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Chapter 

Statistical Modelling

As we said in Chapter 2, the principal methodologies of statisticians are 
functional methods that aim to explain response variables in terms of a set 
of explanatory variables (also called predictors), i.e. the typical regression 
situation. In this book we have been concentrating on structural methods of 
particular importance for ecological data analysts – this is mainly because of the 
large numbers of response variables observed in ecological studies, and the 
ensuing need for dimension reduction. In this chapter we intend to give a 
short overview of the sort of functional methods that are in use today when 
there is one response variable of interest, emphasising that this is a very brief 
description of a topic that deserves a book by itself. We start with several 
variants of linear regression, gathered together under the collective title of 
generalized linear models. These approaches all achieve a mathematical 
equation that links the mean of the response variable with a linear function 
of the explanatory variables. We shall also give some glimpses of two alterna-
tive nonparametric approaches to modelling: generalized additive modelling, 
which replaces the linear function of the predictors with a much freer set of 
functional forms, and classifi cation and regression trees, which take a radi-
cally different approach to relating a response to a set of predictors and their 
interactions, in the form of a decision tree. 
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Multiple linear regression

Exhibit 18.1:
Many observations of a 
response variable y for 

different integer values of 
a predictor x. Every set 

of y values for a given x 
is a sample conditional 

distribution, with a mean 
and variance, and the 

brown trajectory links the 
conditional sample means. 

Multiple linear regression 
assumes that the data are 
from normal distributions 

conditional on x (a few 
are shown in green), with 

conditional means modelled 
as a straight line and with 

constant variances

Multiple regression is a model for the conditional mean of a response variable y 
given a set of explanatory variables x1, x2, …, xm. To explain this statement and 
the assumptions of the regression model, we consider the simple case when there 
is only one explanatory variable x. Exhibit 18.1 shows an explanatory variable x 
(which could be depth, for example) that can take on the integer values from 
50 to 100, and for each value of x there are many values of y (which could be 
pollution). The brown line trajectory connects the means of y in every subsample 
of points corresponding to a given value of x. For each x we can imagine the 
total population of values of y, and each of these populations has a probability 
distribution, called a conditional distribution because it depends on x. Each of these 
conditional distributions has a mean and a variance and if we connected the 
means of all these conditional distributions (as opposed to the sample means that 
are connected by the brown lines) we would have what is called the regression of y 
on x, denoted by (x). Multiple linear regression has the following assumptions:

1.  The regression function (i.e., means of the conditional distributions for all 
values of x) is linear, in this case a straight line: (x)abx.
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Exhibit 18.2:
A sample of 50 observations 
of the response y and 
predictor x, showing the 
estimated regression line

2.  The conditional distribution for any x is normal, with mean equal to a linear 
function of x (i.e., assumption 1), and variance equal to a constant value across 
all the x values (we say that the variances are homoscedastic, as opposed to hetero-
scedastic if the variances change with x).

In Exhibit 18.1 the estimated linear regression function is shown by a dashed line, 
as well as a few examples of the conditional distributions – since the y values are 
on the vertical axis the distribution functions are shown on their sides. In this 
example there would be a conditional distribution for each value of x and the 
regression line is the assumed model for the means of these distributions, called 
the conditional means.

There are more than 2,000 sample points in Exhibit 18.1 and we would seldom 
get such a large sample – rather, we would get a sample of size 50, say, as shown 
in Exhibit 18.2, but the assumptions of linearity and variance homogeneity 
remain exactly the same. The analysis estimates the linear regression relation-
ship, as shown, which is used fi rstly for interpreting the relationship between 
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Poisson regression

response and predictor, and secondly for predicting y for given x. Notice that 
when a response is predicted from a given value of x, it is the mean of the con-
ditional distribution that is being predicted. In Exhibit 18.2, for example, an 
x value of 80 predicts a y value of about 7.89. One has then to imagine all the 
possible y values that constitute the population, possibly infi nite, that could be 
observed for x80, and then the value 7.89 is the predicted mean of these. Re-
gression analysis includes the technology for setting confi dence limits around 
these predicted means.

