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Pythagoras’ theorem

Chapter

Measures of Distance between Samples: 
Euclidean

We will be talking a lot about distances in this book. The concept of distance 
between two samples or between two variables is fundamental in multivariate 
analysis – almost everything we do has a relation with this measure. If we talk 
about a single variable we take this concept for granted. If one sample has a pH 
of 6.1 and another a pH of 7.5, the absolute difference between them is 1.4. But 
on the pH line, the values 6.1 and 7.5 are at a distance apart of 1.4 units, and this 
is how we want to start thinking about data: points on a line, points in a plane, … 
even points in a 10-dimensional space! So, given two samples with not one meas-
urement on them but several, how do we measure the difference between them? 
There are many possible answers to this question, and we devote three chapters to 
this topic. In the present chapter we consider what are called Euclidean distances, 
which coincide with our basic physical idea of distance, but generalized to multi-
dimensional space.
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Pythagoras’ theorem is at the heart of most of the multivariate analysis pre-
sented in this book, and particularly the graphical approach to data analysis 
that we are strongly promoting. When you see the word “square” mentioned in 
a statistical text (for example, chi-square or least squares), you can be almost 
sure that the corresponding theory has some relation to this theorem. We fi rst 
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Exhibit 4.1:
Pythagoras’ theorem in 

the familiar right-angled 
triangle, and the monument 

to this triangle in the port of 
Pythagorion, Samos island, 

Greece, with Pythagoras 
himself forming one 

of the sides
(Photo: Michael Greenacre)

Euclidean distance

show the theorem in its simplest and most familiar two-dimensional form, 
before showing how easy it is to generalize it to multidimensional space. In a 
right-angled triangle, the square on the hypotenuse (the side denoted by A in 
Exhibit 4.1) is equal to the sum of the squares on the other two sides (B and 
C); that is, A2B2C2.

The immediate consequence of this is that the squared length of a vector 
xx1 x2 is the sum of the squares of its coordinates (see triangle OPA in 
Exhibit 4.2, or triangle OPB – OP2 denotes the squared length of x, that is 
the distance between point O, with both co-ordinates zero, and P); and the 
squared distance between two vectors xx1 x2 and yy1 y2 is the sum 
of squared differences in their coordinates (see triangle PQD in Exhibit 4.2; 
PQ2 denotes the squared distance between points P and Q). To denote the 
distance between vectors x and y we can use the notation dx,y so that this last 
result can be written as:

 d x y x yx y, ( ) ( )2
1 1

2
2 2

2= − + −  (4.1)

that is, the distance itself is the square root 

 d x y x yx y, ( ) ( )1 1
2

2 2
2= − + −  (4.2)

AB

C

A2 = B2 + C2
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Exhibit 4.2:
Pythagoras’ theorem 
applied to distances in 
two-dimensional space 

What we called the squared length of x, the distance between points P and O in 
Exhibit 4.2, is the distance between the vector xx1 x2 and the zero vector 
00 0:

 d xx ,0 1= 22
2
2+ x  (4.3)

which we could just denote by dx . The zero vector is called the origin of the space. 

We move immediately to a three-dimensional point xx1 x2 x3, shown in Ex-
hibit 4.3. This fi gure has to be imagined in a room where the origin O is at the 
corner – to reinforce this idea “fl oor tiles” have been drawn on the plane of axes 
1 and 2, which is the “fl oor” of the room. The three coordinates are at points A, 
B and C along the axes, and the angles AOB, AOC and COB are all 90 as well as 
the angle OSP at S, where the point P (depicting vector x) is projected onto the 
“fl oor”. Using Pythagoras’ theorem twice we have:

OP2OS2PS2 (because of right-angle at S) 
OS2OA2AS2 (because of right-angle at A)

and so

OP2OA2AS2PS2 

P

O A

B

Q

D

Axis 1

Axis 2

x2

|x2 – y2|

y2

|x1 – y1|

x1 y1

x = [x1  x2]

y = [y1  y2]

|OP|2 = x1
2 + x2

2 |PQ|2 = (x1 – y1)
2 + (x2 – y2)

