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Chapter 

Correspondence Analysis

Correspondence analysis is one of the methods of choice for constructing 
ordinations of multivariate ecological data. Ecological data are often col-
lected as counts, for example abundances, or other positive amounts such 
as biomasses, on a set of species at different sampling sites. Correspondence 
analysis is similar to PCA, but applies to data such as these rather than inter-
val-scale data. It analyses differences between relative values: for example, if at 
a sampling site there is an overall abundance count of 320 individuals across 
all the species, and if a particular species is counted to be 55, then what is 
relevant for the analysis is the relative value of the abundance, 55/320 (17%). 
Furthermore, to measure inter-sample difference in such relative abundances 
across the species, the chi-square distance described in Chapter 4 is used to 
normalize species with different overall abundances. Classical MDS is applied 
to the chi-square distances to obtain an ordination of the sample points, with 
one important difference compared to PCA: each sample point is weighted 
proportionally to its total abundance (e.g., the value 320 mentioned above 
as an example), so that samples with higher overall abundance are weighted 
proportionally higher. These sample weights are also used in regressing the 
species on the dimensions to obtain a biplot. Finally, correspondence analysis 
has the special property that the analysis can be equivalently defi ned, and 
thought of, as the analysis of the rows (e.g., samples) or the analysis of the 
columns (e.g., species). 
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Weighted MDS 
of chi-square distances

In Chapter 11 we made a two-step analysis of the “Barents fish” abundance 
data: first, the Bray-Curtis dissimilarities between sampling sites were com-
puted and a nonmetric MDS performed, and second, the species counts 
were regressed on the ordination dimensions using Poisson regression to 
obtain a biplot of the samples and species. These regressions were optimal 
conditional on the ordination obtained in the first step, so the question to 
consider now is what the ordination should be in two dimensions, say, in 
order that the regressions are the best that one can get using the two ordi-
nation axes as predictors. Like PCA, correspondence analysis, abbreviated 
as CA from now on, is going to be doubly optimal: the display of the sample 
points will be optimal and the biplot of the samples and species will be opti-
mal in that the species regressions will explain maximum variance. One ma-
jor difference in the CA approach is that it measures distance between the 
profiles of the abundances (i.e., vectors of relative abundances), described 
in Chapter 4 – see Exhibit 4.6 and the surrounding description. Then it uses 
the chi-square distance function between the profiles – see Exhibit 4.7 and 
its surrounding description. Furthermore, the sense of the optimality is by 
weighted least-squares in both the MDS of the sample profiles and in the re-
gressions of species on the ordination axes – the sample weights are propor-
tional to the abundance totals at the different sampling points. For example, 
the abundance totals at the 89 sites (see Exhibit 11.2) are 845, 1,740, 1,763, 
767,…, 232, 36, with a grand total of 63,896. The weights, which are positive 
and add up to 1, will be 845/ 63,8960.0132, 1,740/63,8960.0272, and so 
on, until 232/63,8960.0036 and 36/63,8960.0006. Thus sites with high-
er abundances will be weighted more than those with lower abundances: for 
example, the profile of the second site will get a weight of 0.0272 (2.72%) 
whereas the last site, where overall abundance was low, will get a weight of 
0.0006 (0.06%).

In the previous description of MDS methods there was no question of weight-
ing the points, in other words all were weighted equally. It is a fairly simple 
adaptation of the methodology to accommodate different weights, which 
means that points with higher weight will tend to be better displayed than 
points with lower weight. This reweighting can make a big difference to the 
fi nal MDS solution, as illustrated for this particular data set in Exhibit 13.1. In 
the unweighted MDS there is a curve of points from the left across to the top 
and then down to the three red points. This curve is essentially reproduced on 
the right hand side of the weighted MDS, following the vertical axis from top 
to bottom, but two samples have separated out on the left. These latter sam-
ples have high abundances, and so have high weights and become much more 
prominent in the weighted analysis. The ordination map in Exhibit 13.1(b) is 
based on the CA solution.
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Exhibit 13.1:
Unweighted MDS (a) and 
weighted MDS (b) of the chi-
square distances between 
sampling sites, for the 
“Barents fish” data. Colour 
coding as in Chapter 11

–1.5 –1.0 –0.5 0.0 0.5 1.0

–2
.5

–2
.0

–1
.5

–1
.0

–0
.5

0
.0

0
.5

Dimension 1

D
im

en
si

on
 2

–2.5 –2.0 –1.5 –1.0 –0.5 0.0 0.5

–1
.5

–1
.0

–0
.5

0
.0

0
.5

1
.0

1
.5

Dimension 1

D
im

en
si

on
 2

–2.0 1.5

(a)

(b)



