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Univariate test of group 
difference

Chapter 

Inference in Multivariate Analysis

We have presented multivariate analysis as the search for structure and rela-
tionships in a complex set of data comprising many sampling units and many 
variables. Groupings are observed in the data, similarities and differences reveal 
themselves in ordination maps, and the crucial question then arises: are these ob-
served patterns just randomly occurring or are they a signal observed in the data 
that can be considered signifi cant in the statistical sense? In this chapter we shall 
tackle this problem in two different ways: one is using bootstrapping, to assess 
the variability of patterns observed in the data, analogous to setting confi dence 
intervals around an estimated statistic, and the other is using permutation tests 
in order to compute p -values associated with the testing of different hypotheses. 
We will illustrate these computational approaches to statistical inference in two 
different situations, where group differences or associations between variables 
are being assessed. Before tackling the multivariate context we shall treat more 
familiar univariate and bivariate examples in each respective situation. 
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One of the simplest statistical tests to perform is the two-group t -test of difference 
in means between two populations, based on a sample from each population. 
Taking our “bioenv” data set as an example, suppose we aggregate the samples 
corresponding to clay (C) and sand (S) sediment (labelled as group CS), to be 
compared with the gravel sediment sample (G). We want to perform a hypothesis 
test to compare the pollution values for the 22 sites of CS with the 8 sites of G. 
The mean pollution in each group is computed as:

17
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x xCS G5 18 2 70= =. .

Performing the usual t -test and not worrying for the moment whether the assump-
tions of this test have been satisfi ed, we obtain a t -statistic (with 30228 degrees 
of freedom) of 3.22 with associated p -value for a two-sided test of 0.0032. Thus we 
would conclude that there is truly a difference in pollution between clay/sand 
and gravel samples, with gravel samples having less pollution on average. The 
estimated difference in the mean pollution is 2.48 and a 95% confi dence interval 
for the difference in the means is 0.90, 4.05. Now this simplest form of the t -test 
assumes that the data are normally distributed and that the variances are equal in 
the two groups. An alternative form of the t -test, known as the Welch test, does not 
assume equal variances and obtains a t -statistic of 4.62, a lower p -value of 0.00008 
and a much narrower 95% confi dence interval of 1.38, 3.58. If we examine the 
normality by making a normal quantile plot and using the Shapiro-Wilks test1 in 
these quite small samples, there is no strong evidence that the data are not normal. 

An alternative distribution-free approach to this test, which does not rely on the 
normality assumption, is to perform a permutation test. Under the hypothesis of 
no difference between the two groups it is assumed they come from one single 
distribution of pollution, so any observation could have been in the clay/sand 
group or the gravel group. So we randomly assign the 30 pollution observations 
to a sample consisting of 22 of the values, with the remaining 8 values in the other 
sample, and recompute the difference in the group means. The number of ways 
we can randomly separate the 30 values into two samples of 22 and 8, is:

5,852,925
30

22

30

8
= =⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟

that is, almost 6 million ways. In such a situation we do this random allocation 
a large number of times, typically 9,999 times, plus the actual observed samples, 
giving 10,000 permutations in total. The distribution of these 10,000 values, 
called the permutation distribution, is given in Exhibit 17.1 – it is the distribution 
of the difference in means under the null hypothesis of no difference. To obtain 
a p -value we see where our observed difference of 2.48 lies on the distribution, 
counting how many of the random permutations give differences higher or equal 
to 2.48, as well as lower or equal to 2.48, since the test is two-sided. There are 29 
permutations outside these limits so the p -value is 29/10,0000.0029, which is 
compatible with the p -value calculated initially for the regular t -test.

1 See Appendix C for descriptions of the functions used, and the online R code.
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Exhibit 17.1:
Permutation distribution for 
test of difference in means 
of two populations based on 
samples of size 22 and 8. 
Of the 10,000 permutations 
29 lie outside the limits 
of  2.48, hence the 
estimated p-value is 0.0029

Exhibit 17.2:
Bootstrap distributions 
of the mean pollution 
for the gravel and 
clay/sand groups, based on 
22 samples and 8 samples 
respectively, drawn with 
replacement 10,000 times 
from the original data. The 
right hand histogram is the 
bootstrap distribution of the 
differences, showing the 
limits for a 95% confidence 
interval