2
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Exhibit 4.3:
Pythagoras’ theorem 

extended into three 
dimensional space

that is, the squared length of x is the sum of its three squared coordinates, hence 
the length is

 
1
2

2
2

3
2= + +d x x xx

 

It is also clear that placing a point Q in Exhibit 4.3 to depict another vector y and 
going through the motions to calculate the distance between x and y will lead to 

 
1 1

2
2 2

2
3 3

2= − + − + −d x y x y x yx y, ( ) ( ) ( )  (4.4)

Furthermore, we can carry on like this into four or more dimensions, in general 
J dimensions, where J is the number of variables. Although we cannot draw the 
geometry any more, we can express the distance between two J -dimensional vec-
tors x and y as:

 ∑=d xx y, ( jj jy
j

J

−
=

)2

1

 (4.5)

This well-known distance measure, which generalizes our notion of physical dis-
tance in two- or three-dimensional space to multidimensional space, is called the 
Euclidean distance. 

Axis 2

Axis 3

Axis 1

x = [x1  x2  x3]

|OP|2 = x1
2 + x2

2 + x3
2

x3

x2

x1

P

O

A

B

C

S
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Standardized Euclidean 
distance

Let us consider measuring the distances between our 30 samples in Exhibit 1.1, 
using the three continuous variables depth, pollution and temperature. What 
would happen if we applied formula (4.5) to measure distance between the last 
two samples, s29 and s30, for example? Here is the calculation:

 d = − + − + −( ) ( . . ) ( . . )2 2 251 99 6 0 1 9 3 0 2 9s29,s30

= +2304 166 81 0 01 2320 82 48 17. . . .+ = =

 

The contribution of the fi rst variable depth to this calculation is huge – one could 
say that the distance is practically just the absolute difference in the depth values 
(equal to 51-9948) with only tiny additional contributions from pollution and 
temperature. This is the problem of standardization discussed in Chapter 3 – the 
three variables have completely different units of measurement and the larger 
depth values have larger inter-sample differences, so they will dominate in the 
calculation of Euclidean distances.

Some form of transformation of the data is necessary to balance out the contribu-
tions, and the conventional way to do this is to make all variables have the same 
variance of 1. At the same time we centre the variables at their means – this cen-
tring is not necessary for calculating distance, but it makes the variables all have 
mean zero and thus easier to compare. This transformation, commonly called 
standardization, is thus as follows:

 standardized value(original value – mean) / standard deviation  (4.6)

The means and standard deviations (sd) of the three variables are:

Depth Pollution Temperature

mean 74.433 4.517 3.057

sd 15.615 2.141 0.281

leading to the table of standardized values given in Exhibit 4.4. These values 
are now on comparable standardized scales, in units of standard deviation with 
respect to the mean. For example, the standardized pollution value 0.693 for row 
s29 would signify 0.693 standard deviations above the mean, while 1.222 for 
row s30 would signify 1.222 standard deviations below the mean. The distance 
calculation thus aggregates squared differences in standard deviation units of 
each variable. As an example, the distance between the last two sites of the table 
in Exhibit 4.4 is:
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Exhibit 4.4:
Standardized values of the 
three continuous variables 

of Exhibit 1.1

 

. ]− +ds29, s30 1 501 1 573 0 6932[ . [ . (= − − −11 222 0 201 5572 2. )] [ . ( . )]+ − − −

9 449 3 667 0 127 13 243 3 639. . . .= + + = =.  

For this particular pair of sites the difference in temperatures is still small but 
pollution now has a higher contribution than before. Depth still plays the largest 
role in this particular example, even after standardization, but this contribution is 