 MULTIVARIATE ANALYSIS OF ECOLOGICAL DATA

168

Display of unit profiles

Exhibit 13.2:
Row-principal CA biplot 

(asymmetric map) of 
“Barents fish” data. The 

sample profiles are shown 
as well as unit profiles 

for the species. There is 
a barycentric (weighted 

average) relationship 
between the samples and 
species points. Explained 

variance is 47.4% 

CA has some special features that are not present in PCA, chiefl y because the 
displayed profi les consist of nonnegative values that add up to 1. These are also 
called compositional data, the proportions of the species in each sample. One of 
the classic ways of displaying the species in CA is to show where the so-called 
unit profi les are in the ordination space: these are vectors of zeros except for a 1 
in the position corresponding to a species, as if there were a sample with only 
that species observed in it. The unit profi les for the species are shown as supple-
mentary points in Exhibit 13.2. Thus the unit point of the species Bo_sa (Boreog-
adus saida, polar cod) is on the extreme left, and species points Tr_spp (Triglops 
species) and Le_ma (Leptoclinus maculatus, spotted snake blenny) are also sepa-
rate from the others on the left hand side. It turns out that the sample on the 
extreme left has very high relative abundances of these three species, and this 
explains its outlying position in the direction of these species. These high dis-
tances are not apparent in Exhibit 13.1(a) because all the points are weighted 
equally, whereas CA gives prominence to the samples with higher weight, and 
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Barycentric (weighted 
average) relationship

Dimensionality of CA 
solution

Bo_sa is a species with high overall abundance. The CA solution in Exhibit 13.2 
is sometimes called an asymmetric map: the sample (row) points are in principal 
coordinates and it turns out that the species (column) points are in standard 
coordinates in the CA sense. To make this more precise, each species also has 
a weight in CA, its total abundance relative to the grand total. In Exhibit 11.2 
the last species Tr_spp, for example, has an abundance of 653, which gives it a 
weight of 653/63,896 (1.02%). With these weights the species points in Exhibit 
13.2, representing unit profi les, have weighted sum of squares equal to 1 on 
each dimension, and thus have coordinates referred to as standard coordinates.

Before continuing let us start to call the sample and species weights masses, 
which is the preferred term in CA. This also distinguishes these masses from 
other sets of weights which we discuss now. For example, the masses of the 30 
species in the “Barents fi sh” data are the relative abundances of the species in 
the whole data set. So the masses refl ect the expected, or average, relative abun-
dances in a sample if there were no differences in species distribution across 
the study region.

The joint display of samples and species in Exhibit 13.2 has an additional prop-
erty that is particular to CA and is, in fact, one of the reasons for its relevance in 
ecology. Each sample point, originally the profi le of the sample across the spe-
cies, is at the weighted average of the species points, where weights are defi ned 
here as the elements of the profi le. Let us take the sample on the extreme left of 
Exhibit 13.2 as an example. This sample has a total abundance of 4,399 and its 
profi le across the 30 species consists of 19 zeros and 11 positive values, of which 
a few are extremely high compared to the species masses. For example, 82.9% 
is in the species Bo_sa (3,647 out of 4,399), whereas the relative abundance 
(i.e., mass) of Bo_sa in the whole data set is only 8.3% (5,297 out of 63,896). 
The sample is situated at the weighted average of the species points, and 82.9% 
of its weight is on Bo_sa, hence its position close to it. It has also much higher 
than average relative abundances of Tr_spp and Le_ma. For the same reason, 
the three sample points at bottom right must have high values in their profi les 
on the species Tr_es and Mi_po in order to be situated so close to them in that 
direction. Weighted averages are also called barycentres and this relationship 
between sample and species points in this version of the CA solution is called 
the barycentric relationship. 

CA also leads to an eigenvalue measure of the part of variance on each dimen-
sion, as in PCA, and these eigenvalues can be viewed in a scree plot, shown in 
Exhibit 13.3. Here we introduce some terminology particular to CA: the total 
variance is called the total inertia of the data set, and is equal to 2.781 in this 
case. The eigenvalues, or principal inertias, decompose this total along the prin-
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Exhibit 13.3:
Scree plot of eigenvalues 
in the CA of the “Barents 

fish” data 

Contribution biplots

cipal axes. Notice that there are only 29 eigenvalues – the dimensionality of 
the full space is not 30, the number of species, but one less because the profi le 
matrix analysed has constant row sums of 1. To decide on how many dimensions 
are worth interpreting we proceed as in PCA: it looks like there may be at most 
four dimensions distinguishing themselves from the others that tend to fall off 
in a pattern typical of random data. Later in Chapter 17 we will show more for-
mally by a permutation test that in fact there are only three highly signifi cant 
dimensions. So we should be looking at the third dimension as well. This poses 
a technological challenge, but it is now fairly easy to observe three-dimensional 
displays. In Exhibit 13.4 is a snapshot of the three-dimensional view of the 
points, and if you click on the image in the electronic version of this book it will 
revolve around the vertical axis.

