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Algebra of multiple linear 
regression

Chapter

Regression Biplots

In the previous chapter, displays of samples were obtained in a scatterplot with 
spatial properties (hence often called a map), approximating given distance or 
dissimilarity matrices. Then some types of variables were added to the display, 
specifi cally zero/one categorical variables (e.g., presences of species, sediment 
categories) and count variables (e.g., species abundances). In this chapter we 
continue with this theme of adding variables to a plot of samples, including con-
tinuous variables in their original form or in fuzzy-coded form. When samples 
and variables are displayed jointly in such a scatterplot, it is often called a biplot. 
This designation implies that a certain property holds between the two sets of 
points in the display in terms of the scalar products between the samples and 
variables. In this chapter we consider the simplest form of biplot, the regres-
sion biplot, which will serve two purposes: fi rst, to give a different geometric 
interpretation of multiple regression; and second, to give a basic understanding 
of all the joint displays of samples and variables that will appear in the rest of 
this book.
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The multiple linear regression model postulates that the expected value of a re-
sponse variable Y (i.e., the mean of Y) is a linear combination of several explana-
tory variables x1, x2, …, xp:

 Y x x xp p1 1 2 2E( )= + + +α β β β�  (10.1)

10
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Geometry of multiple 
linear regression

For example, using the data of Exhibit 1.1, consider the regression of species 
labelled d on depth, pollution and temperature. The model is estimated as:

 E(d)6.2710.148depth1.388pollution0.043temperature (10.2)

Notice that, for the moment, we do not comment on whether this type of linear 
model of a count variable on three environmental variables would be sensible 
or not, because d is not an interval variable – we will return to this point later. 

Since the coeffi cients in (10.2) depend on the units of the variables, we prefer 
to consider the regression using all variables in comparable units. Usually this is 
done by standardization of the variables, so that they are all in units of standard 
deviation. Let us denote these standardized variables (i.e., centred and normal-
ized) with an asterisk, then the regression model becomes:

 E(d*)0.347depth*0.446pollution*0.002temperature* (10.3)

The constant term now vanishes and the coefficients, called standardized re-
gression coefficients, can be compared with one another. Thus it seems that 
pollution has the strongest influence on the average level of species d, re-
ducing it by 0.446 of a standard deviation for every increase of one standard 
deviation of pollution. The effect of temperature is minimal and, in fact, is 
nonsignificant statistically (p0.99), while depth and pollution are both sig-
nificant (p0.039 and p0.010, respectively), so we drop temperature and 
consider just the regression on the other two variables, which maintains the 
value of the coefficients, but slightly smaller p -values: p0.035 and p0.008, 
respectively:

 E(d*)0.347depth*0.446pollution* (10.4)

When referring to the multiple regression model, it is often said that a hyper-
plane is being fi tted to the data. For a single explanatory variable this reduces to 
a straight line in the familiar case of simple linear regression. When there are 
two explanatory variables, as in (10.4), the model is a two-dimensional plane 
in three dimensions, the third dimension being the response variable d* – a 
view of this plane in three dimensions is given in Exhibit 10.1, with standard-
ized depth* and pollution* forming the two horizontal dimensions and d* the 
vertical one. Notice how the plane is going down in the direction of pollution, 
but going up in the direction of depth, according to the regression coeffi cients 
(see the web site of the book which shows a video of this three-dimensional im-
age). Notice too the lack of fi t of the points to the plane – the value of R 2 for 
the regression is 0.442, which means that 44.2% of the variance of d is being 
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REGRESSION BIPLOTS 

Exhibit 10.1:
Regression plane defined 
by Equation (10.4) for 
standardized response 
d* and standardized 
explanatory variables 
pollution* and depth*. The 
view is from above the plane

explained, and 55.8% of the variance unexplained and considered residual, or 
error, variance.