Performing the regression on the above sample of 50 observations gives the fol-
lowing regression equation with standard errors (in square brackets) and p -values 
(in round brackets) associated with each coeffi cient:

 mean of y  0.392  0.0937x

1.587 0.0218

(p0.81) (p < 0.0001)

 (18.1)

The statistical conclusion would be that the constant term (i.e. intercept) is not 
signifi cantly different from zero, while the predictor (i.e. slope) is highly signifi -
cant. This agrees with the way these data were simulated: the conditional mean 
of y was set as the linear function 0.1x with no constant term, and the confi dence 
interval for the coeffi cient of x, based on the estimate and the standard error 
(where the confi dence interval is about 2 standard errors about the mean), does 
include the true value 0.1. 

The regression model can be generalized to the situation where the responses 
are of different data types, for example count and categorical variables. This gen-
eral family of methods is called generalized linear modelling (GLM, for short). We 
fi rst consider the case of a count response, which can be modelled using Poisson 
regression. Exhibit 18.3 shows some count data (for example, abundance counts, 
where only counts of 0 to 5 were observed here) recorded for different values of 
the predictor x. Theoretically again, we could have an infi nite number of count 
observations for each x value, and the assumption is that for each x the counts 
follow the natural distribution for count data, the Poisson distribution, with a 
mean that depends on x (three examples of conditional distributions are shown 
in Exhibit 18.3, for x50, 75 and 100). Because a count variable is considered 
to be a ratio variable, it is the logarithm of the conditional means of the Poisson 
distribution that is modelled as a linear function: log((x))abx (see Chapter 
3 where we discussed relationships of this type, where an additive change in x 
would imply a multiplicative change in the mean count). Notice in Exhibit 18.3 
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Exhibit 18.3:
Poisson regression, 
showing some observed 
response count data, three 
examples of the conditional 
distributions for x50, 
75 and 100, assumed 
to be Poisson, shown in 
green, with the dashed 
line showing the estimated 
regression relationship of 
the means, where log mean 
is modelled as a linear 
function of the predictor

Logistic regression

that the conditional means are increasing and that the variance of the Poisson 
distributions is increasing accordingly. 

Performing the Poisson regression on the above sample of 50 observations gives 
the following regression equation with standard errors (in square brackets) and 
p -values (in round brackets) associated with each coeffi cient:

 log(mean of y)  0.0822  0.0183x

0.3785 0.0046

(p0.83) (p < 0.0001)

 (18.2)

Again, the statistical conclusion would be that the constant term is not signifi -
cantly different from zero, while the predictor is highly signifi cant. This agrees 
with the way these data were simulated: the log of the conditional mean of y was 
set as the linear function 0.02x with no constant term, and the confi dence inter-
val for the coeffi cient of x, based on the estimate and the standard error, does 
include the true value 0.02. The interpretation of the estimated coeffi cient 0.0183 
is that for every unit increment in x, the log mean is increased by 0.0183, that is 
the mean is multiplied by exp(0.0183)1.0185, or an increase of 1.85%. Notice 
how the slope of the regression curve is increasing (i.e., the curve is convex) due 
to the multiplicative effect of the predictor. 

As a fi nal example of a generalized linear model, consider a dichotomous response 
variable, for example presence/absence of a species, and consider observations of 
this response along with associated predictor values, shown in Exhibit 18.4. Now the 
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Exhibit 18.4:
Logistic regression, 

showing some observed 
dichotomous data, three 

examples are shown in 
green of the conditional 

probabilities of a 1 and a 
0, for x50, 75 and 100 

(remember again that these 
probability distributions 

are shown on their sides, 
in this case there are only 
two probabilities for each 

distribution, the probability 
of a 0 and the probability of 
a 1). The dashed line shows 

the estimated regression 
of the means, in this case 

probabilities, where the 
logits of the probabilities 

are modelled as linear 
functions of the predictor

Explained variance, 
deviance and AIC

observations are only 0s (absences) and 1s (presences) and there could be some 
repeated observations. 