Site No. Environmental variables

Depth Pollution Temperature

s1 −0.156 0.132 1.576

s2 0.036 −0.802 −1.979

s3 −0.988 0.413 −1.268

s4 −0.668 1.720 −0.557

s5 −0.860 −0.288 0.154

s6 1.253 −0.895 1.576

s7 −1.373 0.039 −0.557

s8 −0.860 0.272 0.865

s9 −0.412 −0.288 1.221

s10 −0.348 2.561 −0.201

s11 −1.116 0.926 0.865

s12 0.613 −0.335 0.154

s13 −1.373 2.281 −0.201

s14 0.549 0.086 −1.979

s15 1.637 1.020 −0.913

s16 0.613 −0.802 −0.201

s17 1.381 0.880 0.154

s18 −0.028 −0.054 −0.913

s19 0.292 −0.662 1.932

s20 −0.092 0.506 −0.201

s21 −0.988 −0.101 1.221

s22 −1.309 −1.222 −0.913

s23 1.317 −0.989 −0.557

s24 −0.668 −0.101 −0.201

s25 1.445 −1.175 −0.201

s26 0.228 −0.942 1.221

s27 0.677 −1.129 −0.201

s28 1.125 −0.522 0.865

s29 −1.501 0.693 −0.201

s30 1.573 −1.222 −0.557
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Exhibit 4.5:
Standardized Euclidean 
distances between the 30 
samples, based on the three 
continuous environmental 
variables, showing part 
of the triangular distance 
matrix

Weighted Euclidean 
distance

justifi ed now, since depth does show the biggest standardized difference between 
the samples. We call this the standardized Euclidean distance, meaning that it is the 
Euclidean distance calculated on standardized data. It will be assumed that stand-
ardization refers to the form defi ned by (4.6), unless specifi ed otherwise. 

We can repeat this calculation for all pairs of samples. Since the distance between 
sample A and sample B will be the same as between sample B and sample A, we 
can report these distances in a triangular matrix – Exhibit 4.5 shows part of this 
distance matrix, which contains a total of ½3029435 distances.

Readers might ask how all this has helped them – why convert a data table with 
90 numbers into one that has 435, almost fi ve times more? Were the histograms 
and scatterplots in Exhibits 1.2 and 1.4 not enough to understand these three 
variables? This is a good question, but we shall have to leave the answer to Part 3 
of the book, from Chapter 7 onwards, when we describe actual analyses of these 
distance matrices. At this early stage in the book, we can only ask readers to accept 
that the computation of interpoint distances is an intermediate step in a process 
that will lead to an eventual simplifi cation in interpreting the data structure – 
having a measure of distance (i.e., difference) between samples based on several 
variables is the key to this process.

The standardized Euclidean distance between two J -dimensional vectors can be 
written as:

s1 s2 s3 s4 s5 s6 · · · s24 s25 s26 s27 s28 s29

s2 3.681  

s3 2.977 1.741  

s4 2.708 2.980 1.523  

s5 1.642 2.371 1.591 2.139  

s6 1.744 3.759 3.850 3.884 2.619  

s7 2.458 2.171 0.890 1.823 0.935 3.510  

·
·
·

·
·
·

·
·
·

·
·
·

·
·
·

·
·
·

·
·
·

·
·
·

·
· ·

s25 2.727 2.299 3.095 3.602 2.496 1.810 · · · 2.371  

s26 1.195 3.209 3.084 3.324 1.658 1.086 · · · 1.880 1.886  

s27 2.333 1.918 2.507 3.170 1.788 1.884 · · · 1.692 0.770 1.503  

s28 1.604 3.059 3.145 3.204 2.122 0.813 · · · 2.128 1.291 1.052 1.307  

s29 2.299 2.785 1.216 1.369 1.224 3.642 · · · 1.150 3.488 2.772 2.839 3.083  

s30 3.062 2.136 3.121 3.699 2.702 2.182 · · · 2.531 0.381 2.247 0.969 1.648 3.639
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Distances for count data

 ∑ddx y

x

s

y

s
j

j

j

jj

J

, = −
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

=

2

1

 (4.7)

where sj is the sample standard deviation of the j -th variable. Notice that we need 
not subtract the j -th mean from xj and yj because the means will just cancel out 
in the differencing. Now (4.7) can be rewritten in the following equivalent way:

 ∑ w xj jd
s

x yx y
jj

J

j j, ( ) ( −= − =
=

2
1

21 yy j )
2∑

j

J

= 1

 (4.8)

where wj1/s j
2 is the inverse of the j -th variance. We can think of wj as a weight 

attached to the j -th variable: in other words, we compute the usual squared dif-
ferences between the variables on their original scales, as we did in the (unstand-
ardized) Euclidean distance, but then multiply these squared differences by their 
corresponding weights. Notice in this case how the weight of a variable with high 
variance is low, while the weight of a variable with low variance is high, which is 
another way of thinking about the compensatory effect produced by standardi-
zation. The weights of the three variables in our example are (to 4 signifi cant 
fi gures) 0.004101, 0.2181 and 12.64 respectively, showing how much the depth 
variable is downweighted and the temperature variable upweighted: depth has 
over 3000 times the variance of temperature, so each squared difference in (4.8) 
is downweighted relatively by that much. We call (4.8) weighted Euclidean distance.

