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The geometry 
of variables

Chapter 

Measures of Distance and Correlation
between Variables

In Chapters 4 and 5 we concentrated on distances between samples of a data 
matrix, which are usually the rows. We now turn our attention to the variables, 
usually the columns, and we can consider measures of distance and dissimilarity 
between these column vectors. More often, however, we measure the similarity 
between variables: this can be in the form of correlation coeffi cients or other 
measures of association. In this chapter we shall look at the geometric properties 
of variables, and various measures of correlation between them. In particular, 
we shall look at the geometric concept called a scalar product, which is highly 
related to the concept of Euclidean distance. The decision about which type of 
correlation function to use depends on the measurement scales of the variables, 
as we already saw briefl y in Chapter 1. Finally, we also consider statistical tests of 
correlation, introducing the idea of permutation testing.
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In Exhibits 4.3 and 5.5 in the previous chapters we have been encouraging the 
notion of samples being points in a multidimensional space. Even though we can-
not draw points in more than three dimensions, we can easily extend the math-
ematical defi nitions of distance to samples for which we have J measurements, 
for any J. Now, rather than considering the samples, the rows of the data matrix, 
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Exhibit 6.1:
(a) Two variables measured 

in three samples (sites in 
this case), viewed in three 
dimensions, using original 

scales; (b) Standardized 
values; (c) Same variables 

plotted in three dimensions 
using standardized values. 
Projections of some points 

onto the “floor” of the 
s2s3 plane are shown, 

to assist in understanding 
the three-dimensional 
positions of the points
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Correlation coefficient as 
an angle cosine

Exhibit 6.2:
Triangle of pollution and 
depth vectors with respect 
to origin (O) taken out of 
Exhibit 6.1(c) and laid flat

Correlation coefficient as 
a scalar product

we turn our attention to the variables (the columns of the data matrix) and their 
sets of observed values across the I samples. To be able to visualize two variables 
in I-dimensional space, we choose I3, since more than 3 is impossible to display 
or imagine. Exhibit 6.1(a) shows the variables depth and pollution according to 
the fi rst three samples in Exhibit 1.1, with depth having values (i.e. coordinates) 
72 75 59 and pollution 4.8 2.8 5.4. Notice that it is the samples that now 
form the axes of the space. The much lower values for pollution compared to 
those for depth causes the distance between the variables to be dominated by this 
scale effect. Standardizing overcomes this effect – Exhibit 6.1(b) shows standard-
ized values with respect to the mean and standard deviation of this sample of 
size 3 (hence the values here do not coincide with the standardized values in the 
complete data set, given in Exhibit 4.4). Exhibit 6.1(c) shows the two variables 
plotted according to these standardized values.

Exhibit 6.2 now shows the triangle formed by the two vectors in Exhibit 6.1(c) 
and the origin O, taken out of the three-dimensional space, and laid fl at. From 
the coordinates of the points we can easily calculate the lengths of the three sides 
a, b and c of the triangle (where the sides a and b subtend the angle  shown), so 
by using the cosine rule (c2a2b22abcos( )), which we all learned at school) 
we can calculate the cosine of the angle  between the vectors, which turns out to be 
0.798, exactly the correlation between pollution and depth (the angle is 142.9º). 
Notice that this is the correlation calculated in this illustrative sample of size 3, not 
in the original sample of size 30, where the estimated correlation is 0.396.

Hence we have illustrated the result that the cosine of the angle between two 
standardized variables, plotted as vectors in the space of dimensionality I, the 
number of samples, is their correlation coeffi cient. 

But there is yet another way of interpreting the correlation coeffi cient geo-
metrically. First we have to convert the standardized pollution and depth values 
to so-called unit variables. At present they are standardized to have variance 1, 
but a unit variable has sum of squares equal to 1 – in other words, its length is 
1. Since the variance of I centred values is defi ned as 1/(I1) times their sum 
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Exhibit 6.3:
Same triangle as in Exhibit 

6.2, but with variables having 
unit length (i.e., unit variables. 

The projection of either 
variable onto the direction 

defined by the other variable 
vector will give the value of 

the correlation, cos(). (The 
origin O is the zero point 

– see Exhibit 6.1(c) – and 
the scale is given by the unit 

length of the variables.)

of squares, it follows that the sum of squares equals (I1) times the variance. 
By dividing the standardized values of pollution and depth in Exhibit 6.1(b) by 

I 1− , equal to 2 in this example, the standardized variables are converted to 
unit variables:

Site Depth Pollution

s1  0.277  0.242

s2  0.527 −0.796

s3 −0.804  0.554

it can be checked that 0.27720.5272(0.804)20.2422(0.796)20.55421
The correlation coeffi cient then has the alternative defi nition as the sum of the 
products of the elements of the unit variables:

(0.2420.277)(0.7960.527)(0.554(0.804))0.798

i.e., the scalar product:

 ∑r x xjj ij ij
i

I

1

=′ ′
=

 (6.1)

where xij are the values of the unit variables.