Performing the logistic regression on the above sample of 50 observations gives 
the following regression equation with standard errors (in square brackets) and 
p -values (in round brackets) associated with each coeffi cient:

 logit(p) p
p1

log
−

⎛

⎝
⎜

⎞

⎠
⎟  3.568  0.0538x

1.523 0.0219

(p0.019) (p0.014)

 (18.3)

The statistical conclusion would be that both the constant term and the predictor 
are signifi cant. This agrees with the way these data were simulated: the condi-
tional mean of y was set as the linear function 2(1/30)x, where 1/300.0333, 
and the confi dence intervals for both coeffi cients do include the true values, but 
do not include 0. 

The measure of explained variance in linear regression is well-known and we have 
used the concept many times in other contexts as well, for example the variance 
(or inertia) explained by the dimensions of a PCA, LRA, CA or CCA solution. 
Deviance is the generalization of this concept when it comes to GLMs. Without 
defi ning deviance mathematically, it functions in the same way: fi rst, there is the 
concepts of the full (or saturated) model, where the response is fi tted perfectly, 
and the null model, where no explanatory variables are fi tted at all, with just the 
constant term being estimated. This difference is used as a measure of total vari-
ance and is, in fact, equal to the total variance in the case of linear regression. 
Deviance is used to measure the difference between models (i.e. hypotheses) in 
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Nonlinear models

their ability to account for variation in the response variable. For example, if an 
explanatory variable is introduced in the GLM, deviance measures the amount 
of variance accounted for by this new variable compared to the null model. If a 
second variable is then introduced, one can compute the deviance between the 
one-variable model and the two-variable model to ascertain if it is worth introduc-
ing the second variable. Deviance has an approximate chi-square distribution, 
with degrees of freedom depending on the difference in numbers of parameters 
between two models. Let us take the logistic regression just performed above as 
an example. The null deviance for a model with no variables turns out to be equal 
to 68.99, and the residual deviance 1 for a model with the single predictor x is equal 
to 61.81.The deviance is thus the difference 68.9961.817.18, which is from a 
chi-square distribution with 1 degree of freedom (the model has one additional 
parameter), for which the p -value is 0.007. Note that this p -value is not exactly 
the same as the one (p0.014) reported for the coeffi cient in (18.3), which was 
computed using the normal distribution. 

When comparing the performance of alternative models (i.e. testing alterna-
tive hypotheses) it is important to consider both their goodness of fi t (e.g., 
analysis of deviance) and complexity, that is the number of explanatory vari-
ables (and associated parameters) included in each model. Akaike’s informa-
tion criterion (AIC) is a way of comparing models with different numbers of 
parameters that combines goodness of fi t and complexity considerations. Since 
adding explanatory variables to a model, whether they are relevant or not, will 
always explain more variance, i.e. reduce the residual deviance, the AIC crite-
rion adds a penalty for additional parameters equal to two times the number 
of parameters. Here the constant term is included, hence in our logistic regres-
sion model (18.3) the AIC is equal to the residual deviance plus 4 (2 times the 
number of parameters), i.e. 61.81465.81. Models with the lowest AIC are 
to be preferred. For example, if we added another explanatory variable to the 
model and reduced the residual deviance to 60.50, say, then the AIC would 
be 60.502366.50, and the fi rst model with one parameter is preferable 
because it has lower AIC. 

In the above examples, although the link function that transforms the mean of 
the response changes according to the response variable type, the way the predic-
tors are combined is always a linear function, which is quite a simplistic assump-
tion. Transformations can also be made of the predictors to accommodate non-
linear relationships. For example, Exhibit 18.5 shows another set of observations, 
and a scatterplot smoother has been added (in brown) indicating the possibility 

1 This is the way the R function glm reports the deviance values.
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Exhibit 18.5:
A scatterplot of a 

continuous response y 
and a predictor x, showing 

a scatterplot smoother 
(brown line) which suggests 

a nonlinear relationship. 
The estimated quadratic 

relationship is shown by a 
dashed curve 

that the relationship is not linear, but reaching a peak or possibly an asymptote. 
In order to take into account the curvature, an additional predictor term in x2 can 
be included so that a quadratic is postulated as the regression function (polyno-
mial regression), and the result is as follows:

 mean of y  39.91  1.139x  0.0068x2

9.09 0.258 0.0018

(p < 0.0001) (p < 0.0001) (p0.0004)

 (18.4)

All terms are signifi cant and the confi dence intervals for the coeffi cients all con-
tain the true values used in the simulated formula, which is 320.9x0.005x2. 
The estimated regression function in (18.4) is shown with a dashed line.

