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The axioms of distance

Chapter 

Measures of Distance between Samples: 
Non-Euclidean

Euclidean distances are special because they conform to our physical concept of 
distance. But there are many other distance measures which can be defi ned be-
tween multivariate samples. These non-Euclidean distances are of different types: 
some still satisfy the basic axioms of what mathematicians call a distance metric, 
while others are not even true metrics but still make good sense as a measure 
of difference between samples in the context of certain data. In this chapter we 
shall consider several non-Euclidean distance measures that are popular in the 
environmental sciences: the Bray-Curtis dissimilarity, the L1 distance (also called 
the city-block or Manhattan distance) and the Jaccard index for presence-absence 
data. We also consider how to measure dissimilarity between samples for which 
we have mixed-scale data.
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In mathematics, a true measure of distance, also called a metric, obeys three prop-
erties. These metric axioms are as follows (Exhibit 5.1), where dab denotes the 
distance between objects a and b:

 1. dabdba

 2. dab0    and0 if and only if ab (5.1)

 3. dabdacdca

5
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Exhibit 5.1:
Illustration of the triangle 
inequality for distances in 

Euclidean space

Bray-Curtis dissimilarity

The fi rst two axioms seem self-evident: the fi rst says that the distance from a to b is 
the same as from b to a, in other words the measure is symmetric; the second says 
that distances are always positive except when the objects are identical, in which 
case the distance is necessarily 0. The third axiom, called the triangle inequality, 
may also seem intuitively obvious but is the more diffi cult one to satisfy. If we draw 
a triangle abc in our Euclidean world, for example in Exhibit 5.1, then it is obvi-
ous that the distance from a to b must be shorter than the sum of the distances 
via another point c, that is from a to c and from c to b. The triangle inequality can 
only be an equality if c lies exactly on the line connecting a and b (see the right 
hand sketch in Exhibit 5.1).

But there are many apparently acceptable measures of distance that do not satisfy 
this property: with those it would be theoretically possible to get a “route” from a 
to b via a third point c which is shorter than from a to b “directly”. Because such 
measures that do not satisfy the triangle inequality are not true distances (in the 
mathematical sense) they are usually called dissimilarities. 

When it comes to species abundance data collected at different sampling loca-
tions, the Bray-Curtis (or Sørensen) dissimilarity is one of the most well-known ways 
of quantifying the difference between samples. This measure appears to be a very 
reasonable way of achieving this goal but it does not satisfy the triangle inequality 
axiom, and hence is not a true distance (we shall discuss the implications of this 
in later chapters when we analyse Bray-Curtis dissimilarities). To illustrate its defi -
nition, we consider again the count data for the last two samples of Exhibit 1.1, 
which we recall here:

a b c d e Sum

s29 11  0 7  8 0 26

s30 24 37 5 18 1 85

a

b

c

a

b

c

dab < dac + dcb dab = dac + dcb
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One of the assumptions of the Bray-Curtis measure is that the sampled areas 
or volumes are of the same size. This is because dissimilarity will be computed 
on raw counts, not on relative counts, so the fact that there is higher overall 
abundance at site s30 is part of the difference between these two samples – that 
is, “size” and “shape” of the count vectors will be taken into account in the 
measure.1

The computation involves summing the absolute differences between the 
counts and dividing this by the sum of the abundances in the two samples, de-
noted here by b:

 = =s29, s30 0.568  b =− + − + − + − + −
+

11 24 0 37 7 5 8 18 0 1

26 85
63
111

The general formula for calculating the Bray-Curtis dissimilarity between samples 
i and i is as follows, supposing that the counts are denoted by ni j and that their 
sample (row) totals are ni :

 
∑
j

J

= 1
iib

n n

n n

ij i j

i i
′ =

−

+

′

+ ′+

 (5.2)

This measure takes on values between 0 (for identical samples: ni jnij for all j) 
and 1 (samples completely disjoint; that is, when there is a nonzero abundance of 
a species in one sample, then it is zero in the other: ni j > 0 implies nij0) – hence 
it is often multiplied by 100 and interpreted as a percentage. Exhibit 5.2 shows 
part of the Bray-Curtis dissimilarities between the 30 samples (the caption points 
out a violation of the triangle inequality).

