P}$  es la matriz de correspondencias.

El cuadrado de esta correlación es la primera inercia principal (el resultado anterior aparece como una matriz de  $1 \times 1$ , ya que resulta de una multiplicación de matrices). El cálculo anterior de las correlaciones queda justificado por el hecho de que las varianzas son 1. Vamos a ver la estandarización (A.12), por ejemplo, para las filas.

```
t(health.rsc[,1]) %*% health.Dr %*% health.rsc[,1]
       [,1]
       [,1] 1
```

Capítulo 9: Representaciones bidimensionales

Contacto inicial con el paquete **ca** 

En el capítulo 9 vimos la geometría de los mapas bidimensionales. Comparamos los mapas asimétricos con los simétricos. Vamos a aprovechar que el paquete **ca** contiene los datos sobre los fumadores para iniciarnos en su utilización. Una vez instalado y cargado el paquete **ca**, podemos obtener los mencionados datos ejecutando la instrucción:

#### data(smoke)

#### CÁLCULO DEL ANÁLISIS DE CORRESPONDENCIAS

que nos proporciona el data frame smoke:

```
smoke
```

|    | none | light | medium | heavy |
|----|------|-------|--------|-------|
| SM | 4    | 2     | 3      | 2     |
| JM | 4    | 3     | 7      | 4     |
| SE | 25   | 10    | 12     | 4     |
| JE | 18   | 24    | 33     | 13    |
| SC | 10   | 6     | 7      | 2     |

La función ca() —una de las funciones del paquete ca— nos permite llevar a cabo un AC simple. Así, podemos obtener fácilmente el AC de los datos sobre los fumadores escribiendo ca(smoke):

#### ca(smoke)

| Principal  | inertias (e | igenvalues) | :         |           |           |
|------------|-------------|-------------|-----------|-----------|-----------|
|            | 1           | 2           | 3         |           |           |
| Value      | 0.074759    | 9 0.010017  | 0.000414  |           |           |
| Percentage | 87.76%      | 11.76%      | 0.49%     |           |           |
| Rows:      |             |             |           |           |           |
|            | SM          | JM          | SE        | JE        | SC        |
| Mass       | 0.056995    | 0.093264    | 0.264249  | 0.455959  | 0.129534  |
| ChiDist    | 0.216559    | 0.356921    | 0.380779  | 0.240025  | 0.216169  |
| Inertia    | 0.002673    | 0.011881    | 0.038314  | 0.026269  | 0.006053  |
| Dim. 1     | -0.240539   | 0.947105    | -1.391973 | 0.851989  | -0.735456 |
| Dim. 2     | -1.935708   | -2.430958   | -0.106508 | 0.576944  | 0.788435  |
| Columns:   |             |             |           |           |           |
|            | none        | light       | medium    | heavy     |           |
| Mass       | 0.316062    | 0.233161    | 0.321244  | 0.129534  |           |
| ChiDist    | 0.394490    | 0.173996    | 0.198127  | 0.355109  |           |
| Inertia    | 0.049186    | 0.007059    | 0.012610  | 0.016335  |           |
| Dim. 1     | -1.438471   | 0.363746    | 0.718017  | 1.074445  |           |
| Dim. 2     | -0.304659   | 1.409433    | 0.073528  | -1.975960 |           |

De los resultados anteriores nos tendrían que resultar familiares las inercias principales y sus porcentajes. Y para filas y columnas, las masas, las distancias  $\chi^2$  al centroide, las inercias y las coordenadas estándares en las dos primeras dimensiones. Más adelante describiremos mucho más detalladamente las características de este paquete. Por el momento sólo vamos a mostrar lo fácil que resulta hacer una representación gráfica. Para obtener el mapa simétrico del AC de la imagen B.4 basta con escribir y ejecutar la función plot() con ca(smoke):



#### Imagen B.4: Mapa simétrico de los datos sobre los fumadores, utilizando el paquete ca

#### plot(ca(smoke))

Fijémonos en que, con relación al mapa de la imagen 9.5, aparecen invertidos los dos ejes principales. Para obtener mapas asimétricos, añadiremos la opción map="rowprincipal" o map="colprincipal" a la función plot(). Por ejemplo, podemos obtener el mapa de la imagen 9.2 de la siguiente manera:

```
plot(ca(smoke), map = "rowprincipal")
```

Capítulo 10: Tres ejemplos más Lo que hemos visto sobre el paquete **ca** nos basta para poder llevar a cabo los análisis del capítulo 10. Los datos que utilizamos están disponibles en la página web www.carme-n.org en formatos texto y Excel. Los datos sobre los autores se hallan también en el paquete **ca**, de manera que los podemos obtener, igual que hicimos con los datos sobre los fumadores, con la instrucción R data(author). Para visualizar los datos sobre los autores en un mapa de AC tridimensional, podemos probar lo siguiente (suponemos que hemos cargado el paquete **ca**):

```
data(author)
plot3d.ca(ca(author), labels = c(2,1), sf = 0.000001)
```

Capítulo 11: Contribuciones a la inercia En el capítulo 11 introducimos algunos cálculos nuevos. Todos ellos implementados en el paquete **ca**. Sin embargo, igual que antes, primero hagamos los cálculos «a mano». Podemos leer los datos sobre la financiación de la investigación científica como describimos anteriormente —supongamos que hemos llamado fund al *data frame* que contiene estos datos. Calculamos la matriz de residuos estandarizados de esta tabla como hicimos en el capítulo 4. Las inercias de la tabla de la imagen 11.1 son las sumas de cuadrados de las filas y de las columnas de la matriz de residuos.

```
fund.P <- as.matrix(fund/sum(fund))
fund.r <- apply(fund.P, 1, sum)
fund.c <- apply(fund.P, 2, sum)
fund.Drmh <- diag(1/sqrt(fund.r))
fund.Dcmh <- diag(1/sqrt(fund.c))
fund.res <- fund.Drmh %*% (fund.P - fund.r %o% fund.c) %*% fund.Dcmh
round(apply(fund.res^2, 1, sum), 5)
[1] 0.01135 0.00990 0.00172 0.01909 0.01621 0.01256 0.00083
[8] 0.00552 0.00102 0.00466
round(apply(fund.res^2, 2, sum),5)
[1] 0.01551 0.00911 0.00778 0.02877 0.02171</pre>
```

Las contribuciones, expresadas en tantos por mil, de la tabla de la imagen 11.2 son los cuadrados de los residuos estandarizados con relación al total:

Contribuciones de cada celda de la tabla a la inercia total

```
round (1000*fund.res<sup>2</sup>/sum(fund.res<sup>2</sup>), 0)
```

|       | [,1] | [,2] | [,3] | [,4] | [,5] |
|-------|------|------|------|------|------|
| [1,]  | 0    | 32   | 16   | 0    | 89   |
| [2,]  | 0    | 23   | 4    | 44   | 48   |
| [3,]  | 3    | 12   | 1    | 0    | 5    |
| [4,]  | 9    | 15   | 11   | 189  | 8    |
| [5,]  | 106  | 11   | 2    | 74   | 3    |
| [6,]  | 1    | 11   | 38   | 1    | 102  |
| [7,]  | 2    | 0    | 0    | 3    | 5    |
| [8,]  | 51   | 4    | 0    | 10   | 2    |
| [9,]  | 10   | 0    | 0    | 2    | 0    |
| [10,] | 5    | 3    | 22   | 26   | 0    |

(Después de las multiplicaciones de matrices, hemos perdido las etiquetas de filas y de columnas. Las podemos recuperar utilizando las funciones rownames() y colnames().)

Las inercias principales de la tabla de la imagen 11.3 son los cuadrados de los valores singulares resultantes de hacer la DVS ("svd") de la matriz de residuos:

```
fund.svd <- svd(fund.res)
fund.svd$d^2
[1] 3.911652e-02 3.038081e-02 1.086924e-02 2.512214e-03 4.252722e-33</pre>
```

(obtenemos cinco valores, sin embargo, el último es teóricamente igual a cero).

Para calcular los componentes individuales de la inercia de las filas en los cuatro ejes, en primer lugar, necesitamos calcular las coordenadas principales  $f_{ik}$  [véase (A.8)] y luego los valores  $r_i f_{ik}^2$ :

```
fund.F
         <- fund.Drmh %*% fund.svd$u %*% diag(fund.svd$d)
fund.rowi <- diag(fund.r) %*% fund.F^2</pre>
fund.rowi[,1:4]
               [,1]
                              [,2]
                                            [,3]
                                                           [, 4]
       6.233139e-04
                     9.775878e-03
                                    8.222230e-04
                                                  1.301601e-04
 [1,]
                                    8.385857e-04
                                                  3.423076e-04
 [2,]
      1.178980e-03
                    7.542243e-03
                    8.787604e-04
                                    2.931994e-04
                                                  3.211261e-04
 [3,]
       2.314352e-04
 [4,] 1.615600e-02 1.577160e-03 6.274587e-04
                                                  7.271264e-04
       1.426048e-02
                    1.043783e-04
                                    1.691831e-03
                                                  1.562740e-04
 [5,]
      1.526183e-03 9.407586e-03
                                   1.273528e-03
                                                  3.573707e-04
 [6,]
       7.575664e-06
                    5.589276e-04
                                    7.980532e-05
                                                  1.868385e-04
 [7,]
 [8,]
      3.449918e-03 1.601539e-04
                                   1.799425e-03
                                                  1.091335e-04
 [9,]
       5.659639e-04
                     7.306881e-06
                                    4.185906e-04
                                                  3.022249e-05
                                    3.024590e-03
[10.]
       1.116674e-03
                     3.684113e-04
                                                  1.516545e-04
```

lo que concuerda con los valores de la tabla de la imagen 11.5. Fijémonos en que, en la última instrucción anterior, sólo hemos considerado las primeras cuatro columnas (fund.rowi[,1:4]). Dado que el quinto valor singular es cero, los valores de la quinta columna teóricamente son cero. Finalmente, expresamos estos componentes con relación a la inercia de un punto (suma de filas) o a la inercia de un eje (sumas de columnas, es decir, las inercias principales) [véanse (A.27) y (A.26), respectivamente], y al mismo tiempo los expresamos en tantos por mil, de la siguiente manera:

```
Cálculo de las
                 round(1000*(fund.rowi/apply(fund.rowi, 1, sum)) [,1:4], 0)
contribuciones relativas
                         [,1] [,2] [,3] [,4]
(cosenos al cuadrado o
                  [1,]
                           55
                                 861
                                        72
                                               11
     correlaciones)
                                 762
                                               35
                  [2,]
                          119
                                        85
                  [3,]
                          134
                                 510
                                       170
                                              186
                  [4, ]
                          846
                                  83
                                        33
                                               38
                          880
                                       104
                                               10
                  [5,]
                                   6
                  [6,]
                          121
                                 749
                                       101
                                               28
                             9
                                 671
                                        96
                                              224
                  [7,]
                  [8,]
                          625
                                  29
                                       326
                                               20
                                   7
                  [9,]
                          554
                                       410
                                               30
```

33

649

79

lo que concuerda con los datos de la tabla de la imagen 11.6 (para obtener las calidades que aparecen en la tabla de la imagen 11.8 sumamos las primeras dos columnas de la tabla anterior). Respecto a las sumas de columnas, es decir, las inercias principales:

[10,]

240

round(1000\*t(t(fund.rowi)/fund.svd\$d^2) [,1:4], 0)

Cálculo de las contribuciones a cada eje principal

|       | [,1] | [,2] | [,3] | [,4] |
|-------|------|------|------|------|
| [1,]  | 16   | 322  | 76   | 52   |
| [2,]  | 30   | 248  | 77   | 136  |
| [3,]  | 6    | 29   | 27   | 128  |
| [4,]  | 413  | 52   | 58   | 289  |
| [5,]  | 365  | 3    | 156  | 62   |
| [6,]  | 39   | 310  | 117  | 142  |
| [7,]  | 0    | 18   | 7    | 74   |
| [8,]  | 88   | 5    | 166  | 43   |
| [9,]  | 14   | 0    | 39   | 12   |
| [10,] | 29   | 12   | 278  | 60   |
|       |      |      |      |      |

que muestra cómo se ha construido cada eje. Por ejemplo, las filas 4 y 5 (Física y Zoología) son las que más contribuyen al primer eje.

Anticipándonos un poco a la descripción completa del paquete **ca**, podemos ver que si aplicamos la función summary() a ca(fund) obtenemos los resultados completos del análisis anterior:

#### summary(ca(fund))

Principal inertias (eigenvalues):

|      | dim    | value    | 8     | cum%  | scree plot                              |
|------|--------|----------|-------|-------|-----------------------------------------|
| [1,] | 1      | 0.039117 | 47.2  | 47.2  | * * * * * * * * * * * * * * * * * * * * |
| [2,] | 2      | 0.030381 | 36.7  | 83.9  | * * * * * * * * * * * * * * * * * *     |
| [3,] | 3      | 0.010869 | 13.1  | 97.0  | * * * * * *                             |
| [4,] | 4      | 0.002512 | 3.0   | 100.0 |                                         |
| [5,] |        |          |       |       |                                         |
| [6,] | Total: | 0.082879 | 100.0 |       |                                         |

Rows:

|    | name | mass | qlt | inr | k=1  | cor | ctr | k=2  | cor | ctr |
|----|------|------|-----|-----|------|-----|-----|------|-----|-----|
| 1  | Gel  | 107  | 916 | 137 | 76   | 55  | 16  | 303  | 861 | 322 |
| 2  | Bic  | 36   | 881 | 119 | 180  | 119 | 30  | -455 | 762 | 248 |
| 3  | Chm  | 163  | 644 | 21  | 38   | 134 | 6   | 73   | 510 | 29  |
| 4  | Zol  | 151  | 929 | 230 | -327 | 846 | 413 | 102  | 83  | 52  |
| 5  | Phy  | 143  | 886 | 196 | 316  | 880 | 365 | 27   | 6   | 3   |
| 6  | Eng  | 111  | 870 | 152 | -117 | 121 | 39  | -292 | 749 | 310 |
| 7  | Mcr  | 46   | 680 | 10  | 13   | 9   | 0   | -110 | 671 | 18  |
| 8  | Bot  | 108  | 654 | 67  | -179 | 625 | 88  | -39  | 29  | 5   |
| 9  | Stt  | 36   | 561 | 12  | 125  | 554 | 14  | 14   | 7   | 0   |
| 10 | Mth  | 98   | 319 | 56  | 107  | 240 | 29  | -61  | 79  | 12  |

| Co | lu | mns: |      |     |     |      |     |     |      |     |     |  |
|----|----|------|------|-----|-----|------|-----|-----|------|-----|-----|--|
|    |    | name | mass | qlt | inr | k=1  | cor | ctr | k=2  | cor | ctr |  |
| 1  |    | A    | 39   | 587 | 187 | 478  | 574 | 228 | 72   | 13  | 7   |  |
| 2  |    | В    | 161  | 816 | 110 | 127  | 286 | 67  | 173  | 531 | 159 |  |
| 3  |    | С    | 389  | 465 | 94  | 83   | 341 | 68  | 50   | 124 | 32  |  |
| 4  |    | D    | 162  | 968 | 347 | -390 | 859 | 632 | 139  | 109 | 103 |  |
| 5  |    | Е    | 249  | 990 | 262 | -32  | 12  | 6   | -292 | 978 | 699 |  |

#### Capítulo 12: Puntos adicionales

En el capítulo 12 vimos cómo añadir puntos a un mapa utilizando la relación baricéntrica existente entre las coordenadas estándares de las columnas y las coordenadas principales de las filas. Es decir, los perfiles se hallan situados a medias ponderadas de los vértices. El ejemplo que vimos en la página 130 muestra cómo situar el punto adicional *Museos* [4 12 11 19 7], cuya suma total es 53. Si el vector **m** contiene el perfil de *Museos*, los productos escalares de éste con las coordenadas estándares de las columnas,  $\mathbf{m}^{\mathsf{T}}\Gamma$ , proporciona las coordenadas buscadas:

```
fund.m <- c(4,12,11,19,7)/53
fund.Gamma <- fund.Dcmh %*% fund.svd$v
t(fund.m) %*% fund.Gamma[,1:2]
        [,1] [,2]
[1,] -0.3143203 0.3809511</pre>
```

(En comparación con el mapa de la imagen 12.2, en esta solución, el signo del segundo eje aparece cambiado. Si llevamos a cabo la misma operación con los vectores unitarios de la tabla de la imagen 12.4 como puntos adicionales, y luego los multiplicamos por las coordenadas estándares de las columnas, veríamos que sus posiciones coinciden con estas últimas.)