So far we have looked at the distances between samples based on continuous 
data, now we consider distances on count data, for example the abundance data 
for the fi ve species labelled a, b, c, d and e in Exhibit 1.1. First, notice that these 
fi ve variables apparently do not have the problem of different measurement units 
that we had for the continuous environmental variables – all variables are counts. 
There are, however, different average frequencies of counts, and as we mentioned 
in Chapter 3, variances of count variables can be positively related to their means. 
The means and variances of these fi ve variables are as follows:

a b c d e

mean 13.47 8.73 8.40 10.90 2.97

variance 157.67 83.44 73.62 44.44 15.69

Variable a with the highest mean also has the highest variance, while e with the 
lowest mean has the lowest variance. Only d is out of line with the others, having 
smaller variance than b and c but a higher mean. Because this variancemean 
relationship is a natural phenomenon for count variables, not one that is just par-
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Chi-square distance

ticular to any given example, some form of compensation of the variances needs 
to be performed, as before. It is not common for count data to be standardized as 
Z-scores (i.e., with mean 0, variance 1), as was the case for continuous variables in 
(4.6). The most common ways of balancing the contributions of count variables 
to the distance measure are:

  a power transformation: usually square root n1/2, where n is the count value, but 
also double square root (i.e., fourth root n1/4) when the variance increases 
faster than the mean (this situation is called overdispersion in the literature);

  a “shifted log” transformation: because of the many zeros in ecological count data, 
a positive number, usually 1, has to be added to the data before log-transforming; 
that is, log(1n);

  chi-square distance: this is a weighted Euclidean distance of the form (4.8), which 
we shall discuss now.

The chi-square distance is special because it is at the heart of correspond-
ence analysis, used extensively in ecological research. The fi rst premise of this 
distance function is that it is calculated on relative counts,1 and not on the 
original ones, and the second is that it standardizes by the mean and not by 
the variance.

In our example, the count data are fi rst converted into relative counts by dividing 
the rows by their row totals so that each row contains relative proportions across 
the species, which add up to 1. These sets of proportions are called profi les, site 
profi les in this example – see Exhibit 4.6.

The extra row at the end of Exhibit 4.6 gives the set of proportions called the 
average profi le. These are the proportions calculated on the set of column totals, 
which are equal to 404, 262, 252, 327 and 89 respectively, with grand total 1334. 
Hence, 404/13340.303, 262/13340.196, etc. Chi-square distances are then 
calculated between the profi les, in a weighted Euclidean fashion, using the in-
verse of the average proportions as weights. Suppose cj denotes the j -th element 
of the average profi le, that is the abundance proportion of the j -th species in 
the whole data set. Then the chi-square 2 distance, denoted by , between two sites 
with profi les xx1 x2 ··· xJ and yy1 y2 ··· yJ is defi ned as:

1 A defi nition of chi-square distance on raw counts is referred to in the bibliographical appendix.
2 From the defi nition of this distance function it would have been better to call it the chi distance function, 
because it is not squared, as in the chi-square statistic! But the “chi-square” epithet persists in the literature, so 
when we talk of its square we say the “squared chi-square distance”.
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Exhibit 4.6:
Profiles of the sites, 

obtained by dividing the 
rows of counts in Exhibit 

1.1 by their respective row 
totals. The last row is the 
average profile, computed 

in the same way, as 
proportions of the column 
totals of the original table 

of counts

 ∑
j

J

= 1
x y

j
j jc

x y, ( )21= −χ  (4.8)

Exhibit 4.7 shows part of the 3030 triangular matrix of chi-square distances. 
Once again, this is a large matrix with more numbers (435) than the original 
table of counts (150), and we shall see the benefi t of calculating these distances 