If the Bray-Curtis dissimilarity is subtracted from 100, a measure of similar-
ity is obtained, called the Bray-Curtis index. For example, the similarity between 
sites s25 and s4 is 10093.96.1%, which is the lowest amongst the values 
displayed in Exhibit 5.2; whereas the highest similarity is for sites s25 and s26: 
10013.786.3%. Checking back to the data in Exhibit 1.1 one can verify the 
similarity between sites s25 and s26, compared to the lack of similarity between 
s25 and s4.

1 In fact, the Bray-Curtis dissimilarity can be computed on relative abundances, as we did for the chi-square 
distance, to take into account only “shape” differences – this point is discussed later. This version is often 
referred to as the relative Sørensen dissimilarity.
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Exhibit 5.2:
Bray-Curtis dissimilarities, 

multiplied by 100, between 
the 30 samples of Exhibit 

1.1, based on the count 
data for species a to e. 
Violations of the triangle 
inequality can be easily 
picked out: for example, 

from s25 to s4 the Bray-
Curtis is 93.9, but the sum 

of the values “via s6” from 
s25 to s6 and from s6 to 
s4 is 18.669.287.8, 

which is shorter

Bray-Curtis dissimilarity 
versus chi-square 

distance

An ecologist would like some recommendation about whether to use Bray-
Curtis or chi-square on a particular data set. It is not possible to make any 
absolute statement of which is preferable, but we can point out some ad-
vantages and disadvantages of each one. The advantage of the chi-square 
distance is that it is a true metric, while the Bray-Curtis dissimilarity violates 
the triangle inequality, which can be problematic when we come to analysing 
them later. The advantage of Bray-Curtis is that the scale is easy to under-
stand: 0 means the samples are exactly the same, while 100 is the maximum 
difference that can be observed between two samples. The chi-square, on the 
other hand, has a maximum which depends on the marginal weights of the 
data set, and it is difficult to assign any substantive meaning to any particular 
value. If two samples have the same relative abundances, but different totals, 
then Bray-Curtis is positive, whereas chi-square is zero. As pointed out in a 
previous footnote in this chapter, Bray-Curtis dissimilarities can be calcu-
lated on the relative abundances (although conventionally the calculation 
is on raw counts), and in addition we could calculate chi-square distances 
on the raw counts, without “relativizing” them (although conventionally the 
calculation is on relative counts). This would make the comparison between 
the two approaches fairer.

So we also calculated Bray-Curtis on the relative counts and chi-square 
on the raw counts – Exhibit 5.3 shows parts of the four distance matrices, 
where the values in each triangular matrix have been strung out column-

s1 s2 s3 s4 s5 s6 · · · s24 s25 s26 s27 s28 s29

s2 45.7  

s3 29.6 48.1  

s4 46.7 55.6 46.7  

s5 47.7 34.8 50.8 78.6  

s6 52.2 22.9 52.2 69.2 41.9  

s7 45.5 41.5 49.1 87.0 21.2 50.9  

·
·
·

·
·
·

·
·
·

·
·
·

·
·
·

·
·
·

·
·
·

·
·
·

·
· ·

s25 70.4 39.3 66.7 93.9 52.9 18.6 · · · 46.4  

s26 69.6 32.8 60.9 92.8 41.7 15.2 · · · 39.3 13.7  

s27 63.6 38.1 63.6 93.3 38.2 21.5 · · · 42.6 16.3 22.6  

s28 32.5 21.5 50.0 57.7 31.9 29.5 · · · 30.9 41.8 47.5 34.4  

s29 43.4 35.0 43.4 54.5 31.2 53.6 · · · 39.8 64.5 58.2 61.2 34.2  

s30 60.7 36.7 58.9 84.5 48.0 21.6 · · · 40.8 18.1 25.3 23.6 37.7 56.8
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Exhibit 5.3:
Various dissimilarities and 
distances between pairs 
of sites (count data from 
Exhibit 1.1). B-C raw: 
Bray Curtis dissimilarities 
on raw counts (usual 
definition and usage), 
chi2 raw: chi-square 
distances on raw counts, 
B-C rel: Bray-Curtis 
dissimilarities on relative 
counts, chi2 rel: 
chi-square distances on 
relative counts (usual 
definition and usage)

wise (the column “site pair” shows which pair corresponds to the values in 
the rows).

