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Total variance or inertia

Chapter 

Variance Partitioning in PCA, LRA, CA and CCA

Principal component analysis (PCA, log-ratio analysis (LRA) and correspondence 
analysis (CA) form one family of methods, all based on the same mathematics 
of matrix decomposition and approximation by weighted least-squares. The dif-
ference between them is the type of data they are applied to, which dictates the 
way distances are defi ned between samples and between variables. In all methods 
there is a measure of total variance as a weighted sum of squares of the elements 
of a matrix that is centred or double-centred – equivalently this total variance 
can be defi ned as a weighted sum of squared distances. This total variance can 
be broken down into various parts, parts for each row and for each column, parts 
along dimensions, and parts for each row and each column along the dimensions. 
This neat decomposition of variance provides several diagnostics to assist in the 
interpretation of the solution. The same idea applies to constrained analyses such 
as canonical correspondence analysis (CCA), where similar decompositions take 
place in the constrained space.
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PCA, LRA and CA all involve the decomposition of a matrix into parts across 
dimensions, from the most important dimension to the least important. Each 
method has a concept of total variance, also called total inertia when there are 
weighting factors. This measure of total variation in the data set is equal to the 
(weighted) sum of squared elements of the matrix being decomposed, and this 
total is split into parts on each ordination dimension. Let us look again at the 
matrix being decomposed as well as the total variance in each case.

16



 MULTIVARIATE ANALYSIS OF ECOLOGICAL DATA

204

The simplest case is that of PCA on unstandardized data, applicable to interval-
level variables that are all measured on the same scale, for example the growths in 
millimetres of a sample of plants during the 12 months of the year (i.e., a matrix 
with 12 columns), or ratio-scale positive variables that have all been log-trans-
formed. Suppose that the nm cases-by-variables data matrix is X, with elements 
xi j , then the total variance of the data set, as usually computed by most software 
packages, is the sum of the variances of the variables:

 ( )= ∑∑ x x
n ij jij

1
1

2sum of variances
−

⎡

⎣
⎢

⎤

⎦
⎥−  (16.1)

Inside the square brackets is the variance of the j -th column variable of X, and 
these variances are summed over the columns. Since we have introduced the con-
cept of possible row and column weightings, we often prefer to use the following 
defi nition of total variance:

 (∑∑total variance sum of variances)= = −1 12

mn
n
mn

x xij jji
( )−  (16.2)

That is, we divide by n and not n1 in the variance computation, thus allocating 
an equal weight of 1/n to each row, and then average (rather than sum) the vari-
ances, thus allocating a weight of 1/m to each variable. So “total variance” here 
could rather be called average variance. This defi nition can easily be generalized 
to differential weighting of the rows and columns, so if the rows are weighted by 
r1, …, rn and the columns by c1, …, cm, where weights are nonnegative and sum to 
1 in each case, then the total variance would be:

 ∑∑ji
total variance = rr c x xi j ij j( )− 2

 (16.3)

where the variable means x j are now computed as weighted averages ∑i
r xi ij .

When continuous variables on different scales are standardized to have variance 
1, then (16.1) would simply be equal to m, the number of variables. For our aver-
aged versions (16.2) and (16.3) would be equal to (n1)/n, or 1 if variance is 
defi ned using 1/n times the squared deviations, rather than 1/(n1).

In the case of LRA of a matrix N of positive values, all measured on the same 
scale (usually proportions or percentages) and assuming the most general case of 
row- and column-weighting, the data are fi rst log-transformed to obtain a matrix 
Llog(N), and then double-centred using these weights. The total variance is 
then the weighted sum of squares of this double-centred matrix:
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 ∑∑ji
r ci j(=total log-ratio variance ll l l lij i j− − +• • ••)

2
 (16.4)

where a subscript  indicates weighted averaging over the respective index. An 
equivalent formulation is to sum the squares of all the log odds ratios in the ma-
trix formed by a pair (i, i) of rows and a pair (j, j) of columns, each weighted by 
the respective pairs of weights:

 ∑ ∑∑ ∑ r r c ci i j j= ′ ′ ltotal log-ratio variance oog
n n
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 (16.5)

The odds ratio is a well-known concept in the analysis of frequency data: an odds 
ratio of 1 is when the ratio between a pair of row elements, say, is constant across 
a pair of columns. For example, in the fatty acid data set of Chapter 14, when two 
fatty acids j and j in two different samples i and i have the same ratio (e.g,. one 
is twice the other: ni j/ni jnij/nij2), then log(1)0 and no contribution to 
the total variance is made. The higher the disparities are in comparisons of this 
kind, the higher is the log-ratio variance.

