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Compositional data and 
subcompositions

Chapter 

Compositional Data and Log-ratio Analysis 

We have already met compositional data in the form of row or column profi les 
in CA: these are sets of nonnegative values that add up to a constant, usually 1 
or 100%. In CA the profi les are computed on data matrices of abundances or 
biomasses, for example by dividing by their respective row and column totals. 
In other contexts the original data are compositional, for example chemical or 
geological data where the total size of the sample, measured in units of weight 
or volume, is not relevant, just its decomposition into a set of components. An-
other example of compositional data in biology is that of fatty acid compositions 
in studies of marine food webs. Compositional data are special because in their 
original form they have the property of closure, that is the compositional values 
of each sample have a constant sum. There are particular methodological issues 
when analysing compositional data, such as subcompositional coherence and the 
log-ratio transformation, which we shall consider in this chapter. Although this 
chapter is specifi c to compositional data, the wider issue of rare observations is 
discussed and the value of the contribution biplot is again demonstrated.
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To illustrate the main reason why compositional data are a special case, consider 
the data in Exhibit 14.1. First, there is composition consisting of four fatty acids 
measured in six samples, with their components adding up to 1. Second, the last 
component is eliminated and the composition is closed again, that is re-expressed 
as proportions that sum to 1: this is called a subcomposition of the original com-

14
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Exhibit 14.1:
Compositional data matrix 
(a) and a subcomposition 
(b), after eliminating the 

last component

Exhibit 14.2:
Correlations between 

the columns of the 
compositional data matrices 

in Exhibit 14.1

position. If researcher A works with the data in Exhibit 14.1(a) and researcher 
B with the data in Exhibit 14.1(b) and they consider it interesting to compute 
correlations as a way of measuring association between the components, they will 
obtain the results in Exhibit 14.2(a) and 14.2(b) respectively. While researcher 
A fi nds that the correlations between fatty acid 18:4(n-3) and the pair 16:1(n-7) 
and 20:5(n-3) are 0.671 and 0.357 respectively, researcher B fi nds that they are 
0.952 and 0.139. There is clearly a paradox here – the relationship between two 

 16:1(n-7) 20:5(n-3) 18:4(n-3) 18:00 Sum

B6 0.343 0.217 0.054 0.387 1

B7 0.240 0.196 0.050 0.515 1

D4 0.642 0.294 0.039 0.025 1

D5 0.713 0.228 0.020 0.040 1

H5 0.177 0.351 0.423 0.050 1

H6 0.209 0.221 0.511 0.059 1

 16:1(n-7) 20:5(n-3) 18:4(n-3) Sum

B6 0.559 0.353 0.088 1

B7 0.494 0.403 0.103 1

D4 0.658 0.302 0.040 1

D5 0.742 0.237 0.021 1

H5 0.186 0.369 0.445 1

H6 0.222 0.235 0.543 1

(a)

(b)

 16:1(n-7) 20:5(n-3) 18:4(n-3) 18:00

16:1(n-7) 1 −0.038 −0.671 −0.379

20:5(n-3) −0.038 1 0.357 −0.604

18:4(n-3) −0.671 0.357 1 −0.407

18:00 −0.379 −0.604 −0.407 1

 16:1(n-7) 20:5(n-3) 18:4(n-3)

16:1(n-7) 1 −0.171 −0.952

20:5(n-3) −0.171 1 −0.139

18:4(n-3) −0.952 −0.139 1

(a)

(b)
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The log-ratio 
transformation

Exhibit 14.3:
Logarithms of ratios 
between all pairs of 
components and the root 
mean sum of squares of the 
log-ratios as a measure of 
proximity

components should be the same and not depend on whether another component 
(18:00) is present or not. We say that the correlation does not have the property 
of subcompositional coherence – it is incoherent.

Values that are constant in a composition and any of its subcompositions are 
the ratios between components. For example, consider the four-part compo-
sition a,b,c,d with abcd1, and a three-part closed subcomposition 
a,b,c/ (abc). Then the ratio a/b in the composition is identical to the ra-
tio a/(abc) / b/(abc) in the subcomposition. Since ratios are gen-
erally compared multiplicatively rather than additively, the logarithms of the 
ratios provide a justifi able transformation of the compositional data and have 
subcompositional coherence. Exhibit 14.3(a) shows the log-ratios log(a/b) for 
all six pairs of components a and b in Exhibit 14.1(a), as well as their means 
and standard deviations. In addition, a distance da b between the two compo-
nents a and b is calculated as the square root of the average sum of squares of 
log-ratios across the samples:

 d ( / =1∑ a b n a bab i ii

n
i i

2

1

2=
=

)[log( / )] ( / )[log( ) log( )]n ∑i

n

1=
−1  (14.1)

Log-ratios

 
16:1(n-7) / 
20:5(n-3)

16:1(n-7) / 
18:4(n-3)

16:1(n-7) / 
18:00

20:5(n-3) / 
18:4(n-3)

20:5(n-3) / 
18:00

18:4(n-3) / 
18:00

B6 0.458 1.849 −0.121 1.391 −0.579 −1.969

B7 0.203 1.569 −0.764 1.366 −0.966 −2.332

D4 0.781 2.801 3.246 2.020 2.465 0.445

D5 1.140 3.574 2.881 2.434 1.740 −0.693

H5 −0.685 −0.871 1.264 −0.187 1.949 2.135

H6 −0.056 −0.894 1.265 −0.838 1.321 2.159

mean 0.307 1.338 1.295 1.031 0.988 −0.043

sd 0.643 1.861 1.585 1.278 1.418 1.960

distance 0.662 2.162 1.942 1.557 1.629 1.790

Distance(log-ratios)

 16:1(n-7) 20:5(n-3) 18:4(n-3) 18:00

16:1(n-7) 0 0.662 2.162 1.942

20:5(n-3) 0.662 0 1.557 1.629

18:4(n-3) 2.162 1.557 0 1.790

18:00 1.942 1.629 1.790 0

(a)

(b)
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The “fatty acid” data set

Log-ratio analysis

Exhibit 14.4:
Part of 4225 data matrix 

of fatty acid compositions, 
expressed as percentages: 

each set of 25 values in 
the rows sums to 100%. 
The mean and standard 

deviation of each column is 
given, as well as the mean 
of the squares of log-ratios 

for pairs of samples in each 
column

Defi nition (14.1) shows that this distance function is simply a Euclidean distance 
between the log-transformed components. In Exhibit 14.3(b) the distances have 
been gathered into a square matrix, which can be used in a cluster analysis or 
an MDS. If fatty acid 18:00 is removed and the distance function is applied to 
Exhibit 14.1(b), the distances between the three components of the subcomposi-
tion remain identical, hence this measure of distance between the components is 
subcompositionally coherent. 

Exhibit 14.4 shows a part of the data set “fatty acid”, compositional data on 25 fatty 
acids from 42 copepods of the species Calanus glacialis. The copepods were sampled 
in three different seasons and the objective is to see how the fatty acid compositions 
relate to these different seasons. Notice that the components with higher means 
also have higher standard deviations, which is typical of such data, as it is for count 
data. In the case of CA, the chi-square distance compensates for this disparity in 
variances. There is a similar issue in log-ratio analysis, which we describe now.

Log-ratio analysis (LRA) is the analogue of PCA that visualizes the compositional 
variables (also called components) transformed to log-ratios – hence it has the 
property of subcompositional coherence, which neither PCA nor CA have. It is a 
simple adaptation of PCA and has two forms: an unweighted form and a weighted 
form. We restrict our discussion to weighted LRA since the weighting has a num-
ber of benefi ts. 

Notice in the last line of Exhibit 14.4 “mean(LR)^2”, the mean of the squares of 
the log-ratios in each column. Just as we did for each row of the mini-example 

 14:00 i-15:0 15:00 16:00 16:1(n-7) ··· 22:5(n-3) 22:6(n-3) Total

B5 14.229 1.223 0.870 12.204  6.567 ··· 0.543 0.446 100

B6 12.153 1.270 1.085 12.318  7.406 ··· 0.353 0.469 100

B7  6.640 0.790 0.529 12.272  6.804 ··· 0.656 0.231 100

B8 12.410 1.167 0.822 11.543  7.668 ··· 0.425 0.436 100

H5  6.764 0.338 0.272  8.056  6.207 ··· 0.298 0.464 100

H6  6.896 0.324 0.262  8.046  6.494 ··· 0.313 0.520 100

···
···

···
···

···
··· ··· ···

···
···

E5  5.410 0.407 0.273 12.321  6.622 ··· 0.273 0.257 100

E6  9.200 0.813 0.606  9.741 19.193 ··· 0.542 0.601 100

mean  8.366 0.678 0.546  9.196 12.818 ··· 0.640 9.100 100

sd  2.131 0.277 0.181  1.816  8.263 ··· 0.251 2.715

mean(LR)^2  0.114 0.321 0.252  0.080  0.664 0.811 0.142
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Interpretation of log-ratio 
analysis

in Exhibit 14.3, so we can compute log-ratios between all the 42 values in each 
column (there will be ½42  41861 ratios in total), which would be the basis 
for a distance calculation between pairs of samples. The mean square of these 
log-ratios has the property that it will be higher for rarer components, which can 
have bigger ratios than those between components at a higher level. For example, 
a rare component with mean 0.03% could easily have two values of 0.05% and 
0.01%, which gives a ratio of 5, whereas such a large ratio would hardly ever 
occur for a component with values of the order of 10%, varying between 6% and 
14%, say. In weighted log-ratio analysis this effect is compensated for by assigning 
weights to each component proportional to its mean, so that rarer components 
get smaller weights. This is exactly the same idea as in CA.

Technically, weighted LRA can also be thought of as a two-step procedure, per-
forming MDS on inter-sample distances based on the log-ratios, where the com-
ponents have been weighted as just described, and then adding the component 
variables by regression on the MDS dimensions. But more simply, it reduces to 
a PCA of the log-transformed data matrix which is centred row-wise, that is each 
row of the logged data is centred to have mean zero. This centred matrix is 
then subject to PCA, incorporating the column weights. Because PCA will then 
automatically centre the data column-wise, it follows that the log-transformed 
compositional data matrix is actually double-centered, row-wise and column-wise. 
Notice that the actual log-ratios for all pairs of components do not have to be 
calculated, thanks to the double-centering. LRA is thus a weighted PCA of the 
previously log-transformed and row-centered data, with some special features of 
the interpretation.

Exhibit 14.5 shows the weighted LRA of the “fatty acid” data set, with samples in 
principal coordinates (thus approximating the log-ratio distances between them) 
and fatty acids in standard coordinates. Separately, we have verifi ed that only the 
fi rst two dimensions are signifi cant. There are three clearly separated groups of 
samples, which we have labelled A, B and C, coinciding exactly with the three sea-
sons in which they were sampled. As in Exhibit 13.5 we have separated the higher 
than average contributors to the fi rst two dimensions from the others: these 
seven fatty acids are thus indicated with larger labels, and account for 90% of the 
variance in this biplot. A novelty of the log-ratio biplot is that it is not the vectors 
from the origin that defi ne the biplot axes, but the vectors linking the component 
variables – these vectors are called links. For example, the link from 16:1(n-7) at 
bottom left to 18:00 top left represents the log-ratio log(18:00/16:1(n-7)), and 
the direction of this link is exactly lining up with group A at the top and group C 
at the bottom. Similarly, the link from 18:00 to 18:4(n-3), as well as several others 
made by the group of three high-contributing fatty acids in-between, separates 
group A from group B. And the link from 16:1(n-7) and 18:4(n-3) is one that 
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Exhibit 14.5:
Row-principal LRA biplot 
of “fatty acid” data set. 

84.7% of the log-ratio 
variance is explained. The 
seven higher-than-average 

contributing fatty acids are 
shown in larger font.

Notice the different scales 
for sample points and fatty 

acid points

Relationship between CA 
and LRA 

separates group C from group B. Exhibit 14.6 illustrates the group separation in 
a simpler scatterplot of two of these log-ratios that are suggested by these results. 
Since the third log-ratio log18:4(n-3)/18:00 separating groups A and B is the 
horizontal axis of the scatterplot minus the vertical one, it can be depicted by a 
45 degrees descending line, shown by the dashed arrow, perfectly coinciding with 
the separation of the A and B samples. 

An interesting feature of the log-ratio biplot is that if components fall on straight 
lines (as, for example, 18:00, 18:4(n-3) and the group of three fatty acids inbetween, 
18:1(n-9), 22:1(n-11) and 20:1(n-9) in Exhibit 14.5) then a model can be deduced 
between them. The Bibliographical Appendix gives a reference to this way of 
diagnosing models in biplots.

CA also analyses compositions, albeit compositions (i.e., profi les) computed 
on a matrix of counts or abundances. In fact, CA can be used to analyse purely 
compositional data, and likewise, LRA can be used to analyse count data or other 
strictly positive ratio-scale data. There is an interesting relationship between the 
two methods: leaving out some technical details, the main result is that if one ap-

A
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C
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Exhibit 14.6:
Scatterplot of two log-ratios 
suggested by the biplot 
in Exhibit 14.5, perfectly 
separating the three 
groups of copepods. A third 
log-ratio combining the two 
describes a diagonal axis 
in the plot

plies the Box-Cox power transformation to the data (see Chapter 3 and defi nition 
(3.4)), with increasingly stronger power (for example, square root, then cube 
root, then fourth root, etc.), then the CA of the transformed data tends to LRA 
in the limit. Moreover, if the variance in the data is small, then the CA solution 
will be close to the LRA solution anyway. This means that CA is close to being 
subcompositionally coherent, and perhaps close enough for practical purposes. 
The CA biplot comparable to Exhibit 14.5 is given in Exhibit 14.7, and is indeed 
very similar. Here are some statistics comparing the two results:

(Weighted) LRA CA

Total variance (or inertia) 0.2260 0.1913

Variance, dimension 1 0.1375 (60.8%) 0.0882 (46.1%)

Variance, dimension 2 0.0539 (23.9%) 0.0635 (33.2%)

Percentage in two dimensions 84.7% 79.3%

Procrustes correlation between rows      0.950

Procrustes correlation between columns      0.930
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Exhibit 14.7:
Row-principal CA biplot 

(asymmetric map) of “fatty 
acid” data. Explained 

variance is 79.3% 

Four out of the seven fatty acids previously highlighted in the LRA are singled 
out as high contributors in the CA. The three groups of copepods are separated 
in the same way, but the interpretation of the joint plot is different. Here, as 
for most biplots, the biplot axes are considered through the origin to each vari-
able point. For example, if we draw a straight line from the bottom through 
the origin and up to fatty acid 18:00, then the projections of the copepods on 
this axis should reproduce approximately the compositional values on this fatty 
acid. Exhibit 14.8 verifi es this and also shows how close these projections are 
to the actual values. In fact, the original values show some overlap between the 
A group and the others, whereas the estimated values perfectly separate the A 
group. This is due to the fact that other fatty acids are operating in the biplot 
to separate the groups – so group A is separated not only because it is high on 
18:00 but also low on 16:1(n-7), which brings us right back to the idea in LRA 
to work with ratios. 
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Exhibit 14.8:
Actual compositional 
value (as a percentage) 
of fatty acid 18:00 and 
estimated values from the 
CA biplot of Exhibit 14.7. 
The dashed line represents 
perfect reconstruction. 
The correlation is 0.928, 
thus the variance 
explained in 18:00 by 
the two dimensions is 
0.928 20.861, i.e. 86.1%