Capítulo 13: Biplots de análisis de correspondencias En el capítulo 13 vimos las diferentes escalas de los biplots del AC. En el mapa correspondiente al biplot estándar del AC de la imagen 13.3, las filas están en coordenadas principales y las columnas en coordenadas estándares multiplicadas por la raíz cuadrada de las masas respectivas de las columnas. Dadas las coordenadas estándares calculadas anteriormente en fund.Gamma, el cálculo de las coordenadas en este biplot estándar, en las dos primeras dimensiones, es el siguiente:

```
diag(sqrt(fund.c)) %*% fund.Gamma[,1:2]
```

|      | [,1]        | [,2]        |
|------|-------------|-------------|
| [1,] | 0.47707276  | 0.08183444  |
| [2,] | 0.25800640  | 0.39890356  |
| [3,] | 0.26032157  | 0.17838093  |
| [4,] | -0.79472740 | 0.32170520  |
| [5,] | -0.08046934 | -0.83598151 |

En las siguientes instrucciones, en notación matricial, primero guardamos los productos escalares del lado derecho de (13.7), para  $K^* = 2$ , en fund.est y luego calculamos los perfiles estimados multiplicando por las raíces cuadradas  $\sqrt{c_j}$  y sumando  $c_j$ :

Perfiles estimados a partir del biplot

```
fund.est <- fund.F[,1:2] %*% t(diag(sqrt(fund.c)) %*%</pre>
    fund.Gamma[,1:2])
oner <- rep(1, dim(fund)[1])</pre>
round(fund.est %*% diag(sqrt(fund.c)) + oner %o% fund.c, 3)
                       С
          Α
                в
                              D
                                     Е
[1, ]
      0.051 0.217 0.436 0.177 0.120
[2,]
      0.049 0.107 0.368 0.046 0.431
     0.044 0.176 0.404 0.160 0.217
[3,]
     0.010 0.143 0.348 0.280 0.219
[4,]
     0.069 0.198 0.444 0.065 0.225
[5,]
[6,]
      0.023 0.102 0.338
                          0.162 0.375
     0.038 0.145 0.379 0.144 0.294
[7,]
     0.021 0.136 0.356 0.214 0.272
[8,]
[9,] 0.051 0.176 0.411 0.124 0.238
[10,] 0.048 0.162 0.400 0.120 0.270
```

resultado que podemos comparar con los verdaderos valores de los perfiles:

round(fund.P/fund.r, 3)

|      | A     | В     | С     | D     | Е     |
|------|-------|-------|-------|-------|-------|
| Geol | 0.035 | 0.224 | 0.459 | 0.165 | 0.118 |
| Bioc | 0.034 | 0.069 | 0.448 | 0.034 | 0.414 |
| Chem | 0.046 | 0.192 | 0.377 | 0.162 | 0.223 |
| Zool | 0.025 | 0.125 | 0.342 | 0.292 | 0.217 |
| Phys | 0.088 | 0.193 | 0.412 | 0.079 | 0.228 |
| Engi | 0.034 | 0.125 | 0.284 | 0.170 | 0.386 |
| Micr | 0.027 | 0.162 | 0.378 | 0.135 | 0.297 |
| Bota | 0.000 | 0.140 | 0.395 | 0.198 | 0.267 |
| Stat | 0.069 | 0.172 | 0.379 | 0.138 | 0.241 |
| Math | 0.026 | 0.141 | 0.474 | 0.103 | 0.256 |
|      |       |       |       |       |       |

Calculando las diferencias entre los valores verdaderos y los valores estimados de los perfiles obtenemos una aproximación a los errores individuales. La suma de los cuadrados de estas diferencias, convenientemente ponderadas, nos da un error general del AC bidimensional. Tenemos que ponderar cada fila de diferencias al cuadrado con la correspondiente masa de la fila  $r_i$  y cada columna con la inversa del valor esperado  $1/c_j$ . El cálculo es el siguiente (se trata de una instrucción empaquetada en dos líneas, jun ejemplo de programación R concentrada!):

Para ver que el resultado es correcto, tenemos que sumar las inercias principales pero *no* las de los dos primeros ejes:

```
sum(fund.svd$d[3:4]^2)
[1] 0.01338145
```

lo que confirma los cálculos anteriores (es el 16% de la inercia no explicada que aparece en la página 143).

Calibración de los ejes del biplot

El cálculo de las calibraciones de los biplots es bastante complicado ya que implica mucha trigonometría. En vez de dar un listado de todo el procedimiento, recomendamos a los lectores interesados que consulten la página web en la que detallamos la programación de la función biplot.ca() que calcula las coordenadas de los puntos inicial y final, así como todas las marcas de los ejes del biplot para las columnas.

Capítulo 14: Relaciones de transición y de regresión En el capítulo 14 vimos varias relaciones lineales entre las coordenadas de filas, de columnas y de datos. Aquí ilustraremos algunas de estas relaciones utilizando la función de modelización lineal de R, 1m(), que permite especificar pesos en la regresión de mínimos cuadrados. Por ejemplo, vamos a llevar a cabo la regresión de mínimos cuadrados de las coordenadas estándares de las filas (eje y de la figura de la imagen 14.2) con relación a las coordenadas estándares (eje x). Las variables de la regresión tienen  $10 \times 5$  valores que podemos vectorizar, partiendo de la matriz original expresada en columnas. De esta manera, la variable x es el vector (que llamaremos fund.vecc) en el que las coordenadas de la primera columna en la primera dimensión se repiten 10 veces, luego la segunda coordenada 10 veces, y así sucesivamente. Mientras que la variable y (fund.vecr) tiene repetidas las coordenadas de la primera dimensión cinco veces en una columna (calculamos las coordenadas estándares de las filas como fund.Phi). Cuando llevemos a cabo los cálculos podemos comprobar los valores de fund.vecc y de fund.vecr. Los pesos de las regresiones serán las frecuencias de la tabla original fund; para vectorizarlos, tenemos que convertir el data frame primero en una matriz y luego en un vector utilizando as.vector():

Llevamos a cabo la regresión de mínimos cuadrados ponderada de la manera siguiente:

```
lm(fund.vecr~fund.vecc, weights = fund.vec)
Call:
lm(formula = fund.vecr ~ fund.vecc, weights = fund.vec)
Coefficients:
(Intercept) fund.vecc
-2.015e-16 1.978e-01
```

lo que muestra que la constante es cero y que el coeficiente es 0,1978, la raíz cuadrada de la primera inercia principal.

Para llevar a cabo la regresión descrita en la página 151 entre los cocientes de contingencia de Geología con relación a las coordenadas estándares en las primeras dos dimensiones, llevamos a cabo la regresión de la respuesta fund.y sobre las dos los primeras columnas de la matriz de coordenadas  $\Gamma$  en fund.Gamma, con los pesos c en fund.c, de la manera siguiente (para obtener más resultados, aplicamos la función summary() a la instrucción lm()):

```
fund.y <- (fund.P[1,]/fund.r[1]/fund.c</pre>
summary (lm(fund.y ~ fund.Gamma[,1] + fund.Gamma[,2],
    weights = fund.c))
Call:
lm(formula = fund.y ~ fund.Gamma[, 1]+fund.Gamma[, 2], weights = fund.c)
Residuals:
        Α
                  B
                             С
                                        D
                                                    E
-0.079708 0.016013 0.037308 -0.030048 -0.003764
Coefficients:
                  Estimate Std. Error t value
                                                     Pr(>|t|)
                                                     0.00443 **
(Intercept)
                   1.00000
                               0.06678
                                          14.975
fund.Gamma[, 1]
                   0.07640
                               0.06678
                                            1.144
                                                      0.37105
fund.Gamma[, 2]
                   0.30257
                               0.06678
                                            4.531
                                                      0.04542 *
___
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.06678 on 2 degrees of freedom
Multiple R-Squared: 0.9161, Adjusted R-squared: 0.8322
F-statistic: 10.92 on 2 and 2 DF, p-value: 0.0839
```

resultado que confirma los coeficientes que vimos al final de la página 151 (otra vez, el segundo coeficiente tiene el signo opuesto debido a que las coordenadas de la segunda dimensión tienen también signos opuestos) y  $R^2$  es 0,916.

Ejemplo de lm(), función para regresiones lineales utilizando la opción

weights

La función lm() no proporciona los coeficientes de regresión estandarizados. Sin embargo los podemos obtener utilizando la función de covarianza ponderada cov.wt() con la opción cor=TRUE para el cálculo de correlaciones ponderadas.

```
      Ejemplo de la función
cov.wt() para
calcular la correlación
ponderada
      cov.wt(cbind(fund.y,fund.Gamma[,1:2], wt = fund.c, cor = TRUE)$cor $cor

      [,1]
      [,2]
      [,3]

      [1,]
      1.000000
      2.343286e-01
      9.280040e-01

      [2,]
      0.2343286
      1.000000e+00
      2.359224e-16

      [3,]
      0.9280040
      2.359224e-16
      1.000000e+00
```

lo que concuerda, excepto por algunos cambios de signo, con la matriz de correlaciones que vimos al principio de la página 152.

Capítulo 15: Agrupación de filas o de columnas

En el capítulo 15 vimos la agrupación de Ward para realizar la agrupación ponderada de filas o de columnas con sus masas. La función R hclust() con la que llevamos a cabo la agrupación jerárquica no permite ponderar [véase (15.2)]. Tampoco lo permite la función agnes() del paquete cluster. Sin embargo, el paquete estadístico comercial XLSTAT, que describiremos más adelante, sí presenta esta posibilidad que también incluye los programas R de Fionn Murtagh (pág. 327).

#### Capítulo 16: Tablas de múltiples entradas

En el capítulo 16, describimos la codificación interactiva de variables. Para llevarla a cabo partimos de los datos originales o bien de una tabla de múltiples entradas derivada de los mismos. Por ejemplo, en el caso de los datos sobre la salud que vimos en el capítulo 16, los datos originales tenían el siguiente aspecto (mostramos las primeras cuatro filas de un total de 6371):

| • | • | • | health | age | gender | • | • | • |  |
|---|---|---|--------|-----|--------|---|---|---|--|
| • |   |   | 4      | 5   | 2      |   | • |   |  |
| • |   |   | 2      | 3   | 1      |   |   |   |  |
| • |   |   | 2      | 4   | 1      |   |   |   |  |
| • |   |   | 3      | 5   | 1      |   |   |   |  |
| • | • |   | •      |     |        |   | • | • |  |
|   |   |   |        |     |        |   |   |   |  |

Para obtener la tabla de la imagen 16.2, tenemos que combinar las siete categorías de edad y las dos categorías de género, para formar una nueva variable age\_gender con 14 categorías. Lo conseguimos con la siguiente transformación:

#### Codificación interactiva age gender <- 7\*(gender - 1) + age

que numerará los grupos de edad de hombres (gender=1), de 1 a 7, y los de las mujeres (gender=2), de 8 a 14. A partir de ahí, crearemos la tabla de contingen-

cia cruzando las variables age\_gender y health. En R, creamos las tablas de contingencia con la función table(). Por ejemplo,

Tablas de contingencia con table()

```
table(age-gender, health)
```

proporcionaría la tabla de contingencia de la imagen 16.2.