To estimate the variability of the estimated difference correctly, without recourse 
to distributional assumptions, we would need repeated pollution samples of size 
22 and 8 respectively from the populations of clay/sand and gravel locations from 
which the original data were obtained, which is clearly not possible since we only 
have one set of data. To simulate data from these two populations we can resort 
to bootstrapping the data. Samples are taken from the two sets of data, with replace-
ment, which means that the same observation can be chosen more than once and 
some not at all. We do this repeatedly, also 10,000 times for example, each time 
computing the difference in means, leading to the bootstrap distribution of this dif-
ference, shown in Exhibit 17.2, alongside the separate bootstrap distributions of 

Difference in means

Fr
eq

ue
nc

y

–3 –2 –1 0 1 2 3

0
5

0
0

1
,0

0
0

1
,5

0
0

2
,0

0
0

–2.48 2.48 

D
en

si
ty

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

1
.2

1
.4

Mean for gravel

1.51 3.51

2 3 4 5 6 7 2 3 41

Mean for clay/sand Difference in
means 



 MULTIVARIATE ANALYSIS OF ECOLOGICAL DATA

216

Test of association 
between two variables

Exhibit 17.3:
Permutation distribution 

based on 9,999 estimates 
of the correlation between 
depth and pollution, under 

the null hypothesis of no 
correlation, together 

with the observed value 
of 0.396. The values 
 0.396 are indicated 

– there are 315 values 
equal to or more extreme, 

hence the p-value is 0.0315 

the two populations. The bootstrap distribution is an estimate of the true distri-
bution of the differences, so to estimate the 95% confi dence interval, we cut off 
2.5% (i.e., 250 values out of 10,000) on each side of the distribution, obtaining 
the interval 1.51, 3.51. This is more in line with the confi dence interval obtained 
by the Welch method.

Another common situation in statistical inference is to test an association, for 
example correlation, that is measured between two variables. In Chapter 1 we 
calculated a correlation between pollution and depth in the “bioenv” data set 
of 0.396 and a p -value of 0.0305 according to the two-tailed t -test for a correla-
tion coeffi cient. This test relies on normality of the data but a distribution-free 
permutation test can also be conducted, as follows. Under the null hypothesis of 
zero correlation there is no reason to link any observation of depth with the cor-
responding observation of pollution in a particular sample, so we can randomly 
permute one of the data vectors. We do this 9,999 times, computing the correla-
tion coeffi cient each time, and Exhibit 17.3 is the permutation distribution. The 
observed value of 0.396 is exceeded in absolute value by 315 of these randomly 
generated ones, and so the estimated p -value is 315/10,0000.0315, almost the 
same as the t -test result. 

Bootstrapping can be performed to obtain a confi dence interval for the correla-
tion coeffi cient. Now the pairs of depth and pollution values are kept together, 
and the sampling is done from their bivariate distribution by taking 30 samples at 
a time from the data set, with replacement (again, some samples are chosen more 
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Exhibit 17.4:
Bootstrap distribution of 
the correlation coefficient, 
showing the values 
for which 2.5% of the 
distribution is in each tail 

than once, some not at all). This is done 10,000 times, and each time a correla-
tion coeffi cient is calculated, and Exhibit 17.4 shows their distribution. Cutting 
off 2.5% of the values on each tail gives a two-sided confi dence interval for the 
correlation of 0.704, 0.044. Notice that the distribution in Exhibit 17.4 is not 
symmetric, and that this 95% confi dence interval does not include zero, which is 
another way of saying that the observed correlation is signifi cant at the 5% level 
of signifi cance. 

We have not exhausted all the possible alternative approaches in the last 
two sections. For example, a nonparametric Kruskal-Wallis rank test can be 
performed to test the difference in pollution between clay/sand and gravel 
samples, leading to a p -value of 0.0017. Or a Spearman rank coeffi cient can 
be computed between depth and pollution as 0.432 and its p -value is 0.021. 
Both these alternative approaches give results in the same ball-park as those 
obtained previously. Having shown these alternative ways of assessing statistical 
signifi cance, based on statistical distribution theory with strong assumptions on 
the one hand, and using computationally intensive distribution-free methods 
on the other hand, the question is: which is preferable? It does help when the 
different approaches corroborate one another, but there is no correct method. 
However, we can eliminate methods that clearly do not fi t the theory, for exam-
ple normality-based methods should not be used when the data are clearly not 
normal. When we come to the multivariate case, however, the situation is much 
more complex, and in the absence of a theoretical basis for statistical testing, 
we rely more on the distribution-free approaches of permutation testing and 
bootstrapping.
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Exhibit 17.5:
Three-dimensional views 
of the 30 samples in the 

unstandardized (a) and 
standardized (b) Euclidean 

space of the three variables. 
Clay, sand and gravel 

samples are colour coded 
as gray, brown and green 

respectively, and their 
group average positions 

denoted by C, S and G. 
Since depth has a much 

higher range of numerical 
values than the other two 

variables, it would dominate 
the computation of inter-

group difference if the data 
were not standardized in 

some way

Unstandardized

Standardized

Temperature

Pollution

Depth

G

C

S

Temperature

Pollution

Depth

G

S

C

(a)