Finally, in CA, which applies to a table N of nonnegative variables all meas-
ured on the same scale, usually count data, the total variance (called inertia in 
CA jargon) is closely related to the Pearson chi-square statistic for the table. 
The chi-square statistic computes expected values for each cell of the table 
using the table margins, and measures the difference between observed and 
expected by summing the squared differences, each divided by the expected 
value:

 ∑∑chi-square  statistic (observed expected)
expected

2

χ 2 = −
ji

 (16.6)

where the observed valueni j and the expected valueni nj/n, and the sub-
scriptindicates summation over the respective index. The chi-square statistic 
increases with the grand total n of the table (which is the sample size in a cross-
tabulation), and the inertia in CA is a measure independent of this total. The 
relationship is simply as follows:

 total inertiia = ++χ 2 n  (16.7)

In spite of the fact that the defi nitions of total variance in PCA, LRA and CA 
might appear to be different in their formulations, they are in fact simple varia-
tions of the same theme. Think of them as measuring the weighted dispersion of 
the row or column points in a multidimensional space, according to the distance 
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Variances on principal 
axes

Decomposition of 
principal variances into 

contributions

Exhibit 16.1:
Schematic explanation 

of the decomposition 
of total variance into 

parts. First, variance is 
decomposed from 

largest to smallest parts 
(1, 2, …) along 

successive principal 
axes. Then each  can 

be decomposed into 
contributions either 

from the rows or from 
the columns. These part 

contributions to each axis 
provide diagnostics for 

interpretation of the results

function particular to the method: Euclidean distance (unstandardized or stand-
ardized) for PCA, log-ratio distance for LRA and chi-square distance for CA.

The dimension-reduction step in all these methods concentrates a maximum 
amount of variance on the fi rst ordination dimension, then – of the remaining vari-
ance – a maximum on the second dimension, and so on, until the last dimension, 
which has the least variance, in other words the dimension for which the dispersion 
of the rows or columns is closest to a constant. These dimensions, also called prin-
cipal axes, defi ne subspaces of best fi t of the data – we are mainly interested in two-
dimensional subspaces for ease of interpretation. We have seen various scree plots 
of these parts of variance on successive dimensions (Exhibits 12.6 and 13.3), which 
are eigenvalues of the matrix being decomposed by each method, and usually re-
ferred to as such in program results and denoted by the Greek letter , sometimes 
also called principal variances or principal inertias. What we are interested in now is 
the decomposition of these eigenvalues into parts for each row or each column.

Thanks to the least-squares matrix approximation involved in this family of 
methods, there is a further decomposition of each ordination dimension’s vari-
ance into part contributions made by each row and each column. The complete 
decomposition is illustrated schematically in Exhibit 16.1. Each eigenvalue can 

Axis 1 

Rows Columns

…

Axis 2 

Rows Columns

etc.

etc.

λ2λ1

λ1 λ2 λ3 λ4

Total variance 
decomposed 

into parts along 
principal axes
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Exhibit 16.2:
Tabulation of the 
contributions of five species 
in data set “bioenv” to the 
four principal inertias of CA: 
the columns of this table 
sum to the eigenvalues 
(principal inertias) and the 
rows sum to the inertia of 
each species

Exhibit 16.3:
Contributions of the species 
to the principal inertias and 
the total inertia (Exhibit 
16.2 re-expressed as values 
relative to column totals)

be decomposed into parts, called contributions, either for the rows or for the 
columns. An example is given in Exhibit 16.2, for the CA of the “bioenv” data 
(see Exhibit 1.1), showing the contributions of each of the fi ve species to the four 
dimensions of the CA. The grand total of this table, 0.5436, is equal to the total in-
ertia in the data set. This is decomposed into four principal inertias, 10.2882, 
20.1205, 30.0735, 40.0614 (column sums), while the values in each 
column are the breakdown of each principal inertia across the species. The row 
sums of this table are the inertias of the species themselves, and the sum of their 
inertias is again the total inertia. 