Supongamos ahora que los datos originales sobre el trabajo de las mujeres se halla en un archivo Excel como el que mostramos más adelante: cuatro preguntas, de Q1 a Q4, país (C, de *country*), género (G, de *gender*), edad (A, de *age*), estado civil (M, de *marital status*) y educación (E, de *education*). Para introducir los datos en R, copiaremos, como vimos anteriormente las columnas en el portapapeles, y utilizaremos la función read.table(). Sin embargo, ahora las filas de la tabla no tienen nombres. Además, no hay un espacio en blanco en la celda de arriba a la izquierda. Por tanto, tenemos que especificar la opción header=T (T es la abreviatura de TRUE):

```
women <- read.table("clipboard"), header = T)</pre>
```

Podemos asignar nombres de las columnas del *data frame* women utilizando la función colnames ():

```
colnames(women)
[1] "Q1" "Q2" "Q3" "Q4" "C" "G" "A" "M" "E"
```

| <b>N</b> | licrosoft       | Excel - v       | vomenda     | ata      |         |                |          |                   |                  |                    |              |     |
|----------|-----------------|-----------------|-------------|----------|---------|----------------|----------|-------------------|------------------|--------------------|--------------|-----|
| 1        | 😂 🔒             | 🗶   [           | 2   🛃       | 🕰   🛍    | 🗈 😭     | - 9            | -   🕃 🤇  | 🧕 Σ 🗸             | <b>≜</b> ↓   🛍   | ļ 🕜                | Arial        |     |
| 1        | 1 地 边           | 2 🕏             | 22          | 551      | 2 🖦 Ó   | 2   ₩¥ R       | esponder | con <u>c</u> ambi | os Ter           | <u>m</u> inar revi | sión         |     |
|          |                 |                 |             |          |         |                | : 🔳 🛍    |                   | 1 2              | . <b>∧</b> ⊲       | • 1 🖌 🚺 🖬 🛛  | ł   |
| :2       | <u>A</u> rchivo | <u>E</u> dición | <u>V</u> er | Insertar | Eormato | <u>H</u> errar | nientas  | Datos             | Ve <u>n</u> tana | <u>?</u> Adg       | be PDF XLST4 | AT. |
| 1        | 1               | -               |             |          |         |                |          | f                 | a 🕀              |                    | 📕   MDS   🐛  | 2   |
|          | L1              | •               | fx          |          |         |                |          | _                 |                  |                    |              |     |
|          | A               | В               | С           | D        | E       | F              | G        | Н                 | I                | J                  | K            |     |
| 1        | Q1              | Q2              | Q3          | Q4       | С       | G              | Α        | М                 | E                |                    |              |     |
| 2        | 1               | 3               | 2           | 2        | 1       | 2              | 6        | 1                 | 3                |                    |              |     |
| 3        | 1               | 2               | 2           | 2        | 1       | 2              | 4        | 1                 | 4                |                    |              |     |
| 4        | 1               | 3               | 4           | 4        | 1       | 2              | 1        | 5                 | 7                |                    |              |     |
| 5        | 1               | 2               | 2           | 1        | 1       | 2              | 4        | 1                 | 4                |                    |              |     |
| 6        | 1               | 3               | 2           | 4        | 1       | 1              | 5        | 1                 | 4                |                    |              |     |
| 7        | 1               | 2               | 1           | 1        | 1       | 2              | 1        | 5                 | 5                |                    |              |     |
| 8        | 4               | 2               | 4           | 2        | 1       | 2              | 5        | 1                 | 4                |                    |              |     |

Ejemplo de la función attach()

Para obtener la tabla de la imagen 16.4 podemos utilizar la función attach(), que permite disponer de las etiquetas de las columnas como si fueran un objeto de R (para que no sean disponibles podemos invertir la operación utilizando detach()):

| at<br>ta | taci<br>able | h(wome<br>(C, Q: | en)<br>3) |     |     |
|----------|--------------|------------------|-----------|-----|-----|
|          | Q3           |                  |           |     |     |
| С        |              | 1                | 2         | 3   | 4   |
|          | 1            | 256              | 1156      | 176 | 191 |
|          | 2            | 101              | 1394      | 581 | 248 |
|          | 3            | 278              | 691       | 62  | 66  |
|          | 4            | 161              | 646       | 70  | 107 |
|          | •            | •                | •         | •   | •   |
|          | •            | •                | •         | •   | •   |
| 2        | 21           | 243              | 448       | 484 | 25  |
| 2        | 22           | 468              | 664       | 92  | 63  |
| 2        | 23           | 203              | 671       | 313 | 120 |
| 2        | 24           | 738              | 1012      | 514 | 230 |
|          |              |                  |           |     |     |

(compárese con la imagen 16.4).

Para obtener la tabla de la imagen 16.6 original con la variable fila codificada interactivamente:

```
CG <- 2*(C-1) + G
table(CG, Q3)
  Q3
CG
        1
               2
                      3
                            4
  1
       117
             596
                   114
                           82
  2
       138
            559
                    60
                         109
  3
                 357
        43
             675
                         123
  4
        58
             719
                   224
                         125
        .
              .
                    •
                           .
  .
              .
                    .
                  294
 47
       348
             445
                         112
 48
       390
             566
                   218
                         118
 51
         1
               2
                     0
                            0
 55
         1
               1
                      2
                            1
```

Fijémonos en que las dos últimas filas de la tabla corresponden a unos pocos valores perdidos de género que codificamos como 9. Para visualizar los recuentos de frecuencias de las columnas, ejecutaremos la instrucción lapply(women, table). De todas formas, primero deberíamos eliminar todos los valores perdidos —en la página 308 mostramos cómo eliminar las filas con valores perdidos—. También podríamos asignar el código NA de R a los valores perdidos. Así, para los valores perdidos de género de la columna 6:

```
women[,6] [G==9] <- NA
attach(women)
CG <- 2*(C - 1) + G</pre>
```

(fijémonos en que tenemos que aplicar de nuevo la función attach() al *data frame* women y recalcular CG). Suponiendo que hemos recodificado todos los valores perdidos (o eliminado las correspondientes filas), para construir una variable con 228 categorías que codifique interactivamente país, género, y edad (para edad no hay valores perdidos), codificamos las combinaciones de CG y A de la manera siguiente:

CGA <- 6\*(CG - 1) + A

En el capítulo 17 vimos el AC de varias tablas de contingencia concatenadas. Las funciones rbin() y cbin() permiten agregar filas y columnas. Por ejemplo, supongamos que disponemos de la matriz de datos women sobre la que hemos aplicado la función attached() como vimos anteriormente. Podemos obtener la matriz compuesta de cinco tablas de contingencia correspondientes a la pregunta 3, que esquematizamos en la imagen 17.1 utilizando la iteración for de la siguiente manera:

```
women.stack <- table(C, Q3)
for (j in 6:9) {women.stack <- rbind(women.stack,
     table(women[,j], Q3))}</pre>
```

Podemos acceder a las columnas de women por su etiqueta o por el número de columna. Si miramos el contenido de women.stack veremos que para todas las variables demográficas, excepto país y grupo de edad, existen varias filas con valores perdidos. Antes de llevar a cabo el AC tenemos que omitir estos valores. Lo podemos hacer de tres maneras distintas: 1) excluyendo estas filas de la matriz; por ejemplo, podemos eliminar las filas 38, 39, 47 y 48 de la siguiente manera:

```
women.stack <- women.stack[-c(38,39,47,48),]</pre>
```

(el signo negativo antes de los números de las filas indica exclusión); 2) cambiando los códigos de los valores perdidos a NA, como describimos en la página anterior; o 3) declarando que las filas con valores perdidos se hallan fuera del subgrupo de interés en el AC de subgrupos que vimos en el capítulo 21 (dado que mantiene el tamaño de la muestra de todas las tablas, es la mejor opción).

Para comprobar las inercias de la tabla de la página 168, podemos utilizar la función de la prueba  $\chi^2$  de R, chisq.test(). Uno de sus resultados es el estadístico  $\chi^2$ , que podemos especificar mediante \$statistic. Vamos a hacer los cálculos para la tabla de contingencia que cruza la variable edad con la pregunta 3, lo

El estadístico  $\chi^2$  utilizando la función de la prueba  $\chi^2$ , chisq.test() que corresponde a las filas de la 27 a la 32 de la matriz compuesta (después de las 24 filas de país y las 2 de género). Obtenemos la inercia dividiendo el estadístico por el tamaño de la muestra, el total de la tabla.

```
chisq.test(women.stack[27:32,])$statistic/sum(women.stack[27:32,])
x-squared
0.0421549
```

Lo que concuerda con el valor de edad de la tabla de la página 168.

Para unir horizontalmente, con relación a las cuatro preguntas, las cuatro tablas (compuestas asimismo de cinco tablas unidas verticalmente) esquematizadas en la imagen 17.3 utilizaremos la función cbind() que permite unir columnas.

El paquete ca Para llevar a cabo el ACM y métodos relacionados dejaremos los cálculos «a mano» que hemos utilizado hasta ahora, para empezar a utilizar las funciones del paquete ca. El paquete contiene funciones que permiten realizar el AC simple, múltiple y conjunto, así como funciones que facilitan el análisis de subgrupos y la inclusión de variables adicionales. También ofrece funciones para la representación gráfica de los resultados en dos y en tres dimensiones. El paquete comprende los siguientes componentes:

- AC simple
  - Cálculo: ca()
  - Salidas y resúmenes: print.ca() y summary.ca() (y print.summary.ca())
  - Diagramas: plot.ca() y plot3d.ca()
- ACM y ACCo
  - Cálculo: mjca()
  - Salidas y resúmenes: print.mjca() y summary.mjca() (y print.summary.mjca())
  - Diagramas: plot.mjca() y plot3d.mjca()
- Conjuntos de datos
   moke, autor y wg93

El paquete contiene más funciones, como iterate.mjca() para la actualización de la matriz de Burt en ACCo.

Función ca() La función ca() calcula el CA simple, por ejemplo:

library(ca) # carga el paquete ca, en caso de que no se haya hecho antes utilizando el menú de R

```
data(smoke)
ca(smoke)
```

lleva a cabo un AC simple con los datos de smoke (véanse páginas 288-290). Con la función names () podemos obtener una lista de todos los componentes de ca():

| names | (ca(smoke))  |              |            |            |           |
|-------|--------------|--------------|------------|------------|-----------|
| [1]   | "sv"         | "nd"         | "rownames" | "rowmass"  | "rowdist" |
| [6]   | "rowinertia" | "rowcoord"   | "rowsup"   | "colnames" | "colmass" |
| [11]  | "coldist"    | "colinertia" | "colcoord" | "colsup"   | "call"    |

Los resultados de ca() están estructurados como una lista de objetos. Por ejemplo, obtenemos las coordenadas estándares de las filas con:

#### ca(smoke)\$rowcoord

La función ca() incluye una opción para fijar el número de dimensiones de la solución (nd), también incluye una opción para indicar las filas y/o columnas que queremos tratar como puntos adicionales (suprow y supcol, respectivamente) y opciones para indicar las filas y/o columnas que queremos seleccionar para llevar a cabo el AC de subgrupos (subsetrow y subsetcol, respectivamente). La función summary() permite obtener una salida más detallada:

```
summary(ca(smoke))
```

proporciona el siguiente resumen del AC:

```
Principal inertias (eigenvalues):
```

|      | dim    | value    | 8     | cum%  | scree plot                              |
|------|--------|----------|-------|-------|-----------------------------------------|
| [1,] | 1      | 0.074759 | 87.8  | 87.8  | * * * * * * * * * * * * * * * * * * * * |
| [2,] | 2      | 0.010017 | 11.8  | 99.5  | * * *                                   |
| [3,] | 3      | 0.000414 | 0.5   | 100.0 |                                         |
| [4,] |        |          |       |       |                                         |
| [5,] | Total: | 0.085190 | 100.0 |       |                                         |

Rows:

|   | name | mass | qlt  | inr | k=1  | cor | ctr | k=2  | cor | ctr |  |
|---|------|------|------|-----|------|-----|-----|------|-----|-----|--|
| 1 | SM   | 57   | 893  | 31  | -66  | 92  | 3   | -194 | 800 | 214 |  |
| 2 | JM   | 93   | 991  | 139 | 259  | 526 | 84  | -243 | 465 | 551 |  |
| 3 | SE   | 264  | 1000 | 450 | -381 | 999 | 512 | -11  | 1   | 3   |  |
| 4 | JE   | 456  | 1000 | 308 | 233  | 942 | 331 | 58   | 58  | 152 |  |
| 5 | SC   | 130  | 999  | 71  | -201 | 865 | 70  | 79   | 133 | 81  |  |

|   | name | mass | qlt  | inr | k=1  | cor | ctr |   | k=2 | cor | ctr |
|---|------|------|------|-----|------|-----|-----|---|-----|-----|-----|
| 1 | non  | 316  | 1000 | 577 | -393 | 994 | 654 |   | -30 | 6   | 29  |
| 2 | 1gh  | 233  | 984  | 83  | 99   | 327 | 31  |   | 141 | 657 | 463 |
| 3 | mdm  | 321  | 983  | 148 | 196  | 982 | 166 |   | 7   | 1   | 2   |
| 4 | hvy  | 130  | 995  | 192 | 294  | 684 | 150 | - | 198 | 310 | 506 |

Vemos que proporciona los valores propios y los porcentajes de inercia explicada de cada dimensión. También proporciona la inercia explicada en forma de porcentajes acumulados y el diagrama de descomposición (*scree plot* en inglés). En Rows y Columns encontramos las coordenadas principales de las dos primeras dimensiones (k=1 y k=2). Junto con las coordenadas de los puntos hallamos las correlaciones al cuadrado (cor) y las contribuciones (ctr). Los valores de estas tablas están multiplicados por 1000. Por tanto, cor y ctr están expresadas en tantos por mil (‰). También proporciona la calidad (qlt) del resultado del AC solicitado. Así, en este ejemplo, la calidad es la suma de los cuadrados de las correlaciones de las dos primeras dimensiones. En el caso de haber variables adicionales, éstas se señalan con un asterisco junto a los nombres de las variables. Por ejemplo, el summary del AC de los datos smoke, en la que hemos considerado la categoría none (la primera columna) como una variable adicional, obtenemos:

summary(ca(smoke, supcol=1))

Columns:

y en la correspondiente sección de la salida aparece lo siguiente:

```
. . .
Columns:
                mass glt
                             inr
        name
                                     k=1 cor
                                                ctr
                                                         k=2 cor
                                                                    ctr
                <NA>
                       55
                            <NA>
                                     292
                                               <NA>
1 |
      (*)non |
                                          39
                                                        -187
                                                               16
                                                                   <NA> |
. . .
```

mostrando que las masas, las inercias y las contribuciones son "not applicable".

Representaciones gráficas Po con el paquete **ca** A

Por defecto, la función plot() del paquete **ca** visualiza los resultados del AC y del ACM en forma de mapas *simétricos* (map="symmetric"). Las restantes opciones son:

"symmetric" Filas y columnas en coordenadas principales (por defecto), es decir, se realiza el calibrado de manera que la inercia es igual a la inercia principal (valor propio o cuadrado del valor singular).
 "rowprincipal" Filas en coordenadas principales y columnas en coorde-

nadas estándares.