The scatterplots of the two comparable sets of measures are shown in Ex-
hibit 5.4. Two features of these plots are immediately apparent: first, there is 
much better agreement between the two approaches when the counts have 
been relativized (plot (b)); and second, one can obtain 100% dissimilarity 
for the Bray-Curtis corresponding to different values of the chi-square dis-
tances: for example, in Exhibit 5.4(a) there are chi-square distances from 
approximately 5 to 16 corresponding to points above the tic-mark of 100 on 
the axis B-C raw. 

Site pair B-C raw chi2 raw B-C rel chi2 rel

(s2,s1)  45.679  7.398  48.148 1.139

(s3,s1)  29.630  3.461  29.630 0.855

(s4,s1)  46.667  4.146  50.000 1.392

(s5,s1)  47.692  5.269  50.975 1.093

(s6,s1)  52.212 10.863  53.058 1.099

(s7,s1)  45.455  4.280  46.164 1.046

(s8,s1)  93.333  5.359  92.593 2.046

(s9,s1)  33.333  5.462  40.741 0.868

(s10,s1)  40.299  6.251  36.759 0.989

(s11,s1)  35.714  4.306  36.909 1.020

(s12,s1)  37.500  5.213  39.762 0.819

(s13,s1)  57.692  5.978  59.259 1.581

(s14,s1)  63.265  5.128  59.091 1.378

(s15,s1)  20.755  1.866  20.513 0.464

(s16,s1)  85.714 13.937  80.960 1.700

(s17,s1) 100.000  5.533 100.000 2.258

(s18,s1)  56.897 11.195  36.787 0.819

(s19,s1)  16.923  1.762  11.501 0.258

(s20,s1)  33.333  3.734  31.987 0.800

·
·
·

 ·
 ·
 ·

 ·
 ·
 ·

 ·
 ·
 ·

·
·
·

(s23,s22)  34.400  7.213  25.655 0.688

(s24,s22)  61.224  9.493  35.897 0.897

(s25,s22)  23.567  7.855  25.801 0.617

s(24,s23)  34.177  4.519  16.401 0.340

s(25,s23)  37.681 11.986  37.869 1.001

(s25,s24)  56.757 13.390  44.706 1.142
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Exhibit 5.4:
Graphical comparison of 

Bray-Curtis dissimilarities 
and chi-square distances for 

(a) raw counts, taking into 
account size and shape, and 

(b) relative counts, taking 
into account shape only
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L1 distance (city-block)

This means that the measurement of shape is fairly similar in both measures, but 
the way they take size into account is quite different. A good illustration of this 
second feature is the measure between samples s1 and s17, which have counts as 
follows (taken from Exhibit 1.1): 

a b c d e Sum

s1 0 2 9 14 2 27

s17 4 0 0 0 0 4

The Bray-Curtis dissimilarity is 100% because the two sets of counts are disjoint, 
whereas the chi-square distance is a fairly low 5.533 (see row (s17, s1) of Exhib-
it 5.3). This is because the absolute differences between the two sets are not large. 
If they were larger, say if we doubled both sets of counts, then the chi-square dis-
tance would increase accordingly whereas the Bray-Curtis would remain at 100%. 
It is by considering examples like these that researchers can obtain a feeling for 
the properties of these measures, in order to be able to choose the measure that 
is most appropriate for their own data. 

When the Bray-Curtis dissimilarity is applied to relative counts, that is, row pro-
portions ri jni j / ni , the row sums ri  in the denominator of (5.2) are 1 for every 
row, so that the dissimilarity reduces to:

 ∑
j

J

= 1
ij i jbii r r ′−=′

1
2

 (5.3)

The sum of absolute differences between two vectors is called the L1 dis-
tance, or city-block distance. This is a true distance function since it obeys 
the triangle inequality, and as can be seen in Exhibit 5.4(b), agrees fairly 
well with the chi-square distance for the data under consideration. The 
reason why it is called the city-block distance, and also Manhattan distance or 
“taxicab” distance, can be seen in the two-dimensional illustration of Exhibit 
5.5. Going from a point A to a point B is achieved by walking “around the 
block”, compared to the Euclidean “straight line” distance. The city-block 
and Euclidean distances are special cases of the Lp distance, defined here 
between rows of a data matrix X (the Euclidean distance is obtained for 
p2):