(b)



219

INFERENCE IN MULTIVARIATE ANALYSIS 

Multivariate test of group 
difference

Exhibit 17.6:
Permutation distribution 
of measure of intergroup 
difference in standardized 
multivariate space. There 
are 32 of the simulated 
values greater than or equal 
to the observed value of 
6.303, hence the p-value is 
32/10,000 = 0.0032 

Suppose now that we wanted to test the differences between the sediment 
groups based on all three continuous environmental variables depth, pollu-
tion and temperature. This time let us also keep the three sediment groups 
separate. Even in the univariate case, when we pass to more than two groups, 
the notion of a negative difference no longer exists – any measure of differ-
ence will be a strictly positive number. Furthermore, when we pass to more 
than one variable then the issue of standardization is crucial in the measure of 
group difference, since the variables have to contribute equitably to the meas-
ure of difference. To rub this point in even further, consider the positions of 
the samples in unstandardized and standardized coordinates in Exhibit 17.5. 
The centroids of the three sediment groups are also shown, and it is clear that 
standardization is necessary, otherwise depth would dominate any measure of 
intergroup difference. We are going to measure the difference between the 
three sediment groups by the lengths of the sides of the triangle in the stand-
ardized space – see the triangle in Exhibit 17.5(b). If these lengths are large 
then the group means are far apart, if they are small then the means are close 
together. The question then is whether they are signifi cantly far apart. The sum 
of these three lengths turns out to be 6.303. To obtain a p -value a permuta-
tion test is performed by randomly allocating the C, S and G labels to the data 
samples many times, and each time computing the same statistic, the sum of 
the distances between group means. The permutation distribution is shown 
in Exhibit 17.6, and the observed statistic lies well into the tail of the distribu-
tion, with a p -value of 0.0032. Notice that now it is only the right tail that is 
counted, since the value of 0 on the left side of the distribution indicates the 
null hypothesis of no difference.

6.303
Intergroup difference

Fr
eq

ue
nc

y

1 2 3 4 5 6 7

0
2

0
0

4
0
0

6
0
0

8
0
0

1
,0

0
0



 MULTIVARIATE ANALYSIS OF ECOLOGICAL DATA

220

Exhibit 17.7:
Permutation distributions 
for measure of intergroup 

difference based on single 
variables. The observed 

difference is indicated each 
time and the p-values are 

0.0032, 0.0084 and 
0.7198 respectively.
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Test of association 
between groups of 
variables

Having concluded that the group differences are signifi cant there are two fur-
ther aspects to be considered, since there are three variables and three groups 
involved: fi rst, are all groups signifi cantly different from one another? and 
second, which variables contribute mostly to the difference? These two ques-
tions are related, since it may be that a group may be different from another 
on only one or two of the variables, whereas the third group may be different 
from the other two on all three variables. Anyway, let us consider the latter 
question fi rst: are the groups signifi cantly different on all three variables? We 
can perform the same test three times using one variable at a time – here it 
would not matter if the data were standardized or not, but we continue to use 
the standardized form since it is easier to compare the three results. Exhibit 17.7 
shows the three permutation distributions and it is clear that temperature is 
not at all different between the three sediment groups, so we could drop it 
from further consideration. 

Next, we examine whether the groups are all different from one another, based 
on just depth and pollution. The differences between C and S, S and G and C 
and G are computed, similar to the multiple comparison procedure in ANOVA, 
and their permutation distributions generated, shown in Exhibit 17.8. It is clear 
that there is no signifi cant difference between clay and sand groups (hence our 
aggregating them in the initial example of this chapter), whereas they are both 
highly signifi cantly different from the gravel group.

The multivariate equivalent of testing a correlation coeffi cient is when there are 
several predictor variables being used to explain one or more response variables. 
The most relevant case to us is in canonical correspondence analysis (CCA), when 
many biological variables are being related to several environmental variables, for 
example, via a process of dimension reduction in the biological space. There are 
two ways to assess this relationship: one way is to simply include all the environ-
mental variables in the model and test for their overall signifi cance, while another 
more laborious way is to look for a subset of signifi cant environmental predictors, 
eliminating the insignifi cant ones. We shall illustrate these two strategies again 
using the simple “bioenv” data set, leaving a more substantial application to the 
case study of Chapter 19.