#### CÁLCULO DEL ANÁLISIS DE CORRESPONDENCIAS

| _ | "colprincipal" | Columnas en coordenadas principales y filas en coorde-<br>nadas estándares.                                                                                                                |
|---|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| — | "symbiplot"    | Las coordenadas de filas y columnas se calibran para que<br>tengan inercias iguales a los valores singulares.                                                                              |
| _ | "rowgab"       | Filas en coordenadas principales y columnas en coorde-<br>nadas estándares multiplicadas por la masa (de acuerdo<br>con la propuesta de Gabriel).                                          |
| _ | "colgab"       | Columnas en coordenadas principales y filas en coorde-<br>nadas estándares multiplicadas por la masa.                                                                                      |
|   | "rowgreen"     | Filas en coordenadas principales y columnas en coorde-<br>nadas estándares multiplicadas por la raíz cuadrada de la<br>masa (de acuerdo con la propuesta de Greenacre [véase<br>cap. 13]). |
| _ | "colgreen"     | Columnas en coordenadas principales y filas en coorde-<br>nadas estándares multiplicadas por la raíz cuadrada de la<br>masa.                                                               |

Por defecto, las variables adicionales aparecen en el mapa con un símbolo distinto. Podemos definir los símbolos con la opción pch de plot.ca(). Esta opción toma cuatro valores en el orden siguiente: tipo de punto o símbolo para: 1) filas activas, 2) filas adicionales, 3) columnas activas y 4) columnas adicionales. Como regla general, las opciones que incluyen especificaciones para filas y para columnas contienen primero las de las filas y luego las de las columnas. Por ejemplo, especificamos el color de los símbolos con la opción de col. Por defecto, col=c("#000000", "#FF0000") (negro para las filas y rojo para las columnas). Además de estos códigos hexadecimales existe una lista reducida de nombres: "black", "red", "blue", "green", "gray", etc.

Con la opción what podemos especificar las filas y las columnas que queremos visualizar en el mapa. Así podemos indicar "all" (todas), "active" (activas), "passive" (adicionales) o "none" (ninguna). Así, por ejemplo, con what=c("active", "active") creamos un diagrama con sólo puntos activos (es decir, sin puntos adicionales).

Además de las opciones de escalado de map, existen varias opciones que permiten añadir determinados atributos gráficos en los mapas. La opción mass hace que el tamaño de los puntos sea proporcional a su masa. De forma similar, utilizando la opción contrib podemos indicar mediante la intensidad de color del diagrama las contribuciones relativas o absolutas de los puntos.



Imagen B.5: Mapa tridimensional de AC simple (lo podemos comparar con el mapa bidimensional de la imagen B.4)

> La opción dim selecciona las dimensiones del mapa. Por defecto, dim=c(1,2) —es decir, se representan las primeras dos dimensiones—. Especificando dim=c(2,3), obtendríamos un mapa con la segunda y la tercera dimensión. Para obtener un mapa en tres dimensiones podemos utilizar las funciones plot3d.ca() y plot3d.mjca(). Estas dos funciones necesitan del paquete **rgl** de R. Su estructura es similar a la de sus homólogos para dos dimensiones. Por ejemplo,

```
plot3d(ca(smoke, nd=3))
```

crea un mapa tridimensional de AC, como el que mostramos en la imagen B.5, que podemos hacer girar, aumentar o disminuir utilizando el ratón.

La función mjca() del paquete ca

Para llevar a cabo el ACM y el ACCo utilizamos la función mjca(). La estructura
 de esta función es similar a la del AC simple. Las dos diferencias más destacables
 son el formato de los datos de entrada y la limitación al análisis de columnas (sólo
 se proporcionan resultados para las columnas). Además, los puntos adicionales se
 limitan a columnas. Para ejecutar la función mjca() es necesario proporcionar
 los datos en forma de matriz; según el tipo de análisis que realicemos, la función
 transforma la matriz de datos en una matriz binaria o en una matriz de Burt. Po demos especificar el tipo de análisis a realizar con la opción lambda de la función
 mjca():

- lambda="indicator": análisis basado en un AC simple sobre la matriz binaria;
- lambda="Burt": análisis basado en la descomposición en valores propios de la matriz de Burt;

- lambda="adjusted": análisis basado en la matriz de Burt con inercias ajustadas (por defecto);
- lambda="JCA": análisis de correspondencias conjunto.

Por defecto, la función mjca() lleva a cabo un análisis ajustado, es decir, lambda="adjusted". En el ACC (lambda="JCA"), la matriz de Burt se actualiza iterativamente por mínimos cuadrados, mediante la función interna iterate.mjca(). Esta función de actualización tiene dos criterios de convergencia, epsilon y maxit. La opción epsilon compara la diferencia máxima absoluta de la matriz de Burt de cada iteración con la de la anterior. En la opción maxit especificamos el número máximo de iteraciones a realizar. El programa va iterando hasta que se satisface una de las dos condiciones anteriores. Podemos ignorar uno de los dos criterios indicando NA. Por ejemplo, podemos llevar a cabo exactamente 50 iteraciones, e ignorar el criterio de convergencia indicando maxit=50 y epsilon=NA.

Igual que en el AC simple, mediante la opción nd podemos limitar la solución a dos dimensiones. Sin embargo, para las versiones «binaria» y «Burt» del ACM el programa proporciona los valores propios de (J - Q) dimensiones. En el caso de un análisis ajustado o de un ACC, el programa proporciona sólo los valores propios de las *k* dimensiones, para las que los valores singulares de la matriz de Burt  $\lambda_k$  (es decir, las inercias principales de la matriz binaria) satisfacen la condición  $\lambda_k > 1/Q$ .

En el capítulo 18, analizamos los datos sobre el trabajo de las mujeres, para las muestras de Alemania Occidental y del Este, utilizando la versión binaria y de Burt del ACM. Supongamos que previamente hemos leído el *data frame* women (con 33590 filas) y que hemos aplicado la función attached(). Los códigos de las dos muestras alemanas son 2 y 3, respectivamente. Podemos acceder a la parte de women correspondiente a estas dos muestras utilizando un vector *lógico* que llamaremos germany:

germany <- C==2 / C==3
womenG <- women[germany,]</pre>

La primera instrucción crea un vector de longitud 33590 con valores TRUE para las filas de las muestras alemanas. En caso contrario, dichos valores son FALSE. La segunda instrucción crea un *data frame* llamado womenG sólo con las 3421 filas con valores TRUE. Sin embargo, la matriz que analizamos en el capítulo 18 tenía sólo 3418 porque eliminamos tres casos a los que les faltaban algunos datos demográficos. Supongamos que codificamos los valores perdidos de las variables género y estado civil con el código 9, y los de educación con los códigos 98 y 99. Capítulo 18: Análisis de correspondencias múltiples

Ejemplo de operación lógica

Para eliminar las filas a las que les faltan valores seguimos los mismos pasos que vimos anteriormente, es decir, primero identificamos las filas con valores perdidos y luego las eliminamos:

```
missing <- G==9 / M ==9 / E ==98 / E ==99
Eliminación de valores
  perdidos fila a fila
                womenG <- (womenG[!missing,])</pre>
```

(si codificáramos los valores perdidos mediante el código NA de R, como vimos en la página 300, entonces para identificar y luego eliminar las correspondientes filas utilizaríamos este código).

Obtendremos la versión binaria del ACM correspondiente a las cuatro primeras columnas (las cuatro preguntas sobre el trabajo de las mujeres) de la siguiente manera:

```
mjca(womenG[,1:4], lambda = "indicator")
```

Eigenvalues:

|          |      | 1     |     | 2      |     | 3       |    | 4       |    | 5       | 6   |          |     |
|----------|------|-------|-----|--------|-----|---------|----|---------|----|---------|-----|----------|-----|
| Value    |      | 0.693 | 361 | 0.5132 | 203 | 0.3646  | 97 | 0.30740 | 6  | 0.21761 | 0   | .181521  |     |
| Percenta | ge   | 23.11 | 8   | 17.118 | Ś   | 12.16%  |    | 10.25%  |    | 7.25%   | 6   | .05%     |     |
|          |      | 7     |     | 8      |     | 9       |    | 10      |    | 11      |     | 12       |     |
| Value    |      | 0.164 | 774 | 0.1429 | 999 | 0.1363  | 22 | 0.11365 | 6  | 0.10048 | 3 ( | 0.063969 |     |
| Percenta | ge   | 5.49% |     | 4.77%  |     | 4.54%   |    | 3.79%   |    | 3.35%   | 2   | 2.13%    |     |
|          |      |       |     |        |     |         |    |         |    |         |     |          |     |
| Columns: | :    |       |     |        |     |         |    |         |    |         |     |          |     |
|          |      |       |     |        |     |         |    |         |    |         |     |          |     |
|          |      | Q1.1  |     | Q1.2   |     | Q1.3    |    | Q1.4    |    | Q2.1    |     | Q2.2     |     |
| Mass     | 0.1  | 82929 | 0.  | 034816 | 0.  | .005778 | 0  | .026477 | 0  | .013239 | C   | .095012  | ••• |
| ChiDist  | 0.6  | 05519 | 2.  | 486096 | 6.  | .501217 | 2  | .905510 | 4  | .228945 | 1   | .277206  |     |
| Inertia  | 0.0  | 67071 | 0.  | 215184 | 0.  | .244222 | 0  | .223523 | 0  | .236761 | 0   | .154988  |     |
| Dim. 1   | -0.3 | 55941 | -0. | 244454 | -0. | .279167 | 2  | .841498 | -0 | .696550 | -0  | .428535  |     |
| Dim. 2   | -0.4 | 02501 | 1.  | 565682 | 3.  | 971577  | -0 | .144653 | -2 | .116572 | -0  | .800930  |     |
|          |      |       |     |        |     |         |    |         |    |         |     |          |     |

y la versión de Burt del ACM:

mjca(womenG[,1:4], lambda = "Burt")

Eigenvalues:

|            | 1        | 2        | 3        | 4        | 5        | 6        |
|------------|----------|----------|----------|----------|----------|----------|
| Value      | 0.480749 | 0.263377 | 0.133004 | 0.094498 | 0.047354 | 0.03295  |
| Percentage | 41.98%   | 23%      | 11.61%   | 8.25%    | 4.13%    | 2.88%    |
|            | 7        | 8        | 9        | 10       | 11       | 12       |
| Value      | 0.027151 | 0.020449 | 0.018584 | 0.012918 | 0.010097 | 0.004092 |
| Percentage | 2.37%    | 1.79%    | 1.62%    | 1.13%    | 0.88%    | 0.36%    |

CÁLCULO DEL ANÁLISIS DE CORRESPONDENCIAS

|         | Q1.1      | Q1.2     | Q1.3     | Q1.4      | Q2.1      | Q2.2      |  |
|---------|-----------|----------|----------|-----------|-----------|-----------|--|
| Mass    | 0.182929  | 0.034816 | 0.005778 | 0.026477  | 0.013239  | 0.095012  |  |
| ChiDist | 0.374189  | 1.356308 | 3.632489 | 2.051660  | 2.354042  | 0.721971  |  |
| Inertia | 0.025613  | 0.064046 | 0.076244 | 0.111452  | 0.073363  | 0.049524  |  |
| Dim. 1  | 0.355941  | 0.244454 | 0.279167 | -2.841498 | 0.696550  | 0.428535  |  |
| Dim. 2  | -0.402501 | 1.565682 | 3.971577 | -0.144653 | -2.116572 | -0.800930 |  |

En ambos casos, igual que en el AC simple, podemos calcular la inercia total como la suma de los cuadrados de los valores singulares:

```
sum(mjca(womenG[,1:4], lambda = "indicator")$sv^2)
[1] 3
sum(mjca(womenG[,1:4], lambda = "Burt")$sv^2)
[1] 1.145222
```

Mediante el componente subinertia de la función mjca() podemos obtener las contribuciones de cada una de las tablas de la matriz de Burt a la inercia total. A partir de su suma obtenemos la inercia total:

```
sum(mjca(womenG[,1:4], lambda = "Burt")$subinertia)
[1] 1.145222
```

Dado que la inercia total es la media de las inercias de las 16 tablas, la inercia de las tablas individuales es 16 veces los valores de \$subinertia:

16\*mjca(womenG[,1:4], lambda = "Burt")\$subinertia

|      | [,1]      | [,2]      | [,3]      | [,4]      |
|------|-----------|-----------|-----------|-----------|
| [1,] | 3.0000000 | 0.3657367 | 0.4261892 | 0.6457493 |
| [2,] | 0.3657367 | 3.0000000 | 0.8941517 | 0.3476508 |
| [3,] | 0.4261892 | 0.8941517 | 3.0000000 | 0.4822995 |
| [4,] | 0.6457493 | 0.3476508 | 0.4822995 | 3.0000000 |

Para hallar las posiciones de las variables adicionales:

summary(mjca(womenG, lambda = "Burt", supcol = 5:9))

Principal inertias (eigenvalues):

| dim | value    | 00   | cum% | scree plot                              |
|-----|----------|------|------|-----------------------------------------|
| 1   | 0.480749 | 42.0 | 42.0 | * * * * * * * * * * * * * * * * * * * * |
| 2   | 0.263377 | 23.0 | 65.0 | * * * * * * * * * * * * *               |
| 3   | 0.133004 | 11.6 | 76.6 | * * * * * * *                           |
| 4   | 0.094498 | 8.3  | 84.8 | * * * * *                               |
| 5   | 0.047354 | 4.1  | 89.0 | **                                      |

| 6      | 0.032950 | 2.9   | 91.9  | ** |
|--------|----------|-------|-------|----|
| 7      | 0.027151 | 2.4   | 94.2  | *  |
| 8      | 0.020449 | 1.8   | 96.0  | *  |
| 9      | 0.018584 | 1.6   | 97.6  | *  |
| 10     | 0.012918 | 1.1   | 98.8  |    |
| 11     | 0.010097 | 0.9   | 99.6  |    |
| 12     | 0.004092 | 0.4   | 100.0 |    |
|        |          |       |       |    |
| Total: | 1.145222 | 100.0 |       |    |

Columns:

|    | name   | mass      | qlt | inr       | k=1   | cor | ctr       | k=2   | cor | ctr       |
|----|--------|-----------|-----|-----------|-------|-----|-----------|-------|-----|-----------|
| 1  | Q1.1   | 183       | 740 | 6         | 247   | 435 | 23        | -207  | 305 | 30        |
| 2  | Q1.2   | 35        | 367 | 14        | 169   | 16  | 2         | 804   | 351 | 85        |
| 3  | Q1.3   | 6         | 318 | 16        | 194   | 3   | 0         | 2038  | 315 | 91        |
| 4  | Q1.4   | 26        | 923 | 24        | -1970 | 922 | 214       | -74   | 1   | 1         |
| 5  | Q2.1   | 13        | 255 | 16        | 483   | 42  | 6         | -1086 | 213 | 59        |
| 6  | Q2.2   | 95        | 494 | 11        | 297   | 169 | 17        | -411  | 324 | 61        |
| •  | •      | •         | •   | •         | •     | •   | •         | •     | •   | •         |
| •  | •      | •         | •   | •         | •     | •   | •         | •     | •   | •         |
| 17 | (*)C.2 | <na></na> | 283 | <na></na> | -89   | 48  | <na></na> | 195   | 234 | <na></na> |
| 18 | (*)C.3 | <na></na> | 474 | <na></na> | 188   | 81  | <na></na> | -413  | 393 | <na></na> |
| 19 | (*)G.1 | <na></na> | 26  | <na></na> | -33   | 5   | <na></na> | 67    | 21  | <na></na> |
| 20 | (*)G.2 | <na></na> | 24  | <na></na> | 34    | 5   | <na></na> | -68   | 19  | <na></na> |
| 21 | (*)A.1 | <na></na> | 41  | <na></na> | -108  | 12  | <na></na> | -170  | 29  | <na></na> |
| 22 | (*)A.2 | <na></na> | 52  | <na></na> | -14   | 0   | <na></na> | -172  | 52  | <na></na> |
| •  | •      | •         | •   | •         | •     | •   | •         | •     | •   | •         |
| •  | •      | •         | •   | •         | •     | •   | •         |       | •   | •         |

Las categorías adicionales se han señalado con un \*, no tienen ni masa (mass), ni valores de inercia (inr), ni contribuciones a los ejes principales (ctr).