The actual values in Exhibit 16.2 are by themselves diffi cult to interpret – it is 
easier if the rows and columns are expressed relative to their respective totals. 
For example, Exhibit 16.3 shows the columns expressed relative to their totals. 
Thus, the main contributors to dimension 1 are species a and c, accounting for 
23.7% and 69.5% respectively, while species e is the overwhelming contributor 
to dimension 2, accounting for 82.1% of that dimension’s inertia. To single out 
the main contributors, we use the following simple rule of thumb: if there are 5 
species, as in this example, then the main contributors are those that account for 
more than the average of 1/50.2 of the inertia on the dimension. In the last 
column the relative values of the inertias of each point is given when summed 
over all the dimensions, so that c is seen to have the highest inertia in the data 
matrix as a whole. 

 dim1 dim2 dim3 dim4 Sum

a 0.0684 0.0013 0.0300 0.0025 0.1022

b 0.0107 0.0202 0.0108 0.0278 0.0694

c 0.2002 0.0001 0.0070 0.0012 0.2086

d 0.0013 0.0000 0.0248 0.0254 0.0515

e 0.0077 0.0989 0.0009 0.0045 0.1120

Sum 0.2882 0.1205 0.0735 0.0614 0.5436

 dim1 dim2 dim3 dim4 All

a 0.2373 0.0110 0.4079 0.0410 0.1880

b 0.0370 0.1676 0.1463 0.4527 0.1277

c 0.6947 0.0005 0.0959 0.0200 0.3837

d 0.0045 0.0001 0.3373 0.4130 0.0947

e 0.0266 0.8208 0.0126 0.0733 0.2060

Sum 1.0000 1.0000 1.0000 1.0000 1.0000
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Contribution coordinates

Correlations between 
points and axes

Exhibit 16.4:
Contributions of the 

dimensions to the inertias 
of the species (Exhibit 16.2 

re-expressed as values 
relative to row totals). In 
the last row the principal 

inertias are also expressed 
relative to the grand total

The alternative way of interpreting the values in Exhibit 16.2 is to express each 
of the rows as a proportion of the row totals, as shown in Exhibit 16.4. This shows 
how each species’ inertia is distributed across the dimensions, or in regression ter-
minology, how much of each species’ inertia is being explained by the dimensions 
as “predictors”. Because the dimensions are independent these values can be 
aggregated. For example, 66.9% of the inertia of species a is explained by dimen-
sion 1, and 1.3% by dimension 2, that is 68.2% by the fi rst two dimensions. Notice 
in the last row of Exhibit 16.4 that the eigenvalues are also expressed relative to 
their total (the total inertia), showing overall how much inertia is explained by 
each dimension. For example, 53.0% of the total inertia of all the species is ex-
plained by dimension 1, but dimension 1 explains different percentages for each 
individual species: 66.9% of a, 15.4% of b, etc.

Exhibit 16.3 shows the contributions of each species to the variance of each di-
mension. These contributions are visualized in the contribution biplot, described 
in Chapter 13. Specifi cally, the contribution coordinates are the square roots of 
these values, with the sign of the respective principal or standard coordinate. For 
example, the absolute values of the contribution coordinates for species a on the 
fi rst two dimensions are 0.23730.487 and 0.01100.105 respectively, with 
appropriate signs. Arguing in the reverse way, in Exhibit 13.5 the contribution 
coordinate on dimension 1 of the fi sh species Bo_sa is 0.874, hence its contribu-
tion to dimension 1 is (0.874)20.763, or 76.3%. 