The linearity of the plane means that predictions of the same mean values form 
parallel straight lines in the plane. From a mountaineer’s point of view, if you are 
standing on the plane and want to stay at the same height, you need to walk in 
a straight line. Projecting these parallel straight lines onto the depthpollution 
plane gives the contours, also called isolines, as shown in Exhibit 10.2. Finally, the 
vector in the depthpollution plane with coordinates equal to the regression co-
effi cients, 0.347 0.446, called the gradient, indicates the direction of steepest 
ascent in the regression plane, and is perpendicular to the contours. Given the 
geometry of the regression plane in Exhibit 10.2, it follows that we can do away 
with the d* dimension, just like cartographers do, and consider just the depth
pollution plane and the contours of the regression plane, which are perpendicu-
lar to the gradient vector. Exhibit 10.3 shows this “ground view” of the model.

The short arrow labelled d is the gradient vector. The dashed line through this 
vector is called the biplot axis for the variable d. Contour lines are perpendicular 
to the biplot axis. Exhibit 10.3(a) corresponds to the darker “shadow” in Exhib-
it 10.2 in the depthpollution plane, where the contours are in units of standard 
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Exhibit 10.2:
Another view of the 

regression plane, showing 
lines of equal height 

(dashed white lines in the 
plane) and their projection 
onto the depth−pollution 
plane (brown dashed lines 
in the darker “shadow” of 

the plane). The view is now 
from below the regression 

plane but above the 
depth−pollution plane. 

The short solid white line 
in the regression plane 
shows the direction of 

steepest ascent, and its 
projection down onto the 

depth−pollution plane is 
the gradient vector

deviation (sd) of species d (sd of d6.7). The mean of d, equal to 10.9, corre-
sponds to the contour line through the origin. Calibrating the biplot axis in the 
original abundance units of d, Exhibit 10.3(b) is obtained.

Now the expected abundance, according to the regression model, can be estimat-
ed for any sample by seeing on what contour line it lies, which is achieved by pro-
jecting the point perpendicularly onto the biplot axis. For example, the sample 
shown in Exhibit 10.3(b), with standardized coordinates 0.668 and 1.720, is on a 
contour line with value 4.2. The observed value for this sample is 3, so this means 
that the regression plane lies above the sample point and thus over-estimates its 
value. The action of projecting the sample point perpendicularly onto the biplot 
axis is a scalar product operation – just the regression model (10.4), in fact. The 
scalar product of the gradient vector 0.347 0.446 with the sample point vector 
0.668 1.720 is:

0.3470.668(0.446)1.7200.999

which means that the prediction is almost exactly one standard deviation be-
low the mean of d (in Exhibit 10.3(a) it is on the contour line 1sd), that is 
10.90.9996.74.2.
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Exhibit 10.3:
Regression plane shown as 
contour lines in the plane 
of the two explanatory 
variables, depth and 
pollution, both standardized. 
In (a) the contours are 
shown of the standardized 
response variable d*, where 
the units are standard 
deviations (sd’s) and the 
contour through the origin 
corresponds to mean 0 on 
the standardized scale, i.e. 
the mean on the original 
abundance scale. In (b) 
the contours are shown 
after unstandardizing to the 
original abundance scale of 
d. The sample shown in (b) 
corresponds to a height of 
4.2 on the regression plane
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Regression biplot

Exhibit 10.4:
Regression biplot of the 

five species with respect to 
the predictors depth and 

pollution

We have given a different geometric view of multiple regression, for the case of 
two predictor variables, reducing the regression model to the gradient vector of 
regression coeffi cients in the plane of the predictors (we will come to the case of 
more predictor variables later). The contours of the plane are perpendicular to 
the gradient vector. We can now perform the regressions of the other four spe-
cies with the same two predictors. Each species has a different pair of regression 
coeffi cients defi ning its gradient vector and all fi ve of these are plotted together 
in Exhibit 10.4. The fact that b and d point in similar directions means that they 
have similar regression relationships with the two predictors, and the samples will 
have similar projections onto the two biplot axes through b and d. Species a and 
c point in opposite directions and thus have opposite relationships, a negative 
with pollution and c positive. While samples high in the vertical direction such 
as s10 and s13 have high (modelled) abundances of c, they also have the lowest 
abundances of a. 
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Generalized linear model 
biplots with categorical 
variables

Each regression has an associated R 2 value: for the fi ve species these are (as 
percentages) (a) 52.9%, (b) 39.8%, (c) 21.8%, (d) 44.2%, (e) 23.5%. An overall 
measure of variance explained for all fi ve regressions in the biplot is the ratio of 
the sum of the explained variances in each and the sum of the total variances, 
which gives a value of 41.5%. As far as statistical signifi cance is concerned, all 
species have signifi cant linear relationship with pollution, but only d and e are 
signifi cantly related to depth as well (these have the highest standardized regres-
sion coeffi cients on the horizontal axis in Exhibit 10.4). 