Zeros in compositional 
data

Since LRA visualizes ratios, there should be no zero values in the data, as has been 
the case for the fatty acid data set used in this chapter so far. In fact, this data set, 
with 25 fatty acids, is a subset of a bigger one that does have an additional 15 fatty 
acids with some observed zeros. Collectively these 15 additional fatty acids account 
for between 3 and 4 percent of each sample, so they are rare fatty acids and thus 
sometimes observed as zeros. Let us call this data set with all 40 fatty acids the 
“complete fatty acid” data set, and consider how to analyse it. Zeros can arise for 
various reasons, one being that the presence of the fatty acid is below the detection 
limit of the measuring instrument. If one knows what this detection limit is, a value 
of half the detection limit, say, could be substituted for the zeros. This will create 
large log-ratios, and thus large variances, but because fatty acids are weighted in the 
analysis proportionally to their mean values, this will reduce the effect of these large 
variances in the rare fatty acids. Another option is to treat the zeros as missing val-
ues – there are ways for handling missing data by estimating values in the data table 
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Exhibit 14.9:
CA of the “complete fatty 

acid” data set of 42 
copepods and 40 fatty 

acids. The row-principal 
biplot is shown and the 

explained variance in this 
two-dimensional solution is 
74.2%. Compared to Exhibit 
14.7, the additional 15 fatty 

acids are coloured in gray 

from the biplot. An easier solution is to recognize that CA is a good approximation 
to LRA and close to having subcompositional coherence, and also has no problem 
with zeros in the data. Exhibit 14.9 is the CA of the complete data set of 40 fatty 
acids, and it is clear that the extra data have not changed the results that much. 
The samples are in an almost identical confi guration, whereas the additional fatty 
acids are all low contributors. This biplot illustrates what often happens with low 
frequency variables, such as rare species or in this case fatty acids with low propor-
tions. Some of these are in outlying positions in the biplot, for example i-16:0 at 
the top and 16:1(n-9) at bottom left. If one does not take into account the contribu-
tions, then one might think that 16:1(n-9), for example, is the most important fatty 
acid separating out group C, whereas it is in fact 16:1(n-7). This can be easily cor-
roborated by making a scatterplot of these two fatty acids, shown in Exhibit 14.10.

A better way of showing the CA results in this case is in the form of a contribution 
biplot (Exhibit 14.11), where the low contributing variables shrink to the centre 
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Exhibit 14.10:
Scatterplot of fatty acids 
16:1(n-7) and 
16:1(n-9) of the 
“complete fatty acids” 
data set, showing that 
16:1(n-7) is the more 
important one for separating 
out group C of copepods. 
The rare fatty acid 
16:1(n-9) has only three 
small positive percentages, 
coinciding with three 
copepods in group C

Exhibit 14.11:
CA contribution biplot 
of “complete fatty acid” 
data set. The six high 
contributing fatty acids 
stand out from the rest
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SUMMARY:
Compositional data and 

log-ratio analysis

and the high contributors stand out according to their contribution. Notice too 
that only one scale is necessary in the contribution biplot (cf. Exhibits 14.5, 14.7 
and 14.9 where there were separate scales for row and column points).

1.  Compositional data have the property that for each sample its set of values, 
called components, sum to a constant, usually 1 (for proportions) or 100 (for 
percentages). 

2.  Because of this constant sum property, called the property of closure, many 
conventional statistics calculated on the components, such as the correlation 
coeffi cient, are inappropriate because they change when subcompositions are 
formed from a subset of components. Measures that do not change are said to 
have the property of subcompositional coherence. 

3.  The log-ratio transformation implies analysing all the pairwise ratios between 
components on a logarithmic scale. Ratios do not change in subcompositions 
and are thus subcompositionally coherent.

4.  Log-ratio analysis (LRA) is a dimension reduction technique like PCA and 
CA that visualizes all the pairwise log-ratios in a biplot along with the sample 
points. Links between pairs of components in the biplot give directions of the 
log-ratio biplot axes, onto which samples can be projected to estimate the cor-
responding log-ratios. 

5.  CA turns out to have a strong theoretical link to LRA and, although not sub-
compositionally coherent, is close to being so. It provides a good alternative 
to LRA, especially when there are zero values in the data and the log-ratio ap-
proach can not be applied unless the zeros are substituted with positive values.

6.  The contribution biplot is a valuable way to separate out components in the 
log-ratio analysis that are important for the interpretation.
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