Just like the signed square roots of the contributions of points to axes in Exhibit 16.3 
have a use (as contribution coordinates), so the signed square roots of the contri-
butions of axes to points in Exhibit 16.4 also have an interesting interpretation, 
namely as correlations between points and axes, also called loadings in the factor 
analysis literature. For example, the square roots of the values for species a are 

0.66900.818, 0.01300.114, 0.29340.542, 0.02460.157. These are the 
absolute values of the correlations of species a with axis 1, with signs depending on 
the sign of the respective principal or standard coordinates. Species a is thus highly 
correlated with axis 1, and to a lesser extent with axis 3. Remember that the four 

 dim1 dim2 dim3 dim4 Sum

a 0.6690 0.0130 0.2934 0.0246 1.0000

b 0.1536 0.2910 0.1550 0.4004 1.0000

c 0.9600 0.0003 0.0338 0.0059 1.0000

d 0.0251 0.0002 0.4820 0.4928 1.0000

e 0.0684 0.8832 0.0083 0.0402 1.0000

All 0.5302 0.2216 0.1352 0.1129 1.0000
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Contributions in 
constrained analyses

Exhibit 16.5:
(a) Raw contributions to 
four dimensions by the 
species in the CCA of the 
“bioenv” data (see Chapter 
15). The row sums are the 
inertias of the species in 
the restricted space, while 
the column sums are the 
principal inertias in the 
restricted space. (b) The 
contributions relative to 
their column sums (which 
would be the basis of the 
CCA contribution biplot. (c) 
The contributions relative 
to their row sums (i.e., 
squared correlations of 
species with axes)

ordination dimensions function as independent predictors of the rows or columns 
of the data set, with the fi rst dimension explaining the most variance, the second 
dimension the next highest, and so on. Each value in Exhibit 16.4 is a squared cor-
relation and can be accumulated to give an R 2 coeffi cient of determination, thanks 
to the zero correlation between the dimensions. Summing these for the fi rst two di-
mensions in Exhibit 16.4 gives R 2’s for the fi ve species of 68.2%, 44.5%, 96.0%, 2.5% 
and 95.2% respectively – clearly, species d is very poorly explained by the fi rst two 
dimensions, and from Exhibit 16.4 it is mainly explained by the last two dimensions. 

In canonical correspondence analysis the dimensions are constrained to be linear 
combinations of external predictors. This restricts the space in which dimension 
reduction will take place. As seen in Chapter 15, for the “bioenv” data set, the 
amount of inertia in this constrained space is equal to 0.2490, compared to the 
0.5436 in the unconstraineded space. This lower value of 0.2490 now becomes the 
total inertia that is being explained, otherwise everything is as before. Exhibit 16.5 

 dim1 dim2 dim3 dim4 Sum

a 0.9291 0.0058 0.0587 0.0064 1.0000

b 0.6519 0.1757 0.1459 0.0266 1.0000

c 0.9977 0.0004 0.0004 0.0015 1.0000

d 0.0042 0.6438 0.0003 0.3516 1.0000

e 0.0386 0.9410 0.0168 0.0036 1.0000

All 0.8066 0.1559 0.0242 0.0133 1.0000

 dim1 dim2 dim3 dim4 All

a 0.1962 0.0064 0.4127 0.0818 0.1703

b 0.0652 0.0910 0.4860 0.1614 0.0807

c 0.7321 0.0015 0.0093 0.0682 0.5919

d 0.0001 0.1018 0.0003 0.6526 0.0247

e 0.0063 0.7993 0.0916 0.0360 0.1324

Sum 1.0000 1.0000 1.0000 1.0000 1.0000

 dim1 dim2 dim3 dim4 Sum

a 0.0394 0.0002 0.0025 0.0003 0.0424

b 0.0131 0.0035 0.0029 0.0005 0.0201

c 0.1470 0.0001 0.0001 0.0002 0.1474

d 0.0000 0.0040 0.0000 0.0022 0.0061

e 0.0013 0.0310 0.0006 0.0001 0.0330

Sum 0.2008 0.0388 0.0060 0.0033 0.2490

(a)

(b)

(c)
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Exhibit 16.6:
Squared correlations of each 

predictor variable with each CCA 
ordination axis. In computing 
the correlations the weights 

of the cases (sites in this 
example) are used. The values 

can be accumulated across 
the columns of this table to 
give proportions of variance 

explained by sets of dimensions

Exhibit 16.7:
Improved squared correlations 
of sediment categories with 

the four ordination axes 
of the CCA, considering 

them as supplementary row 
points that aggregate the 

species abundances in the 
sites corresponding 

to each category

shows the tables corresponding to Exhibits 16.2, 16.3 and 16.4 for the CCA. Having 
restricted attention to that part of the variance correlated with the external predic-
tors (depth, pollution, temperature and sediment), it now appears that a much 
larger percentage of the inertia is explained on the fi rst two axes. Thus the species 
are better explained now according to Exhibit 16.5(c), but we should emphasize 
that we are explaining only the restricted part of the species inertia in the space of 
the environmental predictors. 