In Chapter 9 we have already shown how the environmental variable sediment 
(Exhibit 1.1), which is categorical, can be added to a MDS display. Each category 
is placed at the average of the samples in which it is contained – we call these 
supplementary points. Similarly, we situated species in an MDS map as supplemen-
tary points by positioning them at their weighted averages of the sample points, 
with weights equal to the relative abundances. This approach can be used here as 
well, but their positions do not refl ect any formal relationship between the species 
and the predictors. Logistic regression can be used in this case to give gradient vec-
tors to represent these categories.

Logistic regression models the logarithm of the odds of being in a given category, 
in this case a particular sediment category. Modelling the log-odds (i.e., the logit) 
for each sediment category as a function of (standardized) depth and pollution 
using logistic regression leads to three sets of regression coeffi cients in the linear 
part of the model. For example, for gravel (G), the model is:

pG
p

p
G

G1
logit( ) log= =

−
⎛

⎝
⎜

⎞

⎠
⎟  3.3222.672depth*2.811pollution*

The three sediment categories are shown according to their logistic regression 
coeffi cients in Exhibit 10.5(a), connected to the origin. In fact, the above logistic 
regression is the only one that is statistically signifi cant, those for clay (C) and 
sand (S) are not. The categories as supplementary points are also shown in Ex-
hibit 10.5(a) by smaller labels in parentheses. 

Rather than use linear regression to display the species in a regression biplot, as 
in Exhibit 10.4, there are two other alternatives: Poisson regression, which may be 
considered more appropriate because it applies to count response data, or fuzzy 
coding. The Poisson regressions lead to the coeffi cients displayed as vectors in Ex-
hibit 10.5(b). Signifi cance with respect to the two predictors is the same as for the 
linear regression (see above), with in addition species b being signifi cantly related to 
depth. Both Poisson and logistic regression are treated in more detail in Chapter 18.
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Exhibit 10.5:
(a) Logistic regression 

biplot of the three sediment 
categories and (b) Poisson 

regression biplot of the five 
species as predicted by 

depth and pollution. In each 
biplot the gradient vectors 

are shown connected to 
the origin. In addition, the 
positions of the sediment 

categories and the species 
as supplementary points 

are given in their respective 
biplots by their labels in 
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Fuzzy-coded species 
abundances

More than two predictors

For the fuzzy coding, because there are several zeros in the abundance data, we 
can set up fuzzy codes for the species with a “crisp” code just for zeros and then 
three fuzzy categories for the nonzero values. Thus, for species a, for example, 
the code a0 refers to zero abundance and a1, a2 and a3 refer to low, medium 
and high positive abundances. Exhibit 10.6 shows the two ways of representing 
the fuzzy categories, fi rst in terms of their (linear) regressions on depth and pol-
lution, and second, in terms of their supplementary point positions as weighted 
averages of the samples. Overall, 10.6(a) and (b) tell the same story: most of the 
variation is in a vertical direction, along the pollution direction, with high values 
of species e (i.e., category e3) ending up bottom left, while the corresponding 
categories for species b and d end up bottom right. The trajectories of each 
species contain features that are not possible to see in the previous biplots. For 
example, species d has an interesting nonlinear trajectory, with low positive values 
(d1) pulled out towards the shallowest depths. Since the sample size is small, this 
feature may not be statistically signifi cant – we shall return to this aspect later, the 
point we are making here is that fuzzy coding can reveal more information in the 
relationships than linear models.

The two predictor variables depth and pollution form what is called the support 
of the biplot. With the aid of three-dimensional graphics we could have a third 
variable, in which case the gradient vectors would be three-dimensional. But if 
we only have a two-dimensional “palette” on which to explore the relationships, 
multivariate analysis can provide the solution, at the expense of losing some infor-
mation. As in the case of MDS, however, we are assured that a minimum amount 
of information is lost. 