Since we have introduced fuzzy coding, it is interesting to compare the results 
using this alternative. Fuzzy coding of the predictor variable with three fuzzy 
categories allows for a curve with one turning point, which is what we need, so 
three categories were created, x1, x2, x3, and the following regression function 
resulted:
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Multiple predictors and 
interactions

Exhibit 18.6:
Same data as in Exhibit 
18.5, with the estimated 
quadratic relationship in 
gray, and the relationship 
according to (18.5) shown 
by black dashed lines

 mean of y  1.03x1
 7.95x2

 7.56x3

0.59 0.62 0.61

(p0.08) (p < 0.0001) (p < 0.0001)

 (18.5)

(notice that we show the result without the constant for the three fuzzy dum-
mies). The variance explained is 65.6%, only slightly less than the 66.0% for the 
quadratic; both have three coeffi cients and thus the same degrees of freedom in 
the regression. Exhibit 18.6 shows that with the fuzzy coding the relationship is es-
timated as two linear functions, because of the triangular membership functions 
used to create the fuzzy categories. To capture a curved relationship we should 
use different membership functions, of which there are many possibilities, for 
example Gaussian (i.e., normal) membership functions. If interest is not only in 
diagnosing a smooth relationship (like the scatterplot smoother visualizes) but 
also in testing it statistically, then the section on generalized additive models later 
in this chapter provides a solution.

Most often there are many explanatory variables, therefore we need a strategy to 
decide which are signifi cant predictors of the response, and whether they inter-
act, so as to choose the best model (hypothesis) given the data. As an illustration 
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Generalized additive 
models

we return to the “Barents fi sh” data set studied in Chapters 1, 13 and 15. To con-
vert the abundances of the 30 fi sh species, effectively a 30-variable response, to a 
single response, we computed the Shannon-Weaver diversity H for each of the 89 
stations, using the formula:

H–  j pj log(pj)

where pj is the proportional abundance of species j, j1,…30. This well-known 
diversity index is at its lowest value, 0, when there is only a single species ob-
served in the sample, and reaches its maximum if all species are contained in 
the same proportion. Amongst possible explanatory variables of diversity we 
have the bottom depth and temperature at the station trawled. If depth and 
temperature are entered into a linear regression, then the estimated effects 
of each variable do not depend on the other variable. In this example the 
effects of depth and temperature in a model as separate linear terms are not 
statistically signifi cant. Signifi cant results are found, however, when the inter-
action term is included, i.e. the product of the two variables, which allows for 
the possibility that the relationship with temperature depends on the depth 
and vice versa. The regression, explaining only 6.6% of the variance, but still 
signifi cant, is:

mean H    0.466   0.00243 depth   0.493 temp.  0.00152 depth  temp.

 0.470 0.00152 0.218 0.00072

 (p0.32) (p0.11) (p0.026) (p0.038)

 (18.6)

The interaction term implies that the relationship with depth varies according 
to the temperature – notice that we would retain the linear term in depth even 
though it is insignifi cant, because the interaction term which involves depth is 
signifi cant. Exhibit 18.7 shows the linear relationships with depth for three dif-
ferent temperatures that are chosen in the temperature range of the observed 
data. 

Generalized additive models (GAM for short) are a very fl exible framework 
for taking care of nonlinearities in the data. The approach is more complex 
but the benefi ts are great. Without entering too much into technicalities, we 
show the equivalent GAM analysis used to estimate the regression of diversity 
as a function of depth and temperature, in the previous example. If we enter 
depth and temperature as separate variables, the GAM results show that depth 
is signifi cant with a clear nonlinear relationship (p < 0.0001) but not tempera-
ture (p0.25) – see Exhibit 18.8. In a GAM model the form of the relationship 
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Exhibit 18.7:
Linear regression 
relationships (18.6) 
between diversity and 
temperature that depend 
on the depth (illustrated 
for three values of depth), 
showing an interaction 
effect (regression lines 
with different slopes). If 
the interaction effect were 
absent, the three lines 
would be parallel and 
the effect of temperature 
would be the same (i.e., not 
contingent on depth)

is diagnosed for the researcher, and the number of degrees of freedom of the 
relationship is estimated: 1.96 (say 2) for depth, and 1 for temperature. There 
is no mathematical model for the regression here, so we cannot write down a 
formula as before. But, since the depth relationship looks quadratic, we could 
try adding a quadratic term to the model, and return to using conventional 
regression:

mean H2.22  2.15 depth  0.0000326 depth2  0.0463 temp.