Capítulo 19: Análisis de correspondencias conjunto Para obtener el mapa del ACCo de la imagen 19.3, simplemente tenemos que cambiar la opción lambda por "JCA". Dado que los ejes no están anidados, no se dan los porcentajes de inercia de los diferentes ejes, solamente se dan para el resultado global de todo el espacio.

```
summary(mjca(womenG[,1:4], lambda = "JCA"))
Principal inertias (eigenvalues):
1     0.353452
2     0.128616
3     0.015652
4     0.003935
_________
Total: 0.520617
```

#### CÁLCULO DEL ANÁLISIS DE CORRESPONDENCIAS

Columns:

Diagonal inertia discounted from eigenvalues: 0.125395 Percentage explained by JCA in 2 dimensions: 90.2% (Eigenvalues are not nested) [Iterations in JCA: 31, epsilon = 9.33e-05]

|   | name | mass | qlt | inr | k=1   | cor | ctr | }  | c=2 | cor | ctr |  |
|---|------|------|-----|-----|-------|-----|-----|----|-----|-----|-----|--|
| 1 | Q1.1 | 183  | 969 | 21  | 204   | 693 | 22  | _1 | 29  | 276 | 24  |  |
| 2 | Q1.2 | 35   | 803 | 23  | 144   | 61  | 2   | 5  | 603 | 742 | 69  |  |
| 3 | Q1.3 | 6    | 557 | 32  | 163   | 9   | 0   | 12 | 260 | 548 | 71  |  |
| 4 | Q1.4 | 26   | 992 | 137 | -1637 | 991 | 201 | -  | -45 | 1   | 0   |  |
| 5 | Q2.1 | 13   | 597 | 31  | 394   | 125 | 6   | -7 | 64  | 471 | 60  |  |
| 6 | Q2.2 | 95   | 956 | 26  | 250   | 431 | 17  | -2 | 276 | 525 | 56  |  |
| • |      |      |     |     | •     |     |     |    | •   |     |     |  |
| • | •    |      | •   | •   | •     | •   | •   |    | •   | •   | •   |  |
|   |      |      |     |     |       |     |     |    |     |     |     |  |

En el ACCo, las correlaciones al cuadrado, y en consecuencia también las calidades, son todas mucho mayores.

En el resultado del ACCo la inercia «total» es la inercia de la matriz de Burt modificada, que incluye una parte debida a las matrices modificadas de la diagonal. Para obtener la inercia de las matrices situadas fuera de la diagonal, tenemos que restar de la inercia total la "Diagonal inertia discounted from eigenvalues: 0.125395". Dado que la solución buscada es bidimensional y que por construcción ajusta los valores de las matrices de la diagonal, los primeros dos valores propios también contienen esta parte adicional, que tenemos que descontar. La proporción de inercia (de fuera de la diagonal) explicada es, por tanto:

$$\frac{0,3534 + 0,1286 - 0,1254}{0,5206 - 0,1254} = 0,9024$$

es decir, el porcentaje del 90,2% indicado anteriormente [véase el apéndice teórico (A.32)]. El valor del denominador de la expresión anterior, el total ajustado 0,5206 - 0,1254 = 0,3952, también lo podemos obtener como:

inercia de 
$$\mathbf{B} - \frac{J-Q}{Q} = 1,1452 - \frac{12}{16} = 0,3952$$

Para obtener la solución del ACM ajustado, es decir, las mismas coordenadas estándares del ACM y (casi) los mismos factores de escala («casi» óptimos ya que mantenemos el anidamiento, lo que no ocurre con el ajuste), escribiremos lo siguiente (no es necesario especificar la opción lambda "adjusted" ya que es la opción por defecto):

.

.

```
summary(mjca(womenG[,1:4]))
Principal inertias (eigenvalues):
dim
         value
                          cum%
                    8
                                 scree plot
1
         0.349456
                    66.3
                          66.3
                                 ******
2
                                 *******
         0.123157
                    23.4
                          89.7
3
         0.023387
                     4.4
                          94.1
                                 *
4
         0.005859
                    1.1
                          95.2
Adjusted total inertia: 0.526963
Columns:
                    qlt inr
                                             ctr
      name
             mass
                                   k=1
                                         cor
                                                       k=2 cor ctr
1
      01.1
              183
                     996
                           22
                                   210
                                         687
                                                23
                                                      -141
                                                            309
                                                                 30
2
                     822
                                   145
                                                       549
                                                            769
                                                                 85
      Q1.2 |
               35
                           26 I
                                          53
                                                 2
3
      01.3
                           38
                                           8
                                                 0
                                                      1394
                                                            554
                6
                     562
                                   165
                                                                 91
4
      01.4
               26
                   1009
                          141
                                 -1680
                                        1008
                                               214
                                                       -51
                                                              1
                                                                  1
5
      02.1
           13
                     505
                           36
                              412
                                         119
                                                 6
                                                   1
                                                      -743
                                                            387
                                                                 59
6
      02.2
               95
                     947
                           27
                                   253
                                         424
                                                17
                                                      -281
                                                            522
                                                                 61 I
```

Calculamos la inercia total ajustada, utilizada en los porcentajes anteriores, a partir de la expresión (19.5) de la página 200. Y calculamos las dos primeras inercias principales ajustadas (valores propios) a partir de la expresión (19.6) [véanse también (A.35) y (A.36)].

.

.

.

Capítulo 20: Propiedades del escalado óptimo del ACM En el capítulo 20 generalizamos las ideas que vimos en los capítulos 7 y 8 al caso multivariante. En este capítulo utilizaremos los datos sobre ciencia y medio ambiente que se hallan disponibles en nuestro paquete **ca**. Para cargar estos datos basta con que ejecutemos la instrucción:

#### data(wg93)

.

.

.

.

El *data frame* resultante wg93 contiene los resultados de las cuatro preguntas descritas en la página 206, así como los de tres variables demográficas: género, edad y educación (las dos últimas con seis categorías cada una de ellas). Después de salvar los resultados del ACM en el objeto wg93.mca, podemos obtener el mapa del ACM de la imagen 20.1 de la siguiente manera:

```
wg93.mca <- mjca(wg93[,1:4], lambda = "indicator")
plot(wg93.mca, what = c("none", "all"))</pre>
```

El mapa resultante tiene el primer y el segundo eje invertidos, pero —como dijimos anteriormente— esto no tiene consecuencia alguna.

Obtuvimos la tabla de la imagen 20.2 calculando las contribuciones al eje 1 de una matriz de  $5 \times 4$  (primero calculamos las coordenadas principales wg93.F, luego calculamos las contribuciones de las filas wg93.coli):

```
wa93.F
          <- wq93.mca$colcoord %*% diag(sqrt(wq93.mca$sv))
wq93.coli <- diag(wq93.mca$colmass) %*% wq93.F^2</pre>
matrix(round(1000*wq93.coli[,1]/wq93.mca$sv[1]^2, 0), nrow = 5)
                        [,4]
     [,1] [,2]
                 [,3]
[1,] 115
            174
                   203
                           25
       28
             21
                     6
                            3
[2, ]
       12
              7
                    22
                            9
[3,]
[4,]
       69
              41
                    80
                           3
[5,]
       55
             74
                    32
                           22
```

En las siguientes instrucciones calculamos las primeras coordenadas estándares como las puntuaciones de los cuatro ítems de cada uno de los 871 encuestados, así como la puntuación media:

```
Ascal <- wg93.mca$colcoord[1:5,1]

Bscal <- wg93.mca$colcoord[6:10,1]

Cscal <- wg93.mca$colcoord[11:15,1]

Dscal <- wg93.mca$colcoord[16:20,1]

As <- Ascal[wg93[,1]]

Bs <- Bscal[wg93[,2]]

Cs <- Cscal[wg93[,3]]

Ds <- Dscal[wg93[,4]]

AVEs <- (AS+Bs+Cs+Ds)/4
```

Situando en una misma matriz las puntuaciones anteriores, podemos calcular sus correlaciones al cuadrado mediante la función cor():

La función de correlación cor()

cor(cbind(As,Bs,Cs,Ds,AVEs))^2

|      | As          | Bs          | Cs         | Ds          | AVES      |
|------|-------------|-------------|------------|-------------|-----------|
| As   | 1.000000000 | 0.139602528 | 0.12695057 | 0.005908244 | 0.5100255 |
| Bs   | 0.139602528 | 1.000000000 | 0.18681032 | 0.004365286 | 0.5793057 |
| Cs   | 0.126950572 | 0.186810319 | 1.00000000 | 0.047979010 | 0.6273273 |
| Ds   | 0.005908244 | 0.004365286 | 0.04797901 | 1.000000000 | 0.1128582 |
| AVEs | 0.510025458 | 0.579305679 | 0.62732732 | 0.112858161 | 1.0000000 |

En la última fila (o columna) aparecen las correlaciones al cuadrado (en análisis de homogeneidad diríamos valores de discriminación) de la página 210. Su media proporciona la inercia principal de la matriz binaria.

```
sum(cor(cbind(As,Bs,Cs,Ds,AVEs))[1:4,5]^2)/4
[1] 0.4573792
wg93.mca$sv[1]^2
[1] 0.4573792
```

La función de covarianza

```
miza la covarianza media entre las puntuaciones de los cuatro ítems. Para verlo, primero, calculamos la matriz de covarianzas de 4 \times 4 de las puntuaciones (dado que la función cov() calcula las covarianzas habituales «no sesgadas», dividiendo por N-1, multiplicando por (N-1)/N obtenemos las covarianzas «sesgadas»). Luego calculamos el valor medio de los 16 valores utilizando la función mean():
```

Otro resultado, no mencionado en el capítulo 20, es que el ACM también maxi-

```
cov(cbind(As,Bs,Cs,Ds,AVEs)) * 870/871
                      Bs
                                 Cs
           As
                                             Ds
As 1.11510429 0.44403796 0.4406401 0.04031951
   0.44403796 1.26657648 0.5696722
                                     0.03693604
Bs
Cs 0.44064007 0.56967224 1.3715695
                                      0.12742741
  0.04031951 0.03693604 0.1274274
Ds
                                     0.24674968
mean(cov(cbind(As,Bs,Cs,Ds)) * 870/871)
[1] 0.4573792
```

Fijémonos en que la suma de las varianzas de las puntuaciones de los cuatro ítems es igual a 4:

```
sum(diag(cov(cbind(As,Bs,Cs,Ds)) * 870/871))
[1] 4
```

En (20.2) calculamos las varianzas individuales y su media sobre toda la muestra:

```
VARs <- ((As-AVEs)^2 + (Bs-AVEs)^2 + (Cs-AVEs)^2 + (Ds-AVEs)^2)/4
mean(VARs)
[1] 0.5426208</pre>
```

que es la pérdida de homogeneidad: 1 menos la primera inercia principal.

Suprimiendo las etiquetas de las filas, podemos obtener el mapa de la imagen 20.3 como un mapa "rowprincipal" (ejecutando help(plot.ca) podemos visualizar las opciones para hacer diagramas):

plot(wg93.mca, map = "rowprincipal", labels = c(0,2))

Actualmente, el análisis de subgrupos del capítulo 21 solamente se halla en la función ca(). Sin embargo, dado que con la función mjca() podemos obtener la matriz de Burt, es fácil hacer el ACM de subgrupos con la matriz de Burt. Empecemos con un análisis AC de subgrupos de vocales y consonantes con los datos de los autores contenidos en el paquete ca.