The caption of Exhibit 13.2 refers to the display as a row-principal biplot, but this 
is not exactly the same as the regression biplots discussed before. In Chapters 11 
and 12 the standardized variables were regressed onto the axes using ordinary 
least squares. Here there are two differences: fi rstly, the fact that the chi-square 
distances between profi les are being displayed, and secondly, the fact that each 
sample is weighted differently according to its corresponding mass. Thus it 
should be the columns of the standardized profi le matrix that are regressed on 
the axes, standardized by centring with respect to the average profi le (in this case, 
the set of species masses) and dividing columns by the square root of the cor-
responding masses, i.e. the standardization inherent in the chi-square distance. 
This gives another version of the biplot which we call the contribution biplot, shown 
in Exhibit 13.5 – just the species vectors are shown, the sample points are identi-
cal to those of Exhibit 13.2. With this scaling the species that are the most outly-
ing on the axes are the ones contributing mostly to the CA solution, and thus the 
important ones for interpretation.
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Exhibit 13.4:
Three-dimensional view of 
the samples and species, 
row principal biplot scaling. 
For readers of the electronic 
version: To see the rotation 
of these points around the 
vertical (second) axis, click 
on the display

Notice fi rst the technical difference between the scalings of the species in Exhib-
its 13.2 and 13.5. In Exhibit 13.2 the standard coordinates have weighted average 
sum of squares equal to 1 on each ordination axis, using the species masses. In 
Exhibit 13.5 the contribution coordinates have unweighted sum of squared coordi-
nates equal to 1 on each axis. These squared coordinates are the part contributions 
to the respective axes and are thus called contribution coordinates. In Exhibit 13.5 the 
species are shown as gradient vectors, and are oriented in the exact same directions 
as the unit profi les in Exhibit 13.2, but each species point has been pulled in by dif-
ferent amounts, with the rarer species being pulled in more than the more abun-
dant ones. The exact relationship between the two types of species coordinates is 
that the contribution coordinates in Exhibit 13.5 are the standard coordinates 
in Exhibit 13.2 multiplied by the square roots of the respective species masses. 
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Exhibit 13.5:
Species in contribution 
coordinates. Combining 
this configuration with 

the sample points in 
Exhibit 13.2 would give 

the two-dimensional 
contribution biplot. The 
species that contribute 

more than average to an 
axis are shown in larger 
font (contributions to all 

three significant dimensions 
are taken into account 

here – the species Hi_pl 
contributes highly to the 

third dimension). Those near 
the origin in tiny font are 

very low contributors to the 
CA solution

When it comes to the interpretation, the species No_rk and Se_me are ones that ex-
emplify the difference between Exhibits 13.2 and 13.5. No_rk is a quite rare species 
in the data set, only 83 counted out of the total of 63,896, whereas the overall count 
of Se_me is 12,103. Thus No_rk is pulled in very strongly from its unit profi le position 
in Exhibit 13.2 to its inlying position in Exhibit 13.5 – whereas it looked like it was 
the most important point before, it is now one of the species near the origin that 
are shown with tiny labels. By contrast, Se_me is not pulled in so strongly because of 
its high mass and in Exhibit 13.5 is confi rmed to be the most important contributor 
to that spread of the samples upwards on the second axis. Both versions of the CA 
ordination are useful: from Exhibit 13.5 we know that Se_me is a strong contribu-
tor while Exhibit 13.2 tells us that the much sparser data for No_rk still correlates 
with that of Se_me. Another way of thinking about the high contributors, nine 
species in all in Exhibit 13.5, is that we could remove the other 21 species from 
the data set and get more or less the same result. To illustrate this, Exhibit 13.6 
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Exhibit 13.6:
Contribution biplot 
of the “Barents fish” 
data, retaining only the 
nine species with high 
contributions to the three-
dimensional solution. The 
sample and species points 
are shown separately. The 
Procrustes correlations 
with the configurations 
obtained in Exhibits 13.2 
(sample points) and 13.5 
(species points), using all 
30 species, are 0.993 and 
0.997 respectively
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Symmetric analysis of 
rows and columns

shows the contribution biplot of this reduced data set of nine species. The result 
is almost identical – the Procrustes correlations with the previous results are 
almost 1.