 0.80 0.0048 0.0000071 0.0374

 (p0.007) (p < 0.0001) (p < 0.0001) (p0.22)

 (18.7)

To choose between models (18.6) and (18.7) we can compare the AIC in each 
case: 94.9 for (18.6) and 79.7 for (18.7). The difference in AIC between the para-
metric model in (18.7) and the GAM model summarized in Exhibit 18.8, which 
has an AIC of 79.5, is tiny. Model (18.7) could thus be further improved by drop-
ping the insignifi cant temperature term:
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Exhibit 18.8:
Generalized additive 

modelling of diversity as 
smooth functions of depth 

and temperature: depth 
is diagnosed as having 
a significant quadratic 

relationship, while 
the slightly increasing 

linear relationship with 
temperature is non-

significant. Both plots are 
centred vertically at mean 

diversity, so show estimated 
deviations from the mean. 
Confidence regions for the 

estimated relationships are 
also shown
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Classification trees

 mean H  2.11  2.13 depth  0.0000324 depth2

0.80 0.0048 0.0000071

(p0.01) (p < 0.0001) (p < 0.0001)

 (18.8)

in which case the AIC is 79.3, and explained variance is 19.9%.

As a fi nal illustration of the power of GAMs, we can make a model with a smooth 
interaction of depth and temperature. This has an even lower AIC value 70.7, 
and now to visualize the diagnosed relationship requires making a contour 
plot of the model values in the space of the depth and temperature variables, 
or making a perspective plot in three dimensions – see Exhibit 18.9.To test 
whether the interaction is signifi cant we can compare the residual deviances for 
the model shown in Exhibit 18.8 (85.04) and the one in Exhibit 18.9 (83.67), 
i.e. a difference of only 1.37 units of deviance, which is not signifi cant.2 All 
these results and considerations lead us to the conclusion that the parametric 
model (18.8) with depth modelled as a quadratic is the one of choice – it has 
few parameters, is a function that can be easily interpreted and computed and 
does almost as well as several competing models that are more complex. Here 
we have demonstrated how GAM can help to suggest a nonlinear model for a 
regression. We will return to GAM modelling in Chapter 20 where we show that 
it is a convenient and fl exible approach for taking into account the effect of 
spatial position.

We close this chapter on statistical modelling by showing a completely differ-
ent approach to modelling a continuous or categorical response variable, by 
constructing a type of decision tree with the goal of predicting the continuous 
response variable (regression trees) or categorical response category (classifi ca-
tion trees). We consider the latter case fi rst, and take as example the presence/
absence of polar cod (Boreogadus saida) in a sample. In the data matrix there are 
21 samples with polar cod and 68 without, so the response data consist of 21 ones 
and 68 zeros. Applying a classifi cation tree algorithm, with two predictors, depth 
and temperature, produces the tree model of Exhibit 18.10. The 89 samples 
are notionally fed down the tree and are split by the decisions at each branch, 
where each decision indicates the subsample that goes to the left hand side. For 
example, samples going to the left at the top of the tree satisfy the condition 