 ∑
j

J

= 1

dii ijx′ ( ) = − xxi j

p
p

′
⎛
⎝⎜

⎞
⎠⎟

1/

p  (5.4)
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Exhibit 5.5:
Two-dimensional illustration 

of the L1 (city-block) and 
L2 (Euclidean) distances 

between two points i and i': 
the L1 distance is the sum 

of the absolute differences 
in the coordinates, while the 

L2 distance is the square 
root of the sum of squared 

differences

Dissimilarity measures 
for presence−absence 

data

In Chapter 4 we considered the matching coeffi cient and the chi-square distance 
for categorical data in general, but there is a special case which is often of inter-
est to ecologists: presenceabsence, or dichotomous, data. When categorical 
variables have only two categories, there are a host of coeffi cients defi ned to 
measure inter-sample difference (see Bibliographical Appendix for references to 
this topic). Here we consider one example which is an alternative to the match-
ing coeffi cient.

Exhibit 5.6 gives some data that we shall use again (in Chapter 7), concern-
ing the presenceabsence of 10 species in 7 samples. The inter-sample dif-
ferences based on the matching coefficient would be obtained either by 
counting the matches or mismatches between the two samples. For example, 
between samples A and B there are 6 matches and 4 mismatches. Usually 
expressed relative to the number of variables (species) this would give a 
similarity value of 0.6 and a dissimilarity value of 0.4. But often in ecology 
it is possible to have very many species in the data set, up to 100 or more, 
and in each sample we find relatively few of these present. This makes the 
number of co-absences of species very high compared to the co-presences, 
but both count as matches. If co-absences are not informative, we can simply 
ignore them and calculate similarity in terms of co-presences. Furthermore, 
this co-presence count is expressed not relative to the total number of spe-
cies but relative to the number of species present in at least one of the two 

Axis 1

Axis 2

xi2

|xi2 – xi' 2|

xi' 2

|xi1 – xi' 1|

xi' 1xi1

i  [ xi1  xi2 ]

i'  [ xi' 1  xi' 2 ]

L1 : dii' (1) =  |xi1 – xi' 1| + |xi2 – xi' 2| 

L2 : dii' (2) =  (|xi1 – xi' 1|
2 + |xi2 – xi' 2|

2
 )½
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Exhibit 5.6:
Presence−absence data of 
10 species in 7 samples

samples under consideration. This is the definition of the Jaccard index for 
dichotomous data. Taking samples A and B of Exhibit 5.6 again, the number 
of co-presences is 4, we ignore the 2 co-absences, then we express 4 relative to 
8, so the result is 0.5. In effect, the Jaccard index is the matching coefficient 
of similarity calculated for a pair of samples after eliminating all the species 
which are co-absent. The dissimilarity between two samples is – as before – 1 
minus the similarity. 

Here’s another example, for samples C and D. This pair has 4 co-absences (for spe-
cies 1, 7, 9 and 10), so we eliminate them. To get the dissimilarity we can count the 
mismatches – in fact, all the rest are mismatches – so the dissimilarity is 6/61, 
the maximum that can be attained. Using the Jaccard approach we would say that 
samples C and D are completely different, whereas the matching coeffi cient would 
lead to a dissimilarity of 0.6 because of the 4 matched co-absences.

To formalize these defi nitions, the counts of matches and mismatches in a pair of 
samples are put into a 22 table as follows:

Sample 2

1 0

Sample 1
1 a b a + b

0 c d c + d

a + c b + d a + b + c + d

where a is the count of co-presences (1 and 1), b the count of mismatches where 
sample 1 has value 1 but sample 2 has value 0, and so on. The overall number of 

Samples Species

sp1 sp2 sp3 sp4 sp5 sp6 sp7 sp8 sp9 sp10

A 1 1 1 0 1 0 0 1 1 1

B 1 1 0 1 1 0 0 0 0 1

C 0 1 1 0 1 0 0 1 0 0

D 0 0 0 1 0 1 0 0 0 0

E 1 1 1 0 1 0 1 1 1 0

F 0 1 0 1 1 0 0 0 0 1

G 0 1 1 0 1 1 0 1 1 0
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Distances for mixed-
scale data

matches is ad, and mismatches bc. The two measures of distance/dissimilar-
ity considered so far are thus defi ned as:

 Matching coeffi cient dissimilarity: b c
a b c d

a d
a b c d

= −+
+ + +

+
+ + +

1  (5.5)

 Jaccard index dissimilarity: b c
a b c

a
a

= −+
+ +

1
+ +b c

 (5.6)

To give one fi nal example, the correlation coeffi cient can be used to measure 
the similarity between two vectors of dichotomous data, and can be shown to 
be equal to:

 = −
+ + + +

r
ad bc

a b c d a c b d( )( )( )( )
 (5.7)

Hence, a dissimilarity can be defi ned as 1r. Since 1r has a range from 0 
(when bc0, no mismatches) to 2 (when ad0, no matches), a convenient 
measure between 0 and 1 is ½ (1r).

When a data set contains different types of variables and it is required to measure 
inter-sample distance, we are faced with another problem of standardization: how 
can we balance the contributions of these different types of variables in an equi-
table way? We will demonstrate two alternative ways of doing this. The following 
is an example of mixed data (shown here are the data for four stations out of a 
set of 33:

Station Continuous variables Discrete variables

Depth Temperature Salinity Region Substrate

s3 30 3.15 33.52 Ta Si/St

s8 29 3.15 33.52 Ta Cl/Gr

s25 30 3.00 33.45 Sk Cl/Sa

·
·
·

·
·
·

·
·
·

·
·
·

·
·
·

·
·
·

s84 66 3.22 33.48 St Cl

Apart from the three continuous variables, depth, temperature and salinity there 
are the categorical variables of region (Tarehola, Skognes, Njosken and Storura), 
and substrate character (which can be any selection of clay, silt, sand, gravel and 
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stone). The fact that more than one substrate category can be selected implies 
that each category is a separate dichotomous variable, so that substrate consists 
of fi ve different variables.

The fi rst way of standardizing the continuous against the discrete variables is 
called Gower’s generalized coeffi cient of dissimilarity. First we express the discrete vari-
ables as dummies and calculate the means and standard deviations of all variables 
in the usual way:

Station Continuous variables Sampled region Substrate character

Depth Temperature Salinity Tarehola Skognes Njosken Storura Clay Silt Sand Gravel Stone

s3 30 3.15 33.52 1 0 0 0 0 1 0 0 1

s8 29 3.15 33.52 1 0 0 0 1 0 0 1 0

s25 30 3.00 33.45 0 1 0 0 1 0 1 0 0

·
·
·

·
·
·

·
·
·

·
·
·

·
·
·

·
·
·

·
·
·

·
·
·

·
·
·

·
·
·

·
·
·

·
·
·

·
·
·

s84 66 3.22 33.48 0 0 0 1 1 0 0 0 0

mean 58.15 3.086 33.50 0.242 0.273 0.242 0.242 0.606 0.152 0.364 0.182 0.061

sd 32.45 0.100 0.076 0.435 0.452 0.435 0.435 0.496 0.364 0.489 0.392 0.242

Notice that dichotomous variables (such as the substrate categories) are coded 
as a single dummy variable, not two, while polychotomous variables such as re-
gion are split into as many dummies as there are categories. The next step is to 
standardize each variable and multiply all the columns corresponding to dummy 
variables by /1 2 0.7071, a factor which compensates for their higher variance 
due to the 0/1 coding:

Station Continuous variables Sampled region Substrate character

Depth Temperature Salinity Tarehola Skognes Njosken Storura Clay Silt Sand Gravel Stone

s3 –0.868  0.615  0.260  1.231 –0.426 –0.394 –0.394 –0.864  1.648 –0.526 –0.328  2.741

s8 –0.898  0.615  0.260  1.231 –0.426 –0.394 –0.394  0.561 –0.294 –0.526  1.477 –0.177

s25 –0.868 –0.854 –0.676 –0.394  1.137 –0.394 –0.394  0.561 –0.294  0.921 –0.328 –0.177

·
·
·

·
·
·

·
·
·

·
·
·

·
·
·

·
·
·

·
·
·

·
·
·

·
·
·

·
·
·

·
·
·

·
·
·

·
·
·

s84  0.242  1.294 –0.294 –0.394 –0.426 –0.394  1.231  0.561 –0.294 –0.526 –0.328 –0.177

Now distances are calculated between the stations using either the L1 (city-block) 
or L2 (Euclidean) metric. For example, using the L1 metric and dividing the sum 
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Exhibit 5.7:
Distances between four 

stations based on the L1 
distance between their 

standardized and rescaled 
values, as described above. 