In all the above we have considered the case of the row profi les, the relative abun-
dances of the species in each sample, with chi-square distances between them, 
mapped into a space using (weighted) classical MDS, with columns (i.e., species) 
displayed either as unit profi les or in contribution coordinates. We could turn this 
problem around by interchanging rows and columns and repeating everything as 
before. The matrix of column profi les is thus considered – these are the relative 
abundances across the samples of each species (i.e., the columns of Exhibit 11.1 
divided by the column totals). Chi-square distances between these species pro-
fi les would be visualized (i.e., columns in principal coordinates), and the sample 
points added either as unit points (i.e., rows in standard coordinates) or as stand-
ardized regression coeffi cients (i.e., rows in contribution coordinates). In CA 
the row and column profi le matrices, analysed in this similar and symmetric way, 
lead to exactly the same fi nal solution, and all the sets of coordinates are related 
by simple scalar multipliers. The following are the basic results to remember, for 
both row and column points:

 principal coordinatesstandard coordinates(principal inertias)½ (13.1)

 contribution coordinates(masses)½standard coordinates (13.2)

For example, suppose we had all the results from the analysis of the sample 
profi les, as discussed up to now and as shown in Exhibits 13.2, 13.4 and 13.5, 
and we wanted the equivalent results for the analysis of the species profi les. 
The species principal coordinates would be the species standard coordinates 
(shown in Exhibit 13.2) multiplied by the square roots of the principal inertias 
(eigenvalues) on respective axes: (0.777)½ on fi rst axis, (0.541)½ on the sec-
ond, (0.485)½ on the third – notice that the principal inertias in CA are always 
less than one, so the principal coordinates are always contracted towards the 
centre compared to the standard coordinates. To obtain the sample standard 
coordinates we have to do the reverse operation by taking the sample princi-
pal coordinates (also in Exhibit 13.2) and divide by the corresponding square 
roots of the principal inertias, given above. Finally, to obtain sample contribu-
tion coordinates in order to see which are the highly contributing samples to 
the solution, the standard coordinates for each sample are multiplied by the 
corresponding square root of the sample mass.

A popular way of showing the results of a CA is to show the simultaneous display 
of the row and column profi les, that is both in principal coordinates. For the 
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Exhibit 13.7:
Symmetric map of “Barents 
fish” data set, both samples 
and species in principal 
coordinates, with higher 
than average contributing 
samples and species in 
larger symbols and font 
sizes

“Barents fi sh” data set, this so-called symmetric map of the points, where both 
rows and columns are visualizing their inter-point chi-square distances, is shown 
in Exhibit 13.7. Because contributions are not directly visualized in the points’ 
coordinates, we can introduce larger and smaller symbols or labels to give an 
indication of the important points to concentrate on in the interpretation. An 
advantage of this display is that the row and column points have the same iner-
tias (parts of variance) along the dimensions, so they are spread out the same 
amount horizontally and vertically, which uses the plotting space better. Strictly 
speaking, however, the symmetric map is not a biplot as described before. 
However, when the square roots of the principal inertias along axes are not too 
different, so that principal and standard coordinates are approximately pro-
portional to one another in the two-dimensional solution (see formula (13.1)), 
then the map comes close to a true biplot. In this example, (0.777)½0.881 
and (0.541)½0.736, which are indeed quite close, so Exhibit 13.7 can be inter-
preted as an approximate biplot.
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SUMMARY:
Correspondence analysis

1.  Correspondence analysis (CA) is the analogue of principal component analysis 
(PCA) for data that are nonnegative such as abundance counts, biomasses and 
percentages. All the data must be measured on the same scale, so that it makes 
sense to compute row sums and column sums.

2.  CA analyses the row profi les and/or the column profi les of the data matrix: 
these are the rows of data divided by their respective row sums or the columns 
divided by their respective column sums. 

3.  Each row and each column is weighted by its respective mass: the masses are 
the row and columns sums relative to the grand total of the data.

4.  Distances between row profi les or between column profi les are defi ned by the 
chi-square distance.

5.  For a samples-by-species data matrix, CA is generally thought of asymmetrically 
as an analysis of the sample (row) profi les, visualizing the inter-profi le chi-
square distances in a low-dimensional map (i.e., samples displayed in principal 
coordinates).

6.  The species can then be visualized in two alternative ways as a biplot: as unit 
profi les, showing fi ctitious samples consisting of just one species (i.e., species 
in standard coordinates), or as gradient vectors showing the regression rela-
tionships between the species and the principal axes (i.e., species in contribu-
tion coordinates). These alternatives indicate identical orientations of biplot 
axes, but the latter alternative has the advantage that the more outlying species 
are the higher contributors to the solution. 

7.  Thinking of the analysis from the column profi le point of view gives another 
way of interpreting the CA solution, as distances between species. The solution 
of this problem is identical to the row profi le problem, with simple scaling fac-
tors linking the two solutions.

8.  A popular way of showing the CA result is the symmetric map, where both 
row and column profi les are visualized simultaneously, that is both in princi-
pal coordinates. The row and column points have the same spread along the 
dimensions, and they can each be interpreted in terms of approximate chi-
square distances.
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