The concept of a scalar product underlies many multivariate techniques which 
we shall introduce later. It is closely related to the operation of projection, which is 
crucial later when we project points in high-dimensional spaces onto lower-
dimensional ones. As an illustration of this, consider Exhibit 6.3, which is the 
same as Exhibit 6.2 except that the sides a and b of the triangle are now shortened 

1 1
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Distances based on 
correlation coefficients

to length 1 as unit variables (the subtended angle is still the same). The projec-
tion of either variable onto the axis defi ned by the other one gives the exact value 
of the correlation coeffi cient.

When variables are plotted in their unit form as in Exhibit 6.3, the squared 
distance between the variable points is computed (again using the cosine rule) 
as 112 cos()22r, where r is the correlation. In general, therefore, a 
distance djj between variables j and j can be defi ned in terms of their correlation 
coeffi cient rjj as follows:

 d r rjj jj jj2 2 2 1= − = −′ ′ ′  (6.2)

where djj has a minimum of 0 when r1 (i.e., the two variables coincide), a 
maximum of 2 when r1 (i.e., the variables go in exact opposite directions), 
anddjj 2=′ when r0 (i.e., the two variables are uncorrelated and are at right-
angles to each other). For example, the distance between pollution and depth in 
Exhibit 6.3 is 2 1 0− −( .7798 1 896) .= . 

An inter-variable distance can also be defi ned in the same way for other types 
of correlation coeffi cients and measures of association that lie between 1 and 
1, for example the (Spearman) rank correlation. This so-called nonparametric 
measure of correlation is the regular correlation coeffi cient applied to the ranks 
of the data. In the sample of size 3 in Exhibit 6.1(a) pollution and depth have 
the following ranks: 

Site Depth Pollution

s1 2 2

s2 3 1

s3 1 3

where, for example in the pollution column, the value 2.8 for site 2 is the 
lowest value, hence rank 1, then 4.8 is the next lowest value, hence rank 2, 
and 5.4 is the highest value, hence rank 3. The correlation between these two 
vectors is 1, since the ranks are indeed direct opposites – therefore, the dis-
tance between them based on the rank correlation is equal to 2, the maximum 
distance possible. Exhibit 6.4 shows the usual linear correlation coeffi cient, 
the Spearman rank correlation, and their associated distances, for the three 
variables based on their complete set of 30 sample values. This example con-
fi rms empirically that the results are more or less the same using ranks instead 
of the original values: that is, most of the correlation is in the ordering of the 
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Exhibit 6.4:
Correlations and associated 
distances between the three 

continuous variables of 
Exhibit 1.1: first the regular 

correlation coefficient on 
the continuous data, and 

second the rank correlation

Distances between count 
variables

Distances between 
categorical variables and 

between categories

values rather than their actual numerical amounts. The rank correlation is also 
more robust, which means that it is less affected by unusual or extreme values 
in the data.

When it comes to the count data of Exhibit 1.1, the various distance measures 
considered in Chapter 5 can be used to measure distances between species. It 
makes little sense, however, to apply the chi-square distance or the Bray-Curtis 
dissimilarity to the raw data – these should be expressed as proportions, (i.e., 
relativized) with respect to their column sums. The two measures then turn 
out as in Exhibit 6.5, where the scatterplot shows them to be very similar, apart 
from their different scales, of course. The scatterplot is shown using the same 
horizontal and vertical scales as in Exhibit 5.4(b) in order to demonstrate that 
the spread of the distances between the columns is less than the corresponding 
spread between the rows.

Measures of distance between samples based on a set of dichotomous vari-
ables were defined on the basis of a 22 table of counts of matches and 
mismatches, and this same idea can be applied to the dichotomous variables 
based on their values across the samples: for example, the number of samples 
for which both variables were “present”, and so on. Then the various meas-
ures of dissimilarity (5.5), (5.6) and (5.7) apply, in particular the one based 
on the correlation coefficient r. But after (5.7) we proposed that 1r would 
make a reasonable measure of dissimilarity (or ½(1r) to give it a range of 
0 to 1). Now, based on our study of the geometry of variables in this chapter, 
a better choice would be 2 1 − r (or 1 2− r if again one prefers a value 
between 0 and 1), because this is a Euclidean distance and is therefore a true 
metric, whereas the previous definition turns out to be a squared Euclidean 
distance.