Without entering into all the details of a multivariate method called canonical 
correlation analysis, which is a form of linear regression analysis between two sets 
of variables, we simply show its results in Exhibit 10.7, which visualizes all the 
(linear) relationships between the fi ve species and the three predictor variables 
depth, pollution and temperature. The confi guration of the samples looks very 
similar to a 90 degree counter-clockwise rotation of the scatterplots in previous 
biplots. However, the support dimensions are no longer identifi ed with single 
predictors but are rather linear combinations of predictors. The two canonical 
axes are defi ned as follows:

canonical dimension 10.203depth*0.906pollution*0.009temperature*

canonical dimension 21.057depth*0.607pollution*0.102temperature*

These dimensions are established to maximize the correlation between the spe-
cies and the environmental variables. The fi rst dimension is principally pollution 
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Exhibit 10.6:
Fuzzy coding of the 

species, showing for 
the fuzzy categories (a) 

their regressions on 
(standardized) depth and 

pollution, and (b) their 
weighted average positions 

with respect to the samples 
(i.e., supplementary points)
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Exhibit 10.7:
Canonical correlation biplot 
of the five species with 
respect to the predictors 
depth, pollution and 
temperature

but to a lesser extent depth, while the second is mainly depth but to a lesser ex-
tent pollution. The fi rst dimension is the most important, accounting for 73.1% 
of the correlation between the two sets, while the second accounts for 20.9%, that 
is 94.0% for the two-dimensional solution. Temperature plays a very minor role 
in the defi nition of these dimensions. The canonical dimensions are standard-
ized, hence the support has all the properties of previous biplots except that the 
dimensions are combinations of the variables, chiefl y depth and pollution. In ad-
dition, the canonical axes have zero correlation, unlike the depthpollution sup-
port where the two variables had a correlation of 0.396. Now that the support is 
defi ned, the species can be regressed on these two dimensions, as before, to show 
their regressions in the form of gradient vectors. The three environmental vari-
ables can be regressed on the dimensions as well, and their relationship shown 
using their gradient vectors, as in Exhibit 10.7. Notice that the angle between pol-
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SUMMARY:
Regression biplots

lution and depth suggests the negative correlation between them – see Chapter 
6. In fact, the cosine of the angle between these two vectors is 0.391, very close 
to the actual sample value of 0.396. Notice as well the absence of relationship of 
temperature with the canonical dimensions. 

Exhibit 10.7 is two biplots in one, often called a triplot. We shall return to the 
subject of triplots in later chapters – they are one of the most powerful tools 
that we have in multivariate analysis of ecological data because they combine the 
samples, responses (e.g., the species) and the predictors (e.g., the environmental 
variables) in a single graphical display, always optimizing some measure of vari-
ance explained.

1.  When there are two predictor variables and a single response variable in a 
multiple regression, the modelled regression plane can be visualized by its 
contours in the plane of the predictors (usually standardized). The contours, 
which are parallel straight lines, show the predicted values on the regression 
plane. 

2.  A regression biplot is built on a scatterplot of the samples in terms of the 
two predictors, called the support of the biplot. The gradient of the response 
variable is the vector of its regression coeffi cients, indicating the direction of 
steepest ascent on the regression plane. The gradient is perpendicular to the 
contour lines. 

3.  Several (continuous) response variables can be depicted by their gradient 
vectors in the support space, giving a biplot axis for each variable, and sample 
points can be projected perpendicularly onto the biplot axes to obtain pre-
dicted values according to the respective regression models.

4.  When response variables are categorical, their gradient vectors can be ob-
tained by performing a logistic regression on the predictors. Alternatively, the 
categories can be displayed at the averages of the sample points that contain 
them.

5.  When response variables are counts (e.g., abundances), their gradient vectors 
can be obtained by Poisson regression. Again, there is the alternative of dis-
playing them at the weighted averages of the sample points that contain them, 
where weights are the relative abundances of each variable across the samples. 

6.  For more than two predictor variables the support space of low dimensionality 
can be obtained by a dimension-reducing method such as canonical correla-
tion analysis. Dimension reduction is the main topic of the rest of this book.
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