Capítulo 21: Análisis de correspondencias de subgrupos

```
data(author)
vowels <- c(1,5,9,15,21)
consonants <- c(1:26)[-vowels]
summary(ca(author, subsetcol = consonants))
Principal inertias (eigenvalues):
       dim
                value
                            8
                                  cum%
                                         scree plot
                                         *****
 [1,]
       1
                0.007607
                            46.5
                                  46.5
 [2,]
       2
                0.003253
                            19.9 66.3
                                         ******
[3,]
      3
                0.001499
                             9.2 75.5
                                         ****
       4
                0.001234
                             7.5
                                  83.0
                                         ****
 [4,]
  •
                 •
                              .
                                     •
  .
                 .
                              .
[12,]
                _____
                           ____
[13,]
                          100.0
       Total:
                0.016371
Rows:
                                        cor ctr
     name
             mass
                    qlt
                         inr
                                  k=1
                                                     k=2
                                                           cor ctr
                                          8
                                               1 |
                                                            50
      td(
               85
                    59
                          29
                                   7
                                                     -17
                                                                 7
1
2
      d()
               80
                    360
                          37 I
                                  -39
                                       196
                                              16 I
                                                     -35
                                                           164
                                                                31
           1
3
               85
                    641
                          81 |
                                 -100
                                        637
                                             111
      lw(
                                                       8
                                                             4
                                                                 2
4
               89
                    328
                          61 |
                                   17
                                         27
                                                4
                                                      58
                                                           300
                                                                92
   ew(
           .
                      .
                            .
                                     .
                                          .
                                                .
                                                       .
.
        .
                      •
                            .
                                     .
                                                .
Columns:
     name
             mass
                    qlt
                         inr
                                  k=1
                                      cor
                                             \operatorname{ctr}
                                                     k=2
                                                           cor ctr
                          21 |
        b
                    342
                                  -86
                                        341
                                              15
                                                      -6
                                                             2
                                                                 0
1
               16
        С
               23
                    888
                          69
                                 -186
                                        699
                                             104
                                                     -97
                                                           189
                                                                66
2
                                            171 |
                                                     -63
3
        d |
               46
                    892
                         101
                                  168
                                        783
                                                           110
                                                                56
4
        f
               19
                    558
                          33 |
                                 -113
                                        467
                                              33 I
                                                     -50
                                                            91
                                                                15
                 •
                      .
                            .
                                     •
                                          •
                                                •
                                                       •
                 .
                      .
                            .
                                     .
                                          .
                                                .
                                                       .
                                                             .
.
         .
summary(ca(author, subsetcol = vowels))
```

Principal inertias (eigenvalues):

|      | dim | value    | 8    | cum% | scree plot                              |
|------|-----|----------|------|------|-----------------------------------------|
| [1,] | 1   | 0.001450 | 63.7 | 63.7 | * * * * * * * * * * * * * * * * * * * * |
| [2,] | 2   | 0.000422 | 18.6 | 82.3 | * * * * *                               |

.

| [3,]<br>[4,]<br>[5,]<br>[6,] | 3<br>4<br>Total: | 3e-0<br>0.00<br>0.00 | 04000<br>00103<br><br>02276 | 13.2<br>4.5<br><br>100.0 | 95.<br>100. | .5 **<br>.0 | * * * |   |     |     |     |   |
|------------------------------|------------------|----------------------|-----------------------------|--------------------------|-------------|-------------|-------|---|-----|-----|-----|---|
| Rows                         | :                |                      |                             |                          |             |             |       |   |     |     |     |   |
|                              | name             | mass                 | qlt                         | inr                      | k=1         | cor         | ctr   |   | k=2 | cor | ctr |   |
| 1                            | td(              | 85                   | 832                         | 147                      | 58          | 816         | 195   |   | 8   | 15  | 13  |   |
| 2                            | d()              | 80                   | 197                         | 44                       | -12         | 118         | 9     |   | -10 | 79  | 20  |   |
| 3                            | lw(              | 85                   | 235                         | 33                       | 14          | 226         | 12    |   | -3  | 9   | 2   |   |
| 4                            | ew(              | 89                   | 964                         | 109                      | 31          | 337         | 60    |   | 42  | 627 | 382 |   |
| •                            | •                | •                    | •                           | •                        | •           | •           | •     |   | •   | •   | •   |   |
| •                            | •                | •                    | •                           | •                        | •           | •           | •     |   | •   | •   | •   |   |
| Colu                         | mns:             |                      |                             |                          |             |             |       |   |     |     |     |   |
|                              | name             | mass                 | qlt                         | inr                      | k=1         | cor         | ctr   |   | k=2 | cor | ctr |   |
| 1                            | a                | 80                   | 571                         | 79                       | 9           | 34          | 4     |   | -35 | 537 | 238 |   |
| 2                            | e                | 127                  | 898                         | 269                      | 67          | 895         | 393   |   | 4   | 3   | 5   | T |
| 3                            | i                | 70                   | 800                         | 221                      | -59         | 468         | 169   | Ì | 50  | 332 | 410 | Ì |
| 4                            | 0                | 77                   | 812                         | 251                      | -79         | 803         | 329   | Ì | -8  | 9   | 12  | Ì |
| 5                            | u                | 30                   | 694                         | 179                      | -71         | 359         | 105   | Ì | -69 | 334 | 335 | İ |

Ahora vamos a realizar el ACM de subgrupos versión Burt que vimos en las páginas 220-221 con los datos sobre el trabajo de las mujeres que hemos guardado en womenG después de eliminar los valores perdidos de las variables demográficas (págs. 308-309). Primero utilizamos la función mjca() para obtener la matriz de Burt, a continuación aplicaremos el AC de subgrupos al cuadrante de la matriz de Burt reacomodada sin datos perdidos (tabla de la imagen 21.3). Hacemos la selección definiendo un vector de índices que llamamos subset:

```
womenG.B <- mjca(womenG)$Burt</pre>
subset <-c(1:16)[-c(4,8,12,16)]
summary(ca(womenG.B[1:16,1:16], subsetrow = subset,
   subsetcol = subset))
Principal inertias (eigenvalues):
dim
       value
               8
                      cum% scree plot
1
       0.263487 41.4
                       41.4
                            **********
2
       0.133342 21.0 62.4 **********
3
       0.094414
               14.9 77.3
                            *******
4
       0.047403
                7.5 84.7
                            ****
5
                 5.1
                            ***
       0.032144
                      89.8
                 4.2 94.0 ***
6
       0.026895
7
                3.1 97.1
                            **
       0.019504
                2.1 99.1
8
       0.013096
                             *
9
       0.005130
                0.8 99.9
```

| 10     | 0.000231 | 0.0   | 100.0 |
|--------|----------|-------|-------|
| 11     | 0.000129 | 0.0   | 100.0 |
|        |          |       |       |
| Total: | 0.635808 | 100.0 |       |

Rows:

|    | name | mass | qlt | inr | k=1   | cor | ctr | k=2  | cor | ctr |
|----|------|------|-----|-----|-------|-----|-----|------|-----|-----|
| 1  | Q1.1 | 183  | 592 | 25  | -228  | 591 | 36  | 11   | 1   | 0   |
| 2  | Q1.2 | 35   | 434 | 98  | 784   | 345 | 81  | -397 | 88  | 41  |
| 3  | Q1.3 | 6    | 700 | 119 | 2002  | 306 | 88  | 2273 | 394 | 224 |
| 4  | Q2.1 | 13   | 535 | 113 | -1133 | 236 | 65  | 1276 | 299 | 162 |
| 5  | Q2.2 | 95   | 452 | 69  | -442  | 421 | 71  | -119 | 30  | 10  |
| 6  | Q2.3 | 120  | 693 | 64  | 482   | 688 | 106 | -40  | 5   | 1   |
| 7  | Q3.1 | 28   | 706 | 114 | -1040 | 412 | 114 | 878  | 294 | 160 |
| 8  | Q3.2 | 152  | 481 | 38  | -120  | 91  | 8   | -249 | 390 | 71  |
| 9  | Q3.3 | 47   | 748 | 106 | 990   | 681 | 175 | 312  | 67  | 34  |
| 10 | Q4.1 | 143  | 731 | 49  | -390  | 702 | 83  | 80   | 29  | 7   |
| 11 | Q4.2 | 66   | 583 | 84  | 582   | 414 | 84  | -371 | 168 | 68  |
| 12 | Q4.3 | 7    | 702 | 119 | 1824  | 312 | 90  | 2041 | 391 | 222 |

La secuencia de instrucciones que, por regresión lineal, permiten modificar la escala para obtener el mejor ajuste de las tablas situadas fuera de la diagonal de la matriz de Burt no es fácil de hacer. Como es bastante larga no la incluimos en este apéndice. Sin embargo, la podemos encontrar en la página web. Esperamos incorporarla próximamente en el paquete **ca**.

Tal como vimos en el capítulo 21, el AC de matrices asimétricas cuadradas consiste en dividir la tabla en una parte simétrica y en una parte antisimétrica, y luego llevar a cabo el AC en la parte simétrica y un AC sin centrar en la parte antisimétrica, con los mismos pesos y distancias  $\chi^2$ . En la matriz compuesta mostrada en (22.4) podemos realizar simultáneamente ambos análisis. Después de leer la tabla de movilidad en el *data frame* mob, las secuencias de instrucciones para formar la matriz compuesta y luego llevar a cabo el AC son las siguientes. (Antes de llevar a cabo el análisis, tenemos que transformar mob en una matriz. En caso contrario no podríamos combinar de forma adecuada filas y columnas para crear la matriz compuesta mob2.):

```
mob
    <- as.matrix(mob)
mob2 <- rbind(cbind(mob,t(mob)), cbind(t(mob),mob))</pre>
summary(ca(mob2))
Principal inertias (eigenvalues):
dim
       value
                  8
                         cum% scree plot
       0.388679 24.3 24.3 ************************
1
       0.232042 14.5 38.8 ************
2
3
       0.158364
                 9.9
                         48.7 ********
```

Capítulo 22: Análisis de tablas cuadradas

| 4      | 0.158364 | 9.9   | 58.6  | ******    |
|--------|----------|-------|-------|-----------|
| 5      | 0.143915 | 9.0   | 67.6  | ******    |
| 6      | 0.123757 | 7.7   | 75.4  | ******    |
| 7      | 0.081838 | 5.1   | 80.5  | * * * * * |
| 8      | 0.070740 | 4.4   | 84.9  | * * * * * |
| 9      | 0.049838 | 3.1   | 88.0  | * * *     |
| 10     | 0.041841 | 2.6   | 90.6  | * * *     |
| 11     | 0.041841 | 2.6   | 93.3  | * * *     |
| 12     | 0.022867 | 1.4   | 94.7  | *         |
| 13     | 0.022045 | 1.4   | 96.1  | *         |
| 14     | 0.012873 | 0.8   | 96.9  | *         |
| 15     | 0.012873 | 0.8   | 97.7  | *         |
| 16     | 0.010360 | 0.6   | 98.3  | *         |
| 17     | 0.007590 | 0.5   | 98.8  | *         |
| 18     | 0.007590 | 0.5   | 99.3  | *         |
| 19     | 0.003090 | 0.2   | 99.5  |           |
| 20     | 0.003090 | 0.2   | 99.7  |           |
| 21     | 0.001658 | 0.1   | 99.8  |           |
| 22     | 0.001148 | 0.1   | 99.9  |           |
| 23     | 0.001148 | 0.1   | 99.9  |           |
| 24     | 0.000620 | 0.0   | 99.9  |           |
| 25     | 0.000381 | 0.0   | 100.0 |           |
| 26     | 0.000381 | 0.0   | 100.0 |           |
| 27     | 0.000147 | 0.0   | 100.0 |           |
|        |          |       |       |           |
| Total: | 1.599080 | 100.0 |       |           |

Rows:

|    | name | mass | qlt | inr | k=1  | cor | ctr | k=2  | 2 cor | $\operatorname{ctr}$ |  |
|----|------|------|-----|-----|------|-----|-----|------|-------|----------------------|--|
| 1  | Arm  | 43   | 426 | 54  | -632 | 200 | 44  | 67   | 1 226 | 84                   |  |
| 2  | Art  | 55   | 886 | 100 | 1521 | 793 | 327 | 520  | 93    | 64                   |  |
| 3  | Tcc  | 29   | 83  | 10  | -195 | 73  | 3   | 73   | 3 10  | 1                    |  |
| 4  | Cra  | 18   | 293 | 32  | 867  | 262 | 34  | -298 | 3 31  | 7                    |  |
| •  | •    | •    | •   | •   | •    | •   | •   |      |       | •                    |  |
| •  | •    | •    | •   | •   | •    | •   | •   |      |       | •                    |  |
| 15 | ARM  | 43   | 426 | 54  | -632 | 200 | 44  | 67:  | 1 226 | 84                   |  |
| 16 | ART  | 55   | 886 | 100 | 1521 | 793 | 327 | 520  | 93    | 64                   |  |
| 17 | TCC  | 29   | 83  | 10  | -195 | 73  | 3   | 73   | 3 10  | 1                    |  |
| 18 | CRA  | 18   | 293 | 32  | 867  | 262 | 34  | -298 | 3 31  | 7                    |  |
| •  | •    | •    | •   | •   | •    | •   | •   |      |       | •                    |  |
| •  | •    | •    | •   | •   | •    | •   | •   |      | • •   | •                    |  |

Columns:

|   | name | mass | qlt | inr | k=1  | cor | ctr | k=2  | cor | ctr |  |
|---|------|------|-----|-----|------|-----|-----|------|-----|-----|--|
| 1 | ARM  | 43   | 426 | 54  | -632 | 200 | 44  | 671  | 226 | 84  |  |
| 2 | ART  | 55   | 886 | 100 | 1521 | 793 | 327 | 520  | 93  | 64  |  |
| 3 | TCC  | 29   | 83  | 10  | -195 | 73  | 3   | 73   | 10  | 1   |  |
| 4 | CRA  | 18   | 293 | 32  | 867  | 262 | 34  | -298 | 31  | 7   |  |
| • | •    | •    | •   | •   | •    | •   | •   | •    | •   | •   |  |
| • | •    | •    | •   | •   | •    | •   | •   | •    | •   | •   |  |

#### CÁLCULO DEL ANÁLISIS DE CORRESPONDENCIAS

| 15 | Arm | 43 | 426 | 54  | -632 | 200 | 44  | 671  | 226 | 84 |
|----|-----|----|-----|-----|------|-----|-----|------|-----|----|
| 16 | Art | 55 | 886 | 100 | 1521 | 793 | 327 | 520  | 93  | 64 |
| 17 | Tcc | 29 | 83  | 10  | -195 | 73  | 3   | 73   | 10  | 1  |
| 18 | Cra | 18 | 293 | 32  | 867  | 262 | 34  | -298 | 31  | 7  |
| •  | •   | •  | •   | •   | •    | •   | •   | •    | •   | •  |
| •  | •   | •  | •   | •   | •    | •   | •   | •    | •   | •  |

Las inercias principales coinciden con los valores de la tabla de la imagen 22.4. Las dos primeras dimensiones corresponden a la parte simétrica de la matriz. Las dimensiones 3 y 4, con valores propios repetidos, corresponden a la parte antisimétrica. Podemos observar que las coordenadas de las dos primeras dimensiones aparecen repetidas en dos bloques. Por defecto la función summary () proporciona sólo las dos primeras dimensiones. Si queremos más dimensiones tenemos que especificarlo. Por ejemplo, para obtener las cuatro primeras dimensiones:

#### summary(ca(mob2, nd = 4))

Rows:

|    | name | k=3  | cor | ctr |    | k=4  | cor | $\operatorname{ctr}$ |   |
|----|------|------|-----|-----|----|------|-----|----------------------|---|
| 1  | Arm  | -11  | 0   | 0   |    | 416  | 87  | 47                   |   |
| 2  | Art  | 89   | 3   | 3   | 1  | 423  | 61  | 62                   |   |
| 3  | Tcc  | -331 | 211 | 20  | Í. | 141  | 38  | 4                    | ĺ |
| 4  | Cra  | -847 | 250 | 80  | Ì  | 92   | 3   | 1                    | ĺ |
| •  |      |      |     |     |    |      |     |                      |   |
| •  |      |      |     |     |    |      |     |                      |   |
| 15 | ARM  | 11   | 0   | 0   |    | -416 | 87  | 47                   |   |
| 16 | ART  | -89  | 3   | 3   | 1  | -423 | 61  | 62                   |   |
| 17 | TCC  | 331  | 211 | 20  | Í. | -141 | 38  | 4                    | ĺ |
| 18 | CRA  | 847  | 250 | 80  | Ì  | -92  | 3   | 1                    | ĺ |
| •  | •    |      |     |     |    |      |     |                      |   |
|    |      |      |     |     |    |      |     |                      |   |

Columns:

|    | name | k=3  | cor | ctr | k=4  | cor | $\operatorname{ctr}$ |  |
|----|------|------|-----|-----|------|-----|----------------------|--|
| 1  | ARM  | -416 | 87  | 47  | -11  | 0   | 0                    |  |
| 2  | ART  | -423 | 61  | 62  | 89   | 3   | 3                    |  |
| 3  | TCC  | -141 | 38  | 4   | -331 | 211 | 20                   |  |
| 4  | CRA  | -92  | 3   | 1   | -847 | 250 | 80                   |  |
| •  | •    | •    | •   | •   | •    | •   | •                    |  |
| •  | •    | •    | •   | •   |      | •   | •                    |  |
| 15 | Arm  | 416  | 87  | 47  | 11   | 0   | 0                    |  |
| 16 | Art  | 423  | 61  | 62  | -89  | 3   | 3                    |  |
| 17 | Tcc  | 141  | 38  | 4   | 331  | 211 | 20                   |  |
| 18 | Cra  | 92   | 3   | 1   | 847  | 250 | 80                   |  |
| •  | •    | •    | •   | •   | •    | •   | •                    |  |
|    |      |      |     |     |      |     |                      |  |

RULC+

6.5

4.0

5.0

0.0

9.0

6.5

2.0

3.0

8.0

1.0

11.0

10.0

Para las dimensiones 3 y 4 de las filas observamos que también se repiten las coordenadas en dos bloques, pero en este caso con los signos cambiados. Asimismo podemos observar que los valores de las coordenadas de las columnas de la tercera dimensión son los de las filas de la cuarta dimensión cambiadas de signo, y que los de las columnas de la cuarta dimensión son los de las filas de la tercera dimensión también cambiadas de signo. En cualquier caso para obtener el mapa sólo necesitamos uno de los dos conjuntos de coordenadas. Recordemos, como vimos en el capítulo 22, que estos mapas tienen una forma propia de interpretación.

#### Capítulo 23: Recodificación de datos

Conversión a rangos mediante la función rank() En el capítulo 23 vimos transformaciones simples de datos y la posterior aplicación del AC habitual. Como ilustración del análisis de datos continuos, utilizaremos los indicadores de la Unión Europea. Supongamos que hemos leído los datos y que los hemos introducido en un objeto llamado EU. A continuación convertimos los datos en rangos (utilizando la función rank() de R, una vez aplicada la útil función apply() para obtener EUr). Finalmente realizamos el doblado (para obtener EUd) de la siguiente manera:

```
EUr <- apply(EU, 2, rank)-1</pre>
EUd <- cbind(EUr, 11-EUr)</pre>
colnames(EUd) <- c(paste(colnames(EU), "-", sep=""),</pre>
                      paste(colnames(EU), "+", sep=""))
EUd
   Unemp-GDPH- PCH-
                           PCP-
                                   RULC- Unemp+ GDPH+ PCH+
                                                                 PCP+
Be
         6
               6
                     6
                            6.5
                                     4.5
                                               5
                                                     5
                                                            5
                                                                  4.5
                                               7
De
         4
              11
                    10
                            0.0
                                     7.0
                                                     0
                                                            1
                                                                 11.0
         2
              10
                                     6.0
                                               9
                                                            0
Ge
                    11
                            5.0
                                                     1
                                                                  6.0
                                    11.0
                                                           10
         5
               1
                     1
                            1.0
                                               6
                                                    10
                                                                 10.0
Gr
       11
               3
                                     2.0
                                               0
                                                     8
                                                            8
                      3
                           10.0
                                                                  1.0
Sp
        7
               8
                            3.5
                                     4.5
                                               4
                                                     3
                                                            3
                                                                  7.5
Fr
                      8
       10
               2
                           11.0
                                     1.0
                                               1
                                                     9
                                                            9
                                                                  0.0
Ir
                      2
It
         9
               7
                     7
                            9.0
                                     9.0
                                               2
                                                     4
                                                            4
                                                                  2.0
         0
               9
                      9
                            3.5
                                     8.0
                                                     2
                                                            2
                                                                  7.5
Lu
                                              11
               5
                                               3
                                                     6
         8
                            6.5
                                     3.0
                                                            7
                                                                  4.5
Но
                      4
                                                    11
         1
               0
                            8.0
                                     0.0
                                              10
                                                           11
                                                                  3.0
Po
                      0
         3
UK
               4
                      5
                            2.0
                                    10.0
                                               8
                                                     7
                                                            6
                                                                  9.0
```

Fijémonos en que hemos introducido los nombres de las columnas con la función paste(). Finalmente, ejecutando ca(EUd) obtenemos el mapa de la imagen 23.5.

Capítulo 24: Análisis de correspondencias canónico Con el paquete **ca** no podemos obtener los resultados del capítulo 24. Sin embargo, los podemos obtener utilizando el programa XLSTAT (descrito más adelante) o el paquete **vegan** de Jari Oksanen (véanse los recursos web en el apéndice bibliográfico). Este último recurso no solamente desarrolla el ACC, sino que también permite ejecutar el AC y el ACP (pero sin muchas de las opciones que tenemos en el paquete **ca**). Dado que este paquete se utiliza a menudo en el contexto de datos sobre ecología, como por ejemplo los del capítulo 24, hablaremos de estaciones o localidades (muestras), «especies» y «variables» (explicativas). La utilización de **vegan** es tan fácil como la de **ca**. La principal función es cca(), que la podemos utilizar con los siguientes dos formatos:

```
cca(X, Y, Z)
cca(X ~ Y + condition(Z))
```

donde X es la matriz de recuentos de localidades × especies, Y es la matriz de localidades × variables de datos explicativos y Z es la matriz de localidades × variables de datos condicionados por si queremos hacer (de forma opcional) un ACC parcial. El segundo formato es un formato tipo regresión. Nosotros utilizaremos el primer formato. Si sólo especificamos X, se lleva a cabo un análisis del AC (lo podemos comprobar con uno de los ejemplos anteriores. Por ejemplo con summary(cca(author)) para comparar los resultados con los que hemos obtenido anteriormente —los libros serían las «localidades» y las letras las «especies»—. Por defecto, por ejemplo ejecutando plot(cca(autor)), obtenemos el mapa que hemos llamado "colprincipal"). Si especificamos X e Y, realizamos un ACC. Si especificamos X, Y y Z, el análisis es un ACC parcial.

Supongamos que el *data frame* bio contiene los datos biológicos que vimos en los capítulos 10 y 24 en una tabla de  $13 \times 92$ , y que env contiene las variables logBa, logFe y logPE en una tabla de  $13 \times 3$ . Podemos llevar a cabo el ACC de la manera siguiente:

```
summary(cca(bio, env))
Call:
cca(X = bio, Y = env)
Partitioning of mean squared contingency coefficient:
Total 0.7826
Constrained 0.2798
Unconstrained 0.5028
Eigenvalues, and their contribution to the
            mean squared contingency coefficient
            CCA1
                    CCA2
                             CCA3
                                      CA1
                                              CA2
                                                       CA3
lambda
           0.1895
                  0.0615 0.02879 0.1909
                                            0.1523
                                                   0.04159
accounted 0.2422 0.3208 0.35755 0.2439
                                          0.4385
                                                    0.49161
                       CA5
                                                  CA8
                                                           CA9
              CA4
                                CA6
                                         CA7
lambda
          0.02784 0.02535 0.02296 0.01654 0.01461 0.01076
accounted 0.52719 0.55957 0.58891
                                     0.61004 0.62871 0.64245
```

Scaling 2 for species and site scores --- Species are scaled proportional to eigenvalues --- Sites are unscaled: weighted dispersion equal on all dimensions

```
Species scores
```

|           | CCA1       | CCA2      | CCA3      | CA1        | CA2       | CA3       |
|-----------|------------|-----------|-----------|------------|-----------|-----------|
| Myri_ocul | 0.1732392  | 0.245915  | -0.070907 | 0.6359626  | -0.063479 | 0.031990  |
| Chae_seto | 0.5747974  | -0.270816 | 0.011814  | -0.5029157 | -0.674207 | 0.093354  |
| Amph_falc | 0.2953878  | -0.114067 | 0.075979  | -0.2224138 | 0.041797  | -0.005020 |
| Myse_bide | -0.5271092 | -0.505262 | -0.103978 | -0.0789909 | 0.176683  | -0.484208 |
| Goni macu | -0.1890403 | 0.122783  | -0.044679 | -0.1045244 | 0.030134  | 0.111827  |
| Amph_fili | -0.9989672 | -0.075696 | 0.107184  | -0.3506103 | 0.076968  | 0.004931  |
|           |            |           |           |            |           | •         |
|           |            |           |           |            |           |           |

Site constraints (linear combinations of constraining variables)

|     | CCA1     | CCA2     | CCA3     |
|-----|----------|----------|----------|
| S4  | -0.06973 | 0.75885  | -2.29951 |
| S8  | -0.35758 | 1.47282  | 2.27467  |
| S9  | 0.48483  | -0.72459 | -0.66547 |
| S12 | 0.02536  | 0.27129  | -0.14677 |
| S13 | 0.30041  | -0.01531 | -0.80821 |
| S14 | 0.79386  | 1.16229  | 0.24314  |
| S15 | 0.96326  | -0.88970 | 0.14630  |
| S18 | -0.16753 | 0.25048  | -0.77451 |
| S19 | 0.36890  | -0.81800 | 1.50620  |
| S23 | -0.09967 | -1.90159 | 0.06877  |
| S24 | 0.05478  | 0.96184  | -0.10635 |
| R40 | -3.71393 | -0.20698 | 0.53031  |
| R42 | -2.96641 | -0.18264 | -0.67736 |

Biplot scores for constraining variables

|       | CCA1   | CCA2     | CCA3    |
|-------|--------|----------|---------|
| logBa | 0.9957 | -0.08413 | 0.03452 |
| logFe | 0.6044 | -0.72088 | 0.33658 |
| logPE | 0.4654 | 0.55594  | 0.68710 |

Fijémonos en lo siguiente:

- el mean squared contingency coefficient es la inercia total;
- en el espacio restringido, los encabezamientos de las inercias principales son CCA1, CCA2, etc., y en el espacio no restringido, son CA1, CA2, etc.;
- todos los porcentajes se expresan en relación a la inercia total;
- Scalin 2 significa filas (localidades) en coordenadas estándares, y columnas (especies) en coordenadas principales, es decir, equivale a las coordenadas de "colprincipal" de la función plot.ca();

- las Species scores son coordenadas principales de columnas;
- los Site constraints son las coordenadas estándares de filas;
- los Biplot scores for constraining variables son los coeficientes de correlación ponderados entre las variables explicativas y las coordenadas de las localidades.

En el capítulo 25 llevamos cabo varios automuestreos de tablas con el fin de investigar su variabilidad, así como pruebas de permutaciones para contrastar hipótesis nulas. Por ejemplo, obtuvimos el mapa del AC del automuestreo parcial de los datos sobre los autores que mostramos en la imagen 25.1 y 25.2 de la siguiente manera (hemos insertado comentarios). Si nos fijamos en la imagen 25.1, sólo hemos dibujado 100 de las 1000 réplicas; como el muestreo es aleatorio, los resultados no serán exactamente iguales:

Capítulo 25: Consideraciones sobre estabilidad e inferencia

```
data(author)
author.ca <- ca(author)</pre>
nsim <- 1000
# cálculo de la suma de las filas
author.rowsum <- apply(author, 1, sum)</pre>
# cálculo de las nsim simulaciones del primer libro
author.sim <- rmultinom(nsim, author.rowsum[1], prob = author[1,])</pre>
                                                                          Muestreo aleatorio
# cálculo de las nsim simulaciones de los otros libros y
                                                                          multinomial utilizando
                                                                          rmultinom()
  combinación de columnas
for (i in 2:12) {
    author.sim <- cbind(author.sim,</pre>
                    rmultinom(nsim, author.rowsum[i],
                    prob = author[i,]))
     }
# transposición para tener el mismo formato que la
  matriz original
author.sim <- t(author.sim)</pre>
author.sim2 <- matrix(rep(0, nsim*12*26), nrow = nsim*12)</pre>
# reorganización de filas para juntar las matrices
for (k in 1:nsim) {
    for (i in 1:12) {
          author.sim2[(k-1)*12+i,] <- author.sim[k+(i-1)*nsim,]</pre>
          }
     }
```

Utilizando la fórmula de transición, a partir de las coordenadas estándares de filas calculamos las coordenadas principales simuladas de las columnas:

```
# obtención de las coordenadas estándares de las filas
author.rowsc <- author.ca$rowcoord[,1:2]
# cálculo de las coordenadas principales de todas las réplicas
mediante la fórmula de transición
```

Representación gráfica de los puntos y de los perímetros convexos:

```
# representación de todos los puntos (para etiquetarlos
  utilizamos el primer formato)
plot(author.colsim[,1], -author.colsim[,2], xlab = "dim1",
     ylab = "dim2", type = "n")
text(author.colsim[,1], -author.colsim[,2], letters, cex = 0.5,
     col = "gray")
# representación de los perímetros convexos de cada letra
# en primer lugar calculamos las coordenadas principales de
  las letras de la matriz original
author.col <- t(t(author.rowsc) %*% author)/</pre>
               apply(author, 2, sum)
for (j in 1:26) {
    points <- author.colsim2[(nsim*(j-1)+1):(nsim*j),]</pre>
# en todos estos mapas invertimos la segunda coordenada
    points[,2] <- -points[,2]</pre>
    hpts <- chull(points)</pre>
    hpts <- c(hpts,hpts[1])</pre>
    lines(points[hpts,], lty = 3)
    text(author.col[j,1], -author.col[j,2],
          letters[j], font = 2, cex = 1.5)
    }
```

Finalmente llevamos a cabo el recorte de todos los perímetros convexos hasta eliminar el 5% de los puntos de las proyecciones de las nubes, luego representamos los perímetros convexos recortados:

```
plot(author.colsim2[,1], -author.colsim2[,2], xlab = "dim1",
    ylab = "dim2", type = "n")
for (j in 1:26) {
    points <- author.colsim2[(nsim*(j-1)+1):(nsim*j),]
# en todos estos mapas invertimos la segunda coordenada
    points[,2] <- -points[,2]</pre>
```

```
repeat {
    hpts <- chull(points)
    npts <- nrow(points[-hpts,])
    if(npts/nsim < 0.95) break
    points <- points[-hpts,]
    }
hpts <- c(hpts,hpts[1])
lines(points[hpts,], lty = 3)
text(author.col[j,1], -author.col[j,2], letters[j],
    font = 2)
}</pre>
```

Para representar las elipses de confianza tenemos que bajar el paquete **ellipse** de la página web de R (www.R-project.org). El texto del programa para representar las elipses de confianza utilizando las réplicas del automuestreo es el siguiente:

```
# elipses de confianza - necesitamos el paquete 'ellipse'
plot(author.colsim2[,1], -author.colsim2[,2],xlab = "dim1",
    ylab = "dim2", type = "n")
for (j in 1:26) {
    points <- author.colsim2[(nsim*(j-1)+1):(nsim*j),]
    # en todos estos mapas invertimos la segunda coordenada
    points[,2] <- -points[,2]
    covpoints <- cov(points)
    meanpoints <- apply(points, 2, mean)
    lines(ellipse(covpoints, centre = meanpoints))
    text(author.col[j,1], -author.col[j,2], letters[j],
        font = 2)
    }
</pre>
```

Para reproducir las elipses de confianza del mapa de la imagen 25.3 obtenidas a partir del método Delta, necesitamos la matriz de covarianzas de las coordenadas principales estimadas. La podemos obtener utilizando el programa SPSS. En la página de la red CARME, www.carme-n.org, podemos obtener más detalles y programas adicionales.