The inertia of the biological data in this example (species a, b, c, d and e) 
is 0.544 (see Chapter 13). When using depth, pollution and temperature 
as environmental predictors in a CCA, the inertia accounted for is 0.240, 
or 44.1%. We can generate a permutation distribution to test whether this 
percentage is significant. As in the case of the correlation of two variables, 
under the null hypothesis of no relationship, the biological and environmen-
tal data vectors can be randomly paired, keeping the biological vectors (with 
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Exhibit 17.8:
Permutation distributions 

for measure of pairwise 
intergroup differences based 

on depth and pollution. 
The observed difference is 

indicated each time and the 
p-values are 0.5845, 0.0029 

and 0.0001 respectively
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Other permutation tests 
for ordination 

five abundance values) and the environmental vectors (with three continu-
ous measurements) intact. If we do this 9,999 times, we do not get any case 
that improves the figure of 44.1% inertia explained, so the p -value is 0.0001, 
highly significant. 

Dropping one variable at a time and repeating this exercise, we obtain the fol-
lowing percentages of explained inertia and p -values for the three different pairs 
of variables:

Depth and pollution:  42.7% (p0.0001)

Depth and temperature: 11.4% (p0.1366)

Pollution and temperature: 37.4% (p0.0001)

and for a single variable at a time:

Depth: 10.0% (p0.0366)

Pollution: 36.3% (p0.0001)

Temperature:  1.1% (p0.8642)

So it seems clear that temperature has no predictive role and can be dropped. 
Pollution is the best predictor and if a forward stepwise process were fol-
lowed, then pollution would be the first to enter the model. The only ques-
tion remaining is whether depth adds significantly to the model that is driven 
mainly by pollution. This can be tested by generating a permutation distribu-
tion with pollution as a predictor, unpermuted, while just the depth values 
are permuted randomly. After the usual 9,999 permutations of the depth 
vector, the result is that the percentage of inertia explained by depth and 
pollution, seen above to be 42.7%, is the 222nd highest value in the sorted 
list of 10,000, so the p -value for the additional explained inertia of depth is 
0.0222, significant at the 5% level. The final model would thus include pol-
lution and depth.

In any dimension-reduction technique to establish an ordination of a data 
set, the objective is to separate what is “signal”, that is true structure, from 
“noise”, that is random variation. In Chapter 12 we discussed an informal way 
of judging which dimensions are “significant” from the appearance of the 
scree plot (see Exhibit 12.6 and related description). A permutation test can 
make a more formal decision about the dimensionality of the solution. In a 
PCA, the correlations between the variables combine to form the principal 
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Exhibit 17.9:
Scatterplot of percentages 

of variance on the first 
two dimensions of 10,000 

PCAs, one of which is based 
on the observed data set 
“climate” and the other 

9,999 are computed using 
random matrices obtained 

by permutation

axes of an ordination, so if there is no correlation between the variables then 
there is no structure. Hence a permutation test for the principal axes of the 
“climate” data set can be performed by generating several random data sets 
under the null hypothesis of no correlation between the variables by random-
ly permuting the values down the columns of each variable. The eigenvalues 
of these randomly generated data sets yield permutation distributions of the 
eigenvalues under the null hypothesis. Since the total variance in a PCA of 
standardized data is a fixed number, it is equivalent to look at the percent-
ages of variance explained on the axes. Exhibit 17.9 shows the scatterplot of 
the first and second percentages of variance for the 9,999 permuted data sets, 
along with the actual values of 27.8% and 17.8% in the original data set. The 
p -values are again calculated by counting how many of the values are greater 
than or equal to the observed ones, only 1 for the first dimension (the ob-
served value itself) and 13 for the second, hence the p -values are 0.0001 and 
0.0013 respectively. Continuing with the third and higher dimensions, the 
p -values are 0.0788, 0.2899, 0.9711 and so on, none of which is significant. 
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A permutation test for 
clustering

Hence, the two-dimensional solution, accounting for 45.6% of the variance, 
is considered the appropriate solution, and the remaining 54.4% of the vari-
ance is regarded as random variation.

The situation is slightly different for methods like CA, LRA and CCA that do not 
have a fi xed total variance, and have weights attached to the rows and columns. 
Whereas in PCA it is equivalent to consider the eigenvalues or their percentages 
relative to the total variance, in these other methods such as CA, for example, 
the total inertia of an abundance matrix can be very high compared to the vari-
ance of the permuted matrices under a null model of no relationship between 
the species. So we would base our decision about signifi cance of the dimensions 
purely on the percentages of inertia. An example will be given in the case study 
of Chapter 19.