Finally, each of the external predictors can be correlated with the axes, and 
the proportion of the predictors’ variance explained by the dimensions can be 
computed. Exhibit 16.6 shows the squared correlations with each axis, where 
the sites are weighted by their usual masses in the computation of the correla-
tion. Squared correlations can be accumulated to give proportions of variance 
explained. 

For example, depth has 0.1290.7230.852, i.e. 85.2%, of its variance ex-
plained by the fi rst two dimensions. Pollution is almost 100% explained by the 
fi rst two dimensions, while temperature is very poorly explained. The dummy 
variables for sediment are also poorly explained, but this is mostly due to the fact 
that they take on only two values. An improved measure of fi t can be obtained by 
considering the categories rather as groupings of cases (i.e., supplementary row 
points rather than dummy variable column points in the CCA), just like we dis-
played categories as centroids of the site points corresponding to the respective 
categories. Exhibit 16.7 shows the squared correlations of the sediment categories 

 dim1 dim2 dim3 dim4 Sum

Depth 0.129 0.723 0.081 0.004 0.938

Polln 0.980 0.011 0.008 0.000 0.999

Temp 0.000 0.033 0.496 0.462 0.992

C 0.010 0.078 0.511 0.128 0.727

S 0.118 0.030 0.012 0.040 0.200

G 0.169 0.165 0.269 0.249 0.852

 dim1 dim2 dim3 dim4 Sum

C 0.023 0.079 0.897 0.001 1.000

S 0.186 0.284 0.526 0.004 1.000

G 0.571 0.226 0.191 0.012 1.000
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SUMMARY:
Variance partitioning in 
PCA, LRA, CA and CCA

as row profi les with the four dimensions of the CCA solution. Thus gravel has a 
variance explained by the fi rst two dimensions of 79.7%, compared to 33.4% ac-
cording to Exhibit 16.6. 

1.  All these methods that analyse a rectangular data table share a common theory 
and a common objective – what differentiates them is the distance function 
inherent in structuring the space of the rows and columns, which in turn is a 
function of the type of data being analysed. Weights for the rows and columns 
are implicit in all the methods, even when the weights are equal. 

2.  In each method, based on the weights and the metric, a matrix is formed for 
dimension reduction, and the total variance of the data is measured by the 
sum of squares of that matrix. In PCA it is the sum (or average) of the vari-
ances of the variables; in LRA it is the weighted sum of all logarithms of the 
odds ratios in the matrix; in CA it is the total inertia, the chi-square statistic 
divided by the grand total of the table; in CCA it is that part of the total inertia 
that is projected onto the space of the explanatory variables.

3.  The total variance or inertia is decomposed along principal axes, in decreas-
ing parts, such that the part accounted for by the fi rst axis is the maximum, 
and then of the remaining inertia the second axis accounts for the maximum, 
and so on.

4.  Each part of variance on the principal axes is decomposed in turn into con-
tributions by the rows (usually cases) or by the columns (usually variables) of 
the data table. 

5.  These contributions can be used as diagnostics in two ways: interpreting how 
each axis is built up from the rows or from the columns, or interpreting how 
each row or column is explained by the axes. The relative contributions of the 
axes to the variances of a row or column are squared correlations and can be 
summed to obtain a R 2 measure of explained variance of the row or column.

6.  The contributions of the columns to the axes are what are visualized in the 
contribution biplot, because the columns usually defi ne the variables (e.g., 
species) of the table. In principle, one can defi ne contribution coordinates 
for the rows as well.

7.  All of the above applies similarly to constrained forms of these methods, where 
the total variance is restricted to the part that is directly related to a set of ex-
planatory variables. 
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