Correlation Depth Pollution Temperature Distance Depth Pollution Temperature

Depth  1 −0.3955 −0.0034 Depth 0 1.6706 1.4166

Pollution −0.3955  1 −0.0921 Pollution 1.6706 0 1.4779

Temperature −0.0034 −0.0921   1 Temperature 1.4166 1.4779 0

Rank 
correlation Depth Pollution Temperature Distance Depth Pollution Temperature

Depth  1 −0.4233 −0.0051 Depth 0 1.6872 1.4178

Pollution −0.4233  1 −0.0525 Pollution 1.6872 0 1.4509

Temperature −0.0051 −0.0525   1 Temperature 1.4178 1.4509 0
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Exhibit 6.5:
Chi-square distances and 
Bray-Curtis dissimilarities 
between the five species 
variables, in both cases 
based on their proportions 
across the samples 
(i.e., removing the effect 
of different levels of 
abundances for each 
species). The two sets of 
values are compared in the 
scatterplot

For categorical variables with more than two categories, there are two types of 
distances in question: distances between variables, and distances between cate-
gories of variables, both not easy to deal with. At the level of the variable, we can 
defi ne a measure of similarity, or association, and there are quite a few different 
ways to do this. The easiest way is to use a variation on the chi-square statistic 
computed on the cross-tabulation of the pair of variables. In our introductory 
data of Exhibit 1.1 there is only one categorical variable, but let us categorize 
depth into three categories: low, medium and high depth, by simply cutting up 
the range of depth into three parts, so there are 10 sites in each category – this 
is the crisp coding of a continuous variable described in Chapter 3. The cross-
tabulation of depth and sediment is then given in Exhibit 6.6 (notice that the 
counts of the depth categories are not exactly 10 each, because of some tied 
values in the depth data).

chi2 a b c d B-C a b c d

b 0.802  b 28.6  

c 1.522 1.407  c 60.9 56.4  

d 0.870 0.828 1.157 d 32.9 33.5 41.4

e 1.406 1.550 1.855 1.430 e 53.3 57.6 70.4 55.6
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Exhibit 6.6:
Cross-tabulation of depth, 

categorized into three 
categories, and sediment 

type, for the data of 
Exhibit 1.1

Distances between 
categories

The chi-square statistic for this table equals 15.58, but this depends on the sample 
size, so an alternative measure divides the chi-square statistic by the sample size, 
30 in this case, to obtain the so-called mean-square contingency coeffi cient, denoted by 
215.58/300.519. We will rediscover 2 in later chapters, since it is identical 
to what is called the inertia in correspondence analysis, which measures the total 
variance of a data matrix.

Now 2 measures how similar the variables are, but we need to invert this meas-
ure somehow to get a measure of dissimilarity. The maximum value of 2 turns 
out to be one less than the number of rows or columns of the cross-tabulation, 
whichever is the smaller: in this case there are 3 rows and 3 columns, so one less 
than the minimum is 2. You can verify that if a 33 cross-tabulation has only one 
nonzero count in each row (likewise in each column), that is there is perfect asso-
ciation between the two variables, then 22. So a dissimilarity could be defi ned 
as 22, equal to 1.481 in this example. 

There are many alternatives, and we only mention one more. Since the maximum 
of 2 for an IJ cross-tabulation is min{I1, J1}, we could divide 2 by this 
maximum. The so-called Cramer’s V coeffi cient does this but also takes the square 
root of the result:

 
2

1 1min ,
=

− −{ }
V

I J
φ  (6.3)

This coeffi cient has the properties of a correlation coeffi cient, but is never negative 
because the idea of negative correlation for categorical variables has no meaning: 
variables are either not associated or have some level of (positive) association. 
Once again, subtracting V from 1 would give an alternative measure of dissimilarity.

For a categorical variable such as sediment in Exhibit 1.1, measuring the distance 
between the categories C, S and G makes no sense at all, because they never 
co-occur in this data set. In this sense their correlations are always 1, and they 

Sediment

 C S G

Depth

Low 6 5 0

Medium 3 5 1

High 2 1 7
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Testing correlations: 
an introduction to 
permutation testing

are all at maximum distance apart. We can only measure their similarity in their 
relation to other variables. For example, in Exhibit 6.6 the sediment categories 
are cross-tabulated with depth, and this induces a measure of distance between 
the sediment types. An appropriate measure of distance would be the chi-square 
distance between the column profi les of the table in Exhibit 6.6, which gives the 
following distances:

chi2 C S

S 0.397

G 1.525 1.664

This shows that G is the most dissimilar to the other two sediment types, in terms 
of their respective relations with depth, which can be seen clearly in Exhibit 6.6.