Site No. Species proportions

a b c d e

s1 0.000 0.074 0.333 0.519 0.074

s2 0.481 0.074 0.241 0.204 0.000

s3 0.000 0.370 0.333 0.296 0.000

s4 0.000 0.000 0.833 0.167 0.000

s5 0.342 0.132 0.079 0.263 0.184

s6 0.360 0.244 0.151 0.186 0.058

s7 0.321 0.214 0.000 0.393 0.071

s8 0.667 0.000 0.000 0.000 0.333

s9 0.315 0.130 0.185 0.259 0.111

s10 0.000 0.125 0.650 0.225 0.000

s11 0.000 0.276 0.276 0.207 0.241

s12 0.264 0.208 0.245 0.283 0.000

s13 0.000 0.000 0.760 0.000 0.240

s14 0.591 0.000 0.000 0.409 0.000

s15 0.154 0.000 0.385 0.462 0.000

s16 0.592 0.282 0.000 0.042 0.085

s17 1.000 0.000 0.000 0.000 0.000

s18 0.236 0.169 0.371 0.225 0.000

s19 0.053 0.132 0.316 0.421 0.079

s20 0.000 0.303 0.424 0.273 0.000

s21 0.444 0.000 0.000 0.222 0.333

s22 0.493 0.141 0.000 0.127 0.239

s23 0.146 0.171 0.024 0.415 0.244

s24 0.316 0.211 0.351 0.123 0.000

s25 0.395 0.321 0.000 0.284 0.000

s26 0.492 0.323 0.000 0.154 0.031

s27 0.333 0.236 0.000 0.347 0.083

s28 0.302 0.057 0.226 0.377 0.038

s29 0.423 0.000 0.269 0.308 0.000

s30 0.282 0.435 0.059 0.212 0.012

ave. 0.303 0.196 0.189 0.245 0.067
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Exhibit 4.7:
Chi-square distances 
between the 30 samples, 
based on the biological 
count data, showing part 
of the triangular distance 
matrix

Distances for categorical 
data

from Part 3 onwards. For the moment, think of Exhibit 4.5 as a way of measuring 
similarities and differences between the 30 samples based on the (continuous) 
environmental data, while Exhibit 4.7 is the similar idea but based on the count 
data. Notice that the scale of distances in Exhibit 4.5 is not comparable to that of 
Exhibit 4.7, but the ordering of the values does have some meaning: for example, 
in Exhibit 4.5 the smallest standardized Euclidean distance (amongst those that 
we report there) is 0.381, between sites s30 and s25. In Exhibit 4.7 these two 
sites have one of the smallest chi-square distances as well. This means that these 
two sites are relatively similar in their environmental variables and also in their 
biological compositions. This might be an interesting fi nding, but we will need 
to study all the pairwise distances, and not just this isolated one, in order to see if 
there is any connection between the biological abundances and the environmen-
tal variables (this will come later).

In our introductory example we have only one categorical variable (sediment), so 
the question of computing distance is fairly trivial: if two samples have the same 
sediment then their distance is 0, and if different then it is 1. But what if there 
were several categorical variables, say K of them? There are several possibilities, 
one of the simplest being to count how many matches and mismatches there are 
between samples, with optional averaging over variables. For example, suppose 
that there are fi ve categorical variables, C1 to C5, each with three categories, 
which we denote by a/b/c and that there are two samples with the following char-
acteristics:

s1 s2 s3 s4 s5 s6 · · · s24 s25 s26 s27 s28 s29

s2 1.139

s3 0.855 1.137

s4 1.392 1.630 1.446

s5 1.093 0.862 1.238 2.008  

s6 1.099 0.539 0.887 1.802 0.597

s7 1.046 0.845 1.081 2.130 0.573 0.555  

·
·
·

·
·
·

·
·
·

·
·
·

·
·
·

·
·
·

·
·
·

·
·
·

·
· ·

s25 1.312 0.817 1.057 2.185 0.858 0.495 · · · 0.917

s26 1.508 0.805 1.224 2.241 0.834 0.475 · · · 0.915 0.338

s27 1.100 0.837 1.078 2.136 0.520 0.489 · · · 0.983 0.412 0.562

s28 0.681 0.504 0.954 1.572 0.724 0.613 · · · 0.699 0.844 0.978 0.688

s29 0.951 0.296 1.145 1.535 0.905 0.708 · · · 0.662 0.956 1.021 0.897 0.340

s30 1.330 0.986 0.846 2.101 0.970 0.535 · · · 0.864 0.388 0.497 0.617 1.001 1.142
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C1 C2 C3 C4 C5