The distances are shown 
equal to the part due to 
the categorical (CAT.) 
variables plus the part 
due to the continuous 

(CONT.) variables

of absolute differences by the total number of variables (12 in this example), 
the distances between the above four stations are given in the left hand table of 
Exhibit 5.7. Because the L1 distance decomposes into parts for each variable, we 
can show the part of the distance due to the categorical variables, and the part 
due to the continuous variables. In this example the categorical variables are 
contributing more to the differences between the stations – the differences in 
the continuous variables are actually small if one looks at the original data, ex-
cept for the distance between s84 and s25, where there is a bigger difference in 
the continuous variables, which then contribute almost the same (0.303) as the 
categorical ones (0.386). 

Exhibit 5.7 suggests the alternative way of combining different types of variables: fi rst 
compute the distances which are the most appropriate for each set and then add 
them to one another. For example, suppose there are three types of data, a set of 
continuous variables, a set of categorical variables and a set of percentages or counts. 
Then compute the distance or dissimilarity matrices D1, D2 and D3 appropriate to 
each set of same-scale variables, and then combine these in a weighted average:

 + +
+ +

= w w w
w w w

1 1 2 2 3 3

1 2

D D D D

33

 (5.8)

Weights are a subjective but convenient inclusion, not only to account for the dif-
ferent scales in the distance matrices but also because there might be substantive 
reasons for down-weighting the distances for one set of variables, which might 
not be so important, or might suffer from high measurement error, for example. 
A default weighting system could be to make the variance of the distances the 
same in each matrix: wk1/sk, where sk is the standard deviation of the distances 
in matrix Dk. 

A third possible way to cope with mixed-scale data such as these would be to fuzzy-
code the continuous variables, as described in Chapter 3, and then apply a meas-

Total distance = Distance CAT. variables + Distance CONT. variables

s3 s8 · · · s25 s3 s8 · · · s25 s3 s8 · · · s25

s8 0.677  s8 0.674  s8 0.003  

s25 1.110 0.740 s25 0.910 0.537 s25 0.200 0.203
·
·
·

·
·
·

·
·
·

·
·
·

·
· ·

=
·
·
·

·
·
·

·
·
·

·
·
·

·
· ·

+
·
·
·

·
·
·

·
·
·

·
·
·

·
· ·

s84 0.990 0.619 · · · 0.689 s84 0.795 0.421 · · · 0.386 s84 0.195 0.198 · · · 0.303
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MEASURES OF DISTANCE BETWEEN SAMPLES: NON-EUCLIDEAN 

SUMMARY:
Measures of distance 
between samples: non-
Euclidean

ure of dissimilarity appropriate to categorical data, with possible standardization 
as also discussed in Chapter 3. We shall make full use of this option in subsequent 
chapters and the two fi nal case studies.

1.  The sum of absolute differences, or L1 distance (or city-block distance), is an 
alternative to the Euclidean distance: an advantage of this distance is that it 
decomposes into contributions made by each variable (for the L2 Euclidean 
distance, we would need to decompose the squared distance).

2.  A well-defi ned distance function obeys the triangle inequality, but there are 
several justifi able measures of difference between samples that do not have 
this property: to distinguish these from true distances we often refer to them 
as dissimilarities. 

3.  The Bray-Curtis dissimilarity is frequently used by ecologists to quantify dif-
ferences between samples based on abundance or count data. This measure 
is usually applied to raw abundance data, but can be applied to relative abun-
dances just like the chi-square distance, in which case it is equivalent to the L1, 
or city-block, distance. The chi-square distance can also be applied to the origi-
nal abundances to include overall size differences in the distance measure.

4.  A dissimilarity measure for presenceabsence data is based on the Jaccard 
index, where co-absences are eliminated from the calculation, otherwise the 
measure resembles the matching coeffi cient.

5.  Distances based on mixed-scale data can be computed after a process of stand-
ardization of all variables, using the L1 or L2 distances. Alternatively, distance 
matrices can be calculated for each set of same-scale variables and then these 
matrices can be linearly combined, optionally with user-defi ned weights. 
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