Researchers usually like to have some indication of statistical signifi cance of the 
relationships between their variables, so the question arises how to test the cor-
relation coeffi cients and dissimilarity measures that have been described in this 
chapter. Tests do exist of some of these statistical quantities, for example there 
are several ways to test for the correlation coeffi cient, assuming that data are 
normally distributed, or with some other known distribution that lends itself to 
working out the distribution of the correlation. An alternative way of obtaining a 
p -value is to perform permutation testing, which does not rely on knowledge of 
the underlying distribution of the variables. The idea is simple, all that one needs 
is a fast computer and the right software, and this presents no problem these 
days. Under the null hypothesis of no correlation between the two variables, say 
between depth and pollution, the pairing of observations in the same sample is 
irrelevant, so we can associate any value of depth, say, with any value of pollution. 
Thus we generate many values of the correlation coeffi cient under the null hy-
pothesis by permuting the values across the samples. This process generates what 
is called the permutation distribution, and the exact permutation distribution can be 
determined if we consider all the possible permutations of the data set. But even 
with a sample of size 30, the 30! possible permutations are too many to compute, 
so we estimate the distribution by using a random sample of permutations.

This is exactly what we did in Chapter 1 to estimate the p -value for the correlation 
between pollution and depth. A total of 9,999 random permutations were made of 
the 30 observations of one of the variables, say depth (with the order of pollution 
kept fi xed), and Exhibit 6.7 is the histogram of the resulting correlations, with the 
actually observed correlation of 0.396 indicated. The p -value is the probability of 
the observed result and any more extreme ones, and since this is a two-sided 
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Exhibit 6.7:
Estimated permutation 

distribution for the 
correlation between 

pollution and depth (data 
from Exhibit 1.1), for testing 

the null hypothesis that 
the correlation is zero. The 

observed value of 0.396 is 
shown, and the permutation 

test consists in counting 
how many of the simulated 

correlations have an 
absolute value greater than 

or equal to 0.396

SUMMARY:
Measures of distance 

and correlation between 
variables

testing problem, we have to count how many of the 10,000 permutations (includ-
ing the observed one, this is why we generate 9,999) are equal or more extreme 
than 0.396 in absolute value. It turns out there are 159 values more extreme on the 
negative side ( 0.396) and 137 on the positive side ( 0.396), giving an estimated 
p -value of 296/10,0000.0296. This is very close to the p -value of 0.0305, which is 
calculated from the classical t -test for the correlation coeffi cient:

2 279
21 2

.
( ) ( )

= = −
− −

t r

r n
, 

corresponding to a two-sided p -value of 0.0305, using the t -distribution with n2 
degrees of freedom (n30 here).

1.  Two variables that have been centred defi ne two directions in the multidimen-
sional space of the samples.

2.  The cosine of the angle subtended by these two direction vectors is the classic 
linear correlation coeffi cient between the variables.
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Fr
eq

ue
nc

y

–0.6 –0.4 –0.2 0.0 0.2 0.4 0.6

0
2

0
0

4
0

0
6

0
0

8
0

0
1

0
0

0

–0.396



85

MEASURES OF DISTANCE AND CORRELATION BETWEEN VARIABLES 

3.  There are advantages in having the set of observations for each variable of 
unit length. This is obtained by dividing the standardized variables by I 1− , 
where I is the sample size, so that the sum of squares of their values is equal to 
1. These are then called unit variables.

4.  The distance d between the points defi ned by the unit variables is d  2 1 − r , 
where r is the correlation coeffi cient. Conversely, the correlation is r 1½ d 2.

5.  Distances between count variables can be calculated in a similar way to dis-
tances between samples for count data, with the restriction that the variables 
be expressed as profi les, that is as proportions relative to their total across the 
samples.

6.  Distances between dichotomous categorical variables can be calculated as be-
fore for distances between samples based on dichotomous variables.

7.  Distances between categories of a polychotomous variable can only be calcu-
lated in respect of the relation of this variable with another variable.

8.  Permutation tests are convenient computer-based methods of arriving at p -values 
for quantifying the signifi cance of relationships between variables.
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