2 Here we have not entered into the aspect of the degrees of freedom for this comparison of GAM models, nor 
how p -values are computed. In GAM the degrees of freedom are not integers, but estimates on a continuous 
scale. Hence, comparing models leads to differences in degrees of freedom that are also not whole numbers 
– in this particular case the degrees of freedom associated with the deviance difference of 1.37 are 1.01, close 
enough to 1 for all practical purposes.
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Exhibit 18.9:
Contour plot (upper) and 

perspective plot (down) of 
the diagnosed interaction 

regression surface of 
depth and temperature, 

predicting the deviations 
from mean diversity. The 

concave relationship with 
depth is clearly seen as well 

as the slight relationship 
with depth. The difference 

between the model with 
or without interactions is, 

however, not significant
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Exhibit 18.10:
Classification tree model 
for predicting the presence 
of polar cod. The one 
branch which predicts their 
presence gives the rule: 
temperature < 1.6 ºC and 
depth  306 m. 
This rule correctly predicts 
the presence of polar 
cod in 16 samples but 
misclassifies 5 samples 
as having polar cod when 
they do not

Regression trees

that temperature is greater than or equal to 1.6 ºC, while the others for which 
temperature is less than 1.6 ºC go to the right. Of the 89 samples, 51 go to the 
left, and all of them have no polar cod, so the prediction is False (i.e., no polar 
cod). The remaining 38 samples that go to the right are optimally split into two 
groups according to depth, 305 m or less to the left, and 306 m or more to the 
right. Of 38 samples, 17 go to the left and of these 12 have no polar cod, so False 
is predicted, while 21 go to the right, and a majority has polar cod so polar cod is 
predicted (True). The fi nal branches of the tree, where the fi nal predictions are 
made, are called terminal nodes, and the objective is to make them as concentrated 
as possible into one category.

The beauty of this approach is that it copes with interactions in a natural way by 
looking for combinations of characteristics that explain the response, in this case 
the combination of lower temperature (lower than 1.6 ºC) and higher depths 
(greater than or equal to 306 m) is a prediction rule for polar cod, otherwise no 
polar cod are predicted.

As a comparison, let us perform a logistic regression predicting polar cod, using 
depth and temperature. Both variables are signifi cant predictors but result in 
only 12 correct predictions of polar cod presence. The misclassifi cation tables for 
the two approaches are given in Exhibit 18.11. 

The same style of tree model can be constructed for a continuous response. 
In this case the idea is to arrive at terminal nodes with standard deviations (or 

Temperature ≥ 1.6

Depth < 305.5

False
51/0

False
12/5

True 
5/16
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Exhibit 18.11:
Comparison of 

misclassification rates for 
the classification tree of 

Exhibit 18.10, compared to 
that for logistic regression, 
using the same predictors. 

The classification tree 
correctly predicts presence 

and absence in 79 of 
the 89 samples, while 

logistic regression correctly 
predicts 74

Exhibit 18.12:
Regression tree predicting 
fish diversity from latitude 

and longitude of sample 
positions. The terminal 
nodes give the average 

diversity of the samples 
that fall into them. This 

tree yields the spatial 
classification of the 

sampling region given in 
Exhibit 18.13

any other appropriate measure of variability for the response) as low as pos-
sible. As an example, we return to the diversity response, this time choosing 
time latitude and longitude coordinates as the predictors in order to classify 
the samples into regions of homogeneous diversity. The result is given in Ex-
hibit 18.12. 

The regression tree partitions the sampling area and can be drawn on the map in 
Exhibit 18.13. The most diverse area is in the north-west, while the least diverse 
is in the central western block.

Classification tree Logistic regression

Truth Truth

Polar cod No polar cod Polar cod No polar cod

Predicted
Polar cod 16 5 12 6

No polar cod 5 63 9 62

Latitude < 74.09

Latitude ≥ 72.61

Latitude < 73.61

Longitude < 26.23

Latitude < 71.53

Longitude ≥ 30.63

0.7244
n = 10

0.9954
n = 12

1.201
n = 12

1.285
n = 11

1.444
n = 16

1.289
n = 10

1.553
n = 18
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Exhibit 18.13:
Map of Barents Sea showing 
the locations of the 89 
sampling sites (see Exhibit 
11.1) and the slicing up of 
the region according to the 
regression tree of Exhibit 
18.12, and the average fish 
diversities in each block. 
Most of the slices divide 
the latitudes north to south, 
with just two east-west 
divisions of the longitudes. 
Dark locations show the 
21 sites where polar cod 
were found

SUMMARY:
Statistical modelling

1.  The family of generalized linear models (GLMs) includes multiple linear 
regression, