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Chapter 

Canonical Correspondence Analysis

PCA, CA and LRA operate on a single data matrix, and have similar ways of 
reducing the high dimensionality of the data to a low-dimensional approxima-
tion for ease of interpretation. The low-dimensional views of the data are the 
best in terms of the least-squares criterion in each case, accounting for a maxi-
mum amount of variance while simultaneously minimizing the unexplained 
variance. Often additional data are available, which can be related afterwards 
to an existing ordination. One of the most common situations in ecology is 
when the data consist of biological measurements (e.g., species abundances) 
at different locations, and in addition there are various environmental vari-
ables observed at the locations. We have shown how biological data can be 
optimally displayed with respect to ordination axes and then how the environ-
mental variables can be related to these dimensions. The reverse can also be 
done, fi rst optimally displaying the environmental data and then fi tting the 
biological data to the results. In either case these relationships might be weak. 
Ecologists may be more interested in that part of the biological information 
that is more directly related to the environmental information. This environ-
mentally related part of the biological variance is also multidimensional, so we 
again resort to ordination to interpret it through dimension reduction. Meth-
ods that relate two sets of data are often described as canonical in statistics, and 
this chapter deals mainly with one of the most popular in ecology, canonical 
correspondence analysis.
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Response and 
explanatory variables

Indirect gradient analysis

In Chapter 10 we looked at the introductory data set “bioenv” in detail and made 
regression biplots using two of the environmental variables, pollution and depth, 
as the support of the biplot, or two so-called canonical dimensions that were obtained 
by maximizing the correlation between the biological and environmental data sets. 
Since then we have learned a bit more about analysing abundance data using CA, so 
in this chapter we will introduce a variant of CA, called canonical correspondence analy-
sis (CCA), which is appropriate for this particular combination of biological and 
environmental measurements on the same samples. Recalling Exhibit 1.1, there 
were 30 samples and the fi ve biological variables, regarded as response variables, 
accompanied by four environmental variables, of which three are on continuous 
scales and one on a categorical scale. The objective is to fi nd out how much of the 
variance (in the CA sense, in other words, inertia) is accounted for by the environ-
mental variables and to interpret the relationship. In this approach the two sets of 
variables are considered asymmetrically: the biological data are the responses (like 
the “Y” variables in a regression) and the environmental variables are the explanatory 
variables, or predictors (like the “X” variables). This is different from the canonical 
correlation analysis of Chapter 10, which treated the two sets of data symmetrically 
and would have been the same if the two sets of variables were interchanged.

Before explaining CCA, let us fi rst consider the CA of the 305 matrix of bio-
logical data and, as before, the ways of displaying the environmental variables on 
the CA biplot. Exhibit 15.1 shows the row-principal contribution biplot of the 
samples and species, which means that the distances between the samples are 
approximate chi-square distances between their profi les, and the standardized 
species (standardized in the CA sense – see Chapter 13) have been regressed by 
weighted least-squares on the two CA dimensions and are depicted by their re-
gression coeffi cients. The total inertia of the biological data is equal to 0.544 and 
the axes account for 0.288 (53.0%) and 0.121 (22.2%) respectively, that is 75.2% 
of the total. Both 75.2% of the variance of the sample points and 75.2% of the 
variance of the species is explained by this solution.

While the variance explained for the species abundance data is the best possible 
according to the optimization criterion in CA, the regressions of the environmen-
tal variables are much lower and can vary a lot in terms of variance explained:

Depth 30.4%

Pollution 69.5%

Temperature 2.1%

C (clay) 3.4%

S (sand) 9.9%

G (gravel) 18.7%
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Exhibit 15.1:
CA biplot of the biological 
data in the “bioenv” 
data set, with samples in 
principal coordinates and 
species in contribution 
coordinates. The one 
discrete and three 
continuous environmental 
variables are shown 
according to their regression 
coefficients and the discrete 
variable’s categories are 
additionally shown (in 
black) at the centroids 
of the samples in the 
corresponding categories

Notice that dummy variables such as the sediment categories C, S and G (the 
gray points in Exhibit 15.1), with values of 0 and 1, will always have low variance 
explained. The other way of showing the categories is as centroids of the samples 
(the black points in Exhibit 15.1) – this can be achieved by adding three extra 
rows to the data matrix where the abundances of the species are aggregated 
across the samples for each sediment type, and declaring these additional rows as 
supplementary points. These additional rows are as follows:

 a b c d e 

C 105  46  73  81 27

S 103  70 115 104 32

G 196 146  64 142 30

The (row) profi les of the sediment categories are exactly the centroids shown in 
Exhibit 15.1. These centroids do not lie on the same vector as the dummy vari-
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Direct gradient analysis

ables, but there is a close mathematical relationship between these alternative sets 
of coordinates for category points added to the display, which depends on the 
mass of each category and the parts of inertia on each axis. In any case, what we 
are assured of is that the corresponding categories always lie in the same quadrant 
(one of the four regions defi ned by the two ordination axes), and if the parts of 
inertia are similar, then the centroids will lie very close to the dummy variable 
biplot axis.

This type of analysis in Exhibit 15.1 is called indirect gradient analysis: fi rst an ordi-
nation is obtained optimally displaying the samples and response variables (here, 
the species), and then the explanatory variables are related to the ordination 
axes. 

In indirect gradient analysis the relationship between the explanatory variables 
and the response variables is conditioned on the ordination of the response 
variables. One could imagine a situation in which the main dimensions of the 
responses have little relationship with the explanatory variables, because this re-
lationship is to be found on less important dimensions of the response data. So, 
in order to focus specifi cally on the relationship between biological and environ-
mental variables in this example, we fi rst make a projection of the biological vari-
ables into the space of the environmental variables. This is also called constrained 
or restricted ordination, because a condition is introduced that the ordination axes 
must be linear functions of the environmental variables. 

There are three continuous variables and three dummy variables, but – as in 
regression analysis – the dummy variables count for one less because of their 
interdependency, so there are fi ve dimensions in the explanatory variable space. 
The fi rst step then is to project the species response data into this space, which 
also means we eliminate all variance in the response data that is not correlated 
linearly with the explanatory variables – we are only interested in that part of 
the variance that is correlated with the environmental variables. The total iner-
tia of the species data was, as we reported earlier, 0.544, and it turns out that the 
amount 0.249 of this inertia is linearly related to the environmental variables, 
i.e. 45.8% of the total. So from now on we are only interested in this constrained 
part of the inertia. 

The analysis then continues as a regular CA in this restricted fi ve-dimensional 
space, to fi nd the axes that explain a maximum of this constrained inertia – 
Exhibit 15.2 shows the result of what is now a canonical correspondence analysis 
(CCA), in the form of a triplot of samples, species and environmental variables. 
Almost all (96.3%) of this constrained inertia of 0.249 is explained in the new 
ordination map. Pollution is the most important variable on the fi rst axis, 
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Exhibit 15.2:
Canonical correspondence 
analysis triplot of “bioenv” 
data. The row-principal 
scaling with species in 
contribution coordinates 
is again shown, as well 
as the environmental 
variables regressed onto the 
ordination axes. Percentages 
of inertia explained are with 
respect to the restricted 
inertia

whereas depth is the most important on the second. Because the regressions 
of the environmental variables are performed on the sample principal coor-
dinates that have much less variance on the second axis, depth’s regression 
coeffi cient on the second axis is large and the variable gives the impression 
that it is more important than pollution. If we wanted comparability between 
the coordinates of the gradient vectors of the environmental variables, the bi-
plot should be made using the standard coordinates of the samples, as in the 
regression biplots of Chapter 10. 

The variances explained by the CCA axes of the environmental variables are now 
much higher than before, due to the constraining of the solution:
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Restricted ordination 
in PCA and LRA

CCA as the analysis 
of weighted averages

Depth 85.3%

Pollution 99.1%

Temperature 3.3%

C (clay) 8.8%

S (sand) 14.8%

G (gravel) 33.5%

Notice again that the dummy variables, by their very nature of having only values 
of 0 and 1, cannot attain a high percentage of variance explained – this issue is 
dealt with in the next chapter.

In the CCA described above, we have analysed the inertia of the abun-
dance data in the space constrained by the environmental variables. The 
constrained space is formed by axes that are predictions based on linear 
regression on the environmental variables. In other applications research-
ers might be more interested in the inertia not correlated with a particular 
environmental variable or variables – for example, it may be of interest to 
partial out a known effect such as a latitudinal gradient. Exploring this uncon-
strained part is called partial CCA, which will be illustrated in the case study 
of Chapter 19.

The constrained version of CA illustrated above is similarly applicable to PCA 
and LRA. When the responses are continuous variables on an interval scale, then 
the version of PCA restricted in terms of a separate set of explanatory variables is 
called redundancy analysis. Similarly, when the responses are compositional data 
and LRA is applicable, it is possible to restrict the solution to be linearly related 
to predictor variables. The idea is the same in each case: project the data, with 
its particular distance function, into the space of the explanatory variables, and 
then carry on as before. We continue with CCA, which is the most popular of 
these options.

There is another way of thinking about CCA, in terms of the weighted aver-
ages of the explanatory variables, using the relative abundances of the species as 
weights. Exhibit 15.3 shows this variables-by-species table, computed as follows. 
Take species a and variable Depth as an example. The relative frequencies of spe-
cies a (i.e., the column profi le) are 0, 26/4040.0644, 0, 0, 13/4040.0322, 
31/4040.0767, and so on (see Exhibit 1.1). These are used to compute a 
weighted average of the depth values at each site:

0720.0644750590640.0322610.076794···78.77
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Exhibit 15.3:
Weighted averages of the 
environmental variables, 
using the relative 
abundances of each species 
across the samples as 
weights

Coding of explanatory 
variables

So if the species tends to occur with higher abundance in deeper samples, then 
the weighted average will be high. Species c, for example, must be occurring in 
higher abundances in samples with high pollution, and species e in samples of 
lower depths, which can be verifi ed in Exhibit 15.2. In the case of the dummy 
variables for sediment, the three values for each species sum to 1 and code the 
proportion of total abundance of that species in each category.

To obtain the equivalent result as a CCA by analysing the matrix in Exhibit 15.3 
needs some technical explanation, since it involves the covariance matrix of the 
explanatory variables, but the point is that, once the appropriate transforma-
tions are made, the inertia in this table is identical to the restricted inertia of 
0.249. Knowing this equivalence gives an extra way of thinking about the con-
nection between the species abundances and environmental variables in the 
triplot. 

CCA (or the equivalent constrained methods in PCA and LRA) adds the con-
dition that the ordination axes should be linearly related to the explanatory 
variables. Linearity of the relationship might not be realistic in most circum-
stances, so just like in regression analysis we can contemplate introducing 
transformations of the variables, for example, logarithmic transformation, or 
including polynomial terms, or fuzzy coding. In Chapter 11 we discussed an 
indirect gradient analysis of the “Barents fi sh” data set, coding the environ-
mental variables either linearly or fuzzily, and also the geographical position 
of the samples either in a crisp way in terms of their regional location, or in 
a fuzzy way based on fuzzy latitude and longitude coordinates. In Chapter 13 
various CAs of this same data set were considered. So now we can see how CCA 
performs on these data, and we will contrast the different ways of coding the 
environmental variables. Exhibit 15.4 shows the CCA triplot based on linear 
constraints on the two environmental variables and the 10 dummy variables 
for the spatial position. Of the total inertia of 2.781 in the abundance data, the 
environmental variables account for 1.618, that is 58.2%. Of this latter amount, 
61.9% is displayed in Exhibit 15.4.

 a b c d e 

Depth 78.77 81.16 72.58 79.27 70.17

Pollution 3.11 3.24 5.49 3.78 3.64

Temperature 3.03 3.06 3.04 3.06 3.11

C 0.26 0.18 0.29 0.25 0.30

S 0.26 0.27 0.46 0.32 0.36

G 0.49 0.56 0.25 0.43 0.34
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Exhibit 15.4:
CCA of “Barents fish” 
data, showing highly 

contributing species in 
larger font and the two 

continuous environmental 
variables according to their 

regressions on the axes. 
The 89 sampling sites 

are not shown, but their 
averages in the eight 

regional groupings are

As a contrast, we try the CCA using depth and temperature coded into four fuzzy 
categories each, and the spatial position into nine fuzzy categories as explained 
in Chapter 11, leading to Exhibit 15.5. This time slightly more of the biological-
environmental relationship is captured in the restricted space (1.700, i.e. 61.1%, 
compared to 58.2% previously), which is understandable since nonlinearities 
in depth and temperature can be picked up thanks to the fuzzy coding. In fact, 
temperature does appear to have a nonlinear pattern in the triplot, with low and 
high temperatures being associated with lower values of depth. 60.4% of this con-
strained ordination is explained in the triplot. 