Sample 1 a c c b a 

Sample 2 b c b a a

Then the number of matches is 2 and the number of mismatches is 3, hence the 
distance between the two samples is 3 divided by 5 (the number of variables), that 
is 0.6. This is called the simple matching coeffi cient. Sometimes this coeffi cient is ex-
pressed in terms of similarity, not dissimilarity, in which case the similarity would 
be equal to 0.4, the relative number of matches – so one should check which 
way it is being defi ned. Here we stick to distances, in other words dissimilarities 
or mismatches. Note that this coeffi cient is directly proportional to the squared 
Euclidean distance calculated between these data in dummy variable form, where 
each category defi nes a zero-one variable:

C1a C1b C1c C2a C2b C2c C3a C3b C3c C4a C4b C4c C5a C5b C5c

Sample 1 1 0 0 0 0 1 0 0 1 0 1 0 1 0 0

Sample 2 0 1 0 0 0 1 0 1 0 1 0 0 1 0 0

The squared Euclidean distance sums the squared differences between these 
two vectors: if there is an agreement (there are two matches in this example) 
there is zero sum of squared differences, but if there is a discrepancy there are 
two differences, 1 and 1, which give a sum of squares of 2. So the sum of 
squared differences here is 6, and if this is expressed relative to the maximum 
discrepancy that can be achieved, namely 10 when there are no matches in the 
5 variables, then this gives exactly the same value 0.6 as before.

There are several variations on the theme of the matching coeffi cient, and one of 
them is the chi-square distance for multivariate categorical data, which introduces 
a weighting of each category inverse to its mean value, as for profi le data based 
on counts. Suppose that there are J categories in total (in the above example 
J15) and that the total occurrences of each category are denoted by n1,…,nJ , 
with total nj nj (since the totals for each variable equal the sample size, n will 
be the sample size times the number of variables). Then defi ne cj as follows: 
cjnj /n and use 1/cj as weights in a weighted Euclidean distance between the 
samples coded in dummy variable form. The idea here is, as before, that mis-
matches on a rare category should have a higher weight in the distance calcula-
tion than that of a frequent category. Just like the chi-square distance function 
is at the heart of correspondence analysis of abundance data, so this form of the 
chi-square for multivariate categorical data is at the heart of multiple correspondence 
analysis. We do not treat multiple correspondence analysis specifi cally in this book, 
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MEASURES OF DISTANCE BETWEEN SAMPLES: EUCLIDEAN 

SUMMARY:
Measures of distance 
between samples: 
Euclidean

as it is more common in the social sciences where almost all the data are categori-
cal, for example in survey research.

1.  Pythagoras’ theorem extends to sets of observations (called vectors) in multidi-
mensional space, for example sets of observations corresponding to a series of 
samples: the squared length of a vector is the sum of squares of its coordinates. 

2.  As a consequence, squared distances between two vectors (e.g., between two 
samples) in multidimensional space are the sum of squared differences in 
their coordinates. This multidimensional distance is called the Euclidean dis-
tance, and is the natural generalization of our three-dimensional notion of 
physical distance to more dimensions.

3.  When variables are on different measurement scales, standardization is neces-
sary to balance the contributions of the variables in the computation of dis-
tance. The Euclidean distance computed on standardized variables is called 
the standardized Euclidean distance.

4.  Standardization in the calculation of distances is equivalently thought of as 
weighting the variables – this leads to the notion of Euclidean distances with 
any choice of weights, called weighted Euclidean distance. 

5.  A particular weighted Euclidean distance applicable to count data is the chi-
square distance, which is calculated between the relative counts for each sample, 
called profi les, and weights each variable by the inverse of the variable’s overall 
mean count.
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