The same issues arise when performing a cluster analysis: for example, which 
are the “significant” clusters, or in a hierarchical clustering at what level 
should the dendrogram be cut for the identifi cation of “signifi cant” cluster-
ing? This is a diffi cult question and we present one possible approach to 
identifying a signifi cant cutpoint. The levels of the nodes at which clusters 
are formed are fi rst saved for the original dendrogram, for example in the 
dendrogram on the right of Exhibit 7.8, based on clustering zero/one data 
using the Jaccard index, the levels of the nodes are (from the bottom up): 
0.200, 0.250, 0.333, 0.429, 0.778 and 1.000. Now we generate a permutation 
distribution for these levels by randomly permuting the columns of the data 
matrix, given in Exhibit 5.6, so that we have a large number of simulated val-
ues (again, 9,999) under the hypothesis of no relationship between the spe-
cies. For each permuted matrix the node levels are stored, and then for each 
level we count how many are less than or equal to the originally observed 
node level. For signifi cant clustering we would expect the node level to be 
low. The p -values associated with each node are (again, from bottom up): 
0.1894, 0.0224, 0.0091, 0.0026, 0.7329, 1.000, so that node level 4, which cuts 
the sample into three clusters, is the most signifi cant. Exhibit 17.10 shows 
the permutation distribution for the node 4 levels and the observed value of 
0.429. There are only 26 permutations where the node level is lower than or 
equal to 0.429, hence the p -value of 0.0026.

As a contrasting example, the same strategy was applied to the dendrogram of 
Exhibit 7.10 that clusters 30 samples based on their standardized Euclidean dis-
tances using variables depth, pollution and temperature. None of the p -values for 
the 29 nodes in this example are less than 0.05, which indicates that there are no 
real clusters in these data, but rather a continuum of dispersion in multivariate 
space.



 MULTIVARIATE ANALYSIS OF ECOLOGICAL DATA

226

Exhibit 17.10:
Permutation distribution of 

node 4 levels, corresponding 
to a three-cluster solution, 

for the presence-absence 
data of Exhibit 5.6 – see 

the dendrogram on the 
right of Exhibit 7.8. There 
are 26 permutations (out 
of 10,000) that are less 

than or equal to 0.429, the 
value of the level in the 

dendrogram

SUMMARY:
Inference in multivariate 

analysis

1.  Conventional statistical inference relies on assuming an underlying distribu-
tion of the data under a null hypothesis (e.g., a hypothesis of no difference, 
or of no correlation), called the null distribution. The unusualness of the 
observed value (e.g., a difference or a correlation) is then judged against the 
null distribution and if its probability of occurring (i.e., p -value) is low, then 
the result is declared statistically signifi cant.

2.  Distribution-free methods exist that free the analyst from assuming a theo-
retical distribution: null distributions can be generated by permuting the data 
under the null hypothesis, and the variability of observed statistics can be esti-
mated using bootstrapping of the observed data. 

3.  In the multivariate context, where theory is much more complex, we shall gen-
erally rely purely on computer-based permutation testing and bootstrapping. 
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4.  To assess the signifi cance of group differences, the null hypothesis of no dif-
ference implies that we can allocate observations to any groups. A statistic 
measuring group difference is postulated, and then the same statistic is meas-
ured on data that have been randomly permuted a large number of times by 
randomly assigning the group affi liations to the observations. The statistic 
computed on the original data is then judged against the permutation distri-
bution to obtain a p -value.

5.  To assess the association between two sets of variables, a statistic measuring this 
association is fi rst postulated. Under the null hypothesis of no difference we 
can randomly connect the fi rst and second sets of data, and doing this many 
times generates a null distribution of the association measure. The observed 
association measured on the original data is once again judged against the 
permutation distribution to obtain a p -value.

6.  The parts of variance/inertia, or eigenvalues, can also be assessed for statistical 
signifi cance by generating a null distribution of their percentages of the total, 
under an hypothesis of no relationship between the variables (usually columns 
of the data matrix), in which case the values for each variable can be permuted 
randomly to generate a null distribution of each eigenvalue.

7.  We propose a similar procedure for hierarchical cluster analysis, where 
clusteredness is indicated by low node levels. The data for each variable are 
permuted randomly and each time the same clustering algorithm performed, 
generating a permutation distribution for each level under the null hypoth-
esis. Observed node levels that are in the lower tail of these permutation dis-
tributions will indicate signifi cant clustering.
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