Vamos a realizar una prueba de permutación con los datos sobre los autores. Puebas de permutaciones Para ello, consultamos un listado de todas las  $11 \times 9 \times 7 \times 5 \times 3 = 10395$  combinaciones posibles de los pares libro-autor de los mapas del AC. Luego calcularemos las sumas de las distancias entre los pares del mismo autor en el mapa del AC. En la página web podemos encontrar el programa R para la obtención de todas las combinaciones posibles. El programa hace un listado de los 11 primeros pares posibles {(1,2), (1,3), (1,4), ..., (1,12)}, luego un listado de los 9 pares posibles de cada uno de ellos, por ejemplo para (1,2) son {(3,4), (3,5), ..., (3,12)}, luego un listado de los 7 pares posibles de cada uno de éstos últimos, y así suce-



#### Imagen B.6:

Distribución exacta, suponiendo cierta la hipótesis nula, del estadístico suma de distancias en la prueba de permutaciones para contrastar la aleatoriedad de las posiciones de los pares de textos del mismo autor en el mapa del AC. El valor observado es el segundo más pequeño de todos los 10395 valores posibles

sivamente. En la imagen B.6 mostramos la distribución de las 10395 distancias posibles en la que hemos señalado la distancia correspondiente a la combinación observada 0,4711. Como vimos en el capítulo 25, no hay otra combinación de pares libro-autor en el mapa del AC bidimensional con una suma de distancias menor. Por tanto, el valor p asociado con este valor es igual a 1/10395, es decir, p < 0,0001. Hicimos una prueba similar en los mapas del AC de subgrupos, que mostramos en las imágenes 21.1 (sólo de consonantes) y 21.2 (sólo de vocales) y obtuvimos 47 y 67 combinaciones a la izquierda del valor observado, por lo que los valores p son 48/10395 = 0,0046 y 68/10395 = 0,0065, respectivamente.

Pruebas de permutaciones en ACC En el ACC nos centramos en la parte del espacio de las variables respuesta (en general en ecología, las especies), que está relacionado linealmente con un determinado conjunto de variables explicativas (en general variables ambientales), como puede verse en el capítulo 24. Pero, ¿cómo saber si las variables respuesta están realmente relacionadas con las variables explicativas? Una medida de la relación existente entre ambos conjuntos de variables es la inercia del espacio restringido. Podríamos situar esta inercia en la distribución de inercias del espacio restringido bajo el supuesto de que no hay relación alguna. Podemos obtener esta distribución permutando al azar los casos (filas) en la matriz de variables explicativas (o variables respuesta). Al permutar aleatoriamente las filas tendrían que perderse las posibles relaciones de éstas con las filas en la matriz de respuestas. Repetimos el ACC y volvemos a calcular la inercia del espacio restringido. Haciendo esto 999 veces (o el número de veces necesarias para poder calcular un valor p con suficiente precisión), podemos situar el valor de inercia observa-

do en la distribución para ver si este valor es inusualmente elevado. Si se halla en el 5% de los valores más elevados, consideraremos que la relación entre las variables respuesta y las variables explicativas es estadísticamente significativa. Como antes, podemos estimar el valor de p haciendo un recuento del número de valores de la distribución de permutaciones mayores que el valor observado (para ser significativo el valor observado tiene que ser suficientemente elevado). El paquete **vegan** incorpora esta prueba, que podemos obtener aplicando la función anova() a cca():

```
anova(cca(bio, env))
```

Permutation test for cca under reduced model

```
Model: cca(X = bio, Y = env)
```

Df Chisq F N.Perm Pr(>F) 3 0.2798 1.6696 0.03462 Model 1300 \* 9 Residual 0.5028 \_\_\_\_ Signif. codes: 0 '\*\*\*' 0.001 '\*\*' 0.01 '\*' 0.05 '.' 0.1 ' ' 1

En realidad, el estadístico utilizado no es la inercia sino un «seudo» estadístico F, como el del análisis de la varianza (para más detalles podemos consultar la documentación sobre **vegan**). Debemos fijarnos en el valor de p que nos va a dar la salida. Así, en este caso el valor del estadístico F para el espacio restringido es significativamente elevado (p = 0.03462).

En su reciente libro *Correspondence Analysis and Data Coding with Java and* R (véase el apéndice bibliográfico), Fionn Murtagh proporciona muchos programas en R para AC, especialmente para la recodificación de datos. Están disponibles en Internet y se pueden bajar de www.correspondances.info. En concreto, en sus páginas 21 a 26, encontramos el único programa en R que permite hacer la agrupación jerárquica utilizando el método de Ward, con la incorporación de pesos, que es exactamente lo que necesitamos para el capítulo 15. Suponiendo que hayamos sido capaces de bajar el programa del web mencionado, que hemos leído la tabla de datos de la imagen 15.3 y que la hemos guardado en el *data frame* food, podremos realizar el análisis de grupos de los perfiles de las filas que mostramos en la figura de la imagen 15.5, utilizando la función hierclust() de Murtagh de la siguiente manera:

```
food.rpro <- food/apply(food,1,sum)
food.r <- apply(food,1, sum)/sum(food)
food.rclust <- hierclust(food.rpro, food.r)
plot(as.dendrogram(food.rclust))</pre>
```

Programas R de Fionn Murtagh XLSTAT Para llevar a cabo los análisis de este libro (y análisis adicionales), una de las mejores alternativas es el programa estadístico XLSTAT (www.xlstat.com) derivado de Excel. En XLSTAT, los programas para el AC y el ACM incluyen los ajustes de inercia del ACM y el análisis de subgrupos del AC y del ACM. También incluye un programa para el ACC que incorpora la prueba de la permutación para contrastar que las variables explicativas están significativamente relacionadas con lo ejes principales de la solución restringida. Otros programas para el análisis multivariante de XLSTAT son el análisis de grupos, la regresión de mínimos cuadrados parcial y el análisis de Procrustes generalizado. Dado que el programa opera en el entorno Excel es muy fácil de utilizar. Por ejemplo, para ejecutar el AC con los datos food que hemos utilizado anteriormente en el análisis jerárquico de grupos, clicamos sobre el icono de AC y seleccionamos la tabla (con etiquetas para filas y columnas) que queremos analizar (imagen B.7).

El menú de «Options» permite seleccionar puntos adicionales o subgrupos de datos. El menú «Missing data» permite varias opciones para el tratamiento de los



# Imagen B.7: Menú de XLSTAT para

ejecutar el AC en una tabla seleccionada en Excel

| Correspondence Analysis (CA)         | ×                     |
|--------------------------------------|-----------------------|
| General Options Missing data Outputs | Charts                |
| □ 3D view of the contingency table   | ✓ Labels              |
| Symmetric plots                      | Colored labels        |
| Rows and columns                     | Vectors               |
| Rows                                 | Lengthening factor: 1 |
|                                      |                       |
| Asymmetric plots                     |                       |
| Rows                                 |                       |
|                                      |                       |
| 🙂 🥒 🔸                                | OK Cancel Help        |



valores perdidos. El menú «Outputs» permite seleccionar varias tablas numéricas (perfiles, distancias  $\chi^2$ , coordenadas principales, coordenadas estándares, contribuciones, correlaciones al cuadrado, etc.). El menú «Charts» permite llevar a cabo diversos mapas del AC. En la imagen B.8 mostramos cómo llevar a cabo un



#### Imagen B.9:

Parte del resultado del programa de AC de XLSTAT, que se proporciona en una hoja de cálculo adicional mapa simétrico de filas y de columnas, y un mapa asimétrico de filas (es decir, la opción "rowprincipal" del paquete **ca**). En la imagen B.9 mostramos parte de estos resultados.

En el módulo de análisis de grupos de XLSTAT podemos desarrollar el análisis de grupos que vimos en el capítulo 15, ya que permite asignar pesos a los puntos; por tanto, podemos realizar la agrupación de Ward de perfiles ponderados con sus masas.

- Opciones gráficas Crear un mapa de AC con determinadas características listo para ser publicado, no es trivial. En esta sección describimos los tres procedimientos utilizados para la obtención de los gráficos de este libro.
- Gráficos con LATEX La composición tipográfica de la edición en inglés de este libro fue realizada con LATEX. Con LATEX —y algunas macros de este programa— podemos crear directamente mapas sin tener que utilizar otros paquetes gráficos. Así, realizamos la mayor parte de los mapas del libro utilizando la macro PicTEX. Como ejemplo de mapa creado en LATEX, a continuación mostramos el programa que utilizamos para crear el mapa asimétrico correspondiente a los datos de los fumadores que mostramos en la imagen 9.2:

```
\beginpicture
\setcoordinatesystem units <2.5cm,2.5cm>
\setplotarea x from -2.40 to 1.70, y from -1.6 to 2.25
\accountingoff
\gray
\setdashes <5pt,4pt>
\putrule from 0 0 to 1.7 0
\putrule from 0 0 to -1.4 0
\putrule from 0 0 to 0 2.25
\putrule from 0 0 to 0 -1.6
\put {+} at 0 0
\black
\small
\put {Axis 1} [Br] < -.2cm,.15cm> at 1.70 0
\put {0.0748 (87.8\%)} [tr] < -.2cm, -.15cm> at 1.70 0
\put {Axis 2} [Br] < -.1cm, -.4cm> at 0 2.25
\put {0.0100 (11.8\%)} [Bl] <.1cm,-.4cm> at 0 2.25
\setsolid
\putrule from 1.3 -1.3 to 1.4 -1.3
\putrule from 1.3 -1.32 to 1.3 -1.28
\putrule from 1.4 -1.32 to 1.4 -1.28
\put {\it scale} [b] <0cm,.25cm> at 1.35 -1.3
\put {0.1} [t] <0cm,-.2cm> at 1.35 -1.3
\multiput {$\bullet$} at
```

```
0.06577 0.19373
-0.25896 0.24330
 0.38059 0.01066
-0.23295 -0.05775
 0.20109 - 0.07891
 /
\sf
\put {SM} [1] <.15cm,0cm> at 0.06577 0.19373
\put {JM} [r] < -.15cm,0cm> at -0.25896 0.24330
\put {SE} [bl] <.15cm,0cm> at 0.38059 0.01066
\put {JE} [r] < -.15cm,0cm> at -0.23295 -0.05775
\put {SC} [tl] <.15cm,0cm> at 0.20109 -0.07891
\grav
\multiput {$\circ$} at
1.4384 0.3046
-0.3638 -1.4094
-0.7180 -0.0735
-1.0745 1.9760
/
\sl
\put {none} [b] <0cm,.2cm> at 1.4384 0.3046
\put {light} [b] <0cm,.2cm> at -0.3638 -1.4094
\put {medium} [T] <0cm,-.3cm> at -0.7180 -0.0735
\put {heavy} [b] <0cm,.2cm> at -1.0745 1.9760
\black
\endpicture
```

El programa anterior permite darnos cuenta de que crear un mapa como el de la imagen 9.2 es bastante laborioso. Hay que situar con mucha precisión cada uno de los puntos y de las líneas del mapa. Una ventaja es que podemos asegurar que la razón de escalas del mapa es exactamente 1. Por ejemplo, en este mapa hemos establecido que las unidades en los ejes de coordenadas vertical y horizontal sean exactamente iguales (2,5 cm).

Muchos de los mapas nuevos de esta segunda edición los hemos hecho en Excel, Gráficos en Excel a partir de los resultados del análisis estadístico en XLSTAT. Sin embargo, para asegurar que la razón de escalas de los mapas de los capítulos 17 a 19 fuera correcta, tuvimos que efectuar algunos ajustes. Así tuvimos que redefinir los valores máximos y mínimos de los ejes y alargar vertical u horizontalmente los mapas. Luego los copiamos en metaarchivos y los pegamos en el *Adobe Ilustrator*. Al realizar esta operación se modifica algo la razón de escalas del mapa, las unidades verticales aumentan algo más que las horizontales. Por tanto, de nuevo, tuvimos que retocar los mapas. Posteriormente los guardamos en formato *PostScript Encapsulado* (EPS), para finalmente incorporarlos al texto como archivos LATEX utilizando la instrucción \includegraphics, por ejemplo: Gráficos en R En este libro también hemos creado muchos mapas en R. Por ejemplo, los del capítulo 25. Para incorporarlos al texto, primero los copiamos como metaarchivos, luego los pegamos en el *Adobe Ilustrator*, los terminamos de ajustar para asegurar que la razón de escalas fuera correcta y finalmente los guardamos en formato EPS.