A distinct advantage of Exhibit 15.5 over Exhibit 15.4 is that all the environmen-
tal variables, including spatial ones, are displayed in the same way, in this case as 
weighted averages of the sample positions. To explain this weighted averaging 
more specifi cally, Exhibit 15.6 shows the positions of the 89 sample sites cor-
responding to the CCA result of Exhibit 15.5. Every station has associated with 
it the values of each fuzzy category, that is 17 values between 0 and 1 inclusive 
for the 4 fuzzy values of depth, 4 fuzzy values for temperature and 9 fuzzy values 
for spatial position. For example, for the fuzzy category d4 the 89 samples have 
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Exhibit 15.5:
CCA triplot of “Barents fish” 
data, with environmental 
variables coded into fuzzy 
categories. Again, sample 
sites are not shown (see 
Exhibit 15.6) but the 
weighted averages of all 
the fuzzy coded categories 
are, including the nine fuzzy 
spatial categories (eight 
compass points and central 
category)

CCA as a discriminant 
analysis

59 values equal to 0 and 30 positive values varying from 0.020 to 1.000. These 30 
values are shown in Exhibit 15.6 marking their corresponding sample positions, 
the remaining samples all having zero weights. These 30 samples are almost all 
in the upper and especially upper left of the ordination and the position of d4 
is at the weighted average of the positions of these 30 samples using those fuzzy 
values as weights. Especially in the upper left, those marked stations have high 
values of depth and thus high fuzzy values on category d4 (the maximum depth 
is indicated by the value 1), and this leads to d4 being where it is. In a similar 
way, all the other fuzzy categories have positions according to the weights placed 
on the sample points by the respective positive values in the fuzzy coding of the 
categories. 

The difference between CA of a table of abundances, say, and CCA of the same 
table constrained by some environmental variables, is that CCA tries to separate 
the samples on dimensions coinciding with the environmental variation. Thus, 
in Exhibits 15.5 and 15.6, which one can imagine overlaid to give the triplot of 
samples, species and variables, separation of the samples is achieved so that the 
categories of depth, temperature and spatial position are optimally separated in 
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Exhibit 15.6:
Positions of 89 samples 

in the CCA of Exhibit 15.5. 
Each category is at the 

weighted average of the 
sample positions, using the 
fuzzy values as weights. The 
positive values for category 
d4 are shown numerically 

at the respective sample 
positions

the ordination. If there is a single environmental categorical variable, coded as 
a set of (crisp) dummy variables, then CCA with that variable as the constrain-
ing variable simplifi es to a CA that can be thought of as a discriminant analysis 
between the categories. For example, suppose in the same data set we had a 
sediment type associated with each sample. Then all the abundances could be 
aggregated into each sediment type to obtain a sediment-by-species table where 
the (i,j)-th element would be the total abundance of species j in the sample with 
sediment type i. The CA of this aggregated table, with all the individual samples 
as supplementary points, is identical to the CCA with sediment as a categorical 
constraining variable.
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SUMMARY:
Canonical 
correspondence analysis

1.  PCA, LRA and CA all have their constrained versions when additional informa-
tion is available on each biological sample, and these additional variables are 
considered as predictors of the biological variation. 

2.  Canonical correspondence analysis (CCA) is the CA of an appropriate table 
regarded as responses (for example, an abundance matrix) where the dimen-
sions of the result are constrained to be linear combinations of the predictor 
variables (for example, environmental variables). These predictor variables 
can be continuous or discrete.

3.  CCA projects the response data onto the space of the predictors, and performs 
a CA in this restricted space. There is thus a splitting of the response inertia 
into two parts: the part related linearly to the predictors and the part unrelated 
to the predictors. The inertia of the former part becomes the new total inertia 
that is decomposed along ordination axes of the CCA. The biological variation 
that is unrelated to chosen predictors can also be of interest, especially when 
the variation due to a predictor variable needs to be partialled out of the analy-
sis – this is then called partial CCA. 

4.  There are several advantages of coding the predictor variables fuzzily: non-
linear relationships between the ordination axes and the predictors can be 
handled, more of the response variable variance is usually explained, and 
the interpretation of the triplot is unifi ed since all predictors are coded in a 
categorical way.

5.  When there is just one predictor that is discrete, then the CCA constrained by 
this predictor is equivalent to a CA of the table of response data aggregated 
into the predictor categories, which in turn is a type of discriminant analysis 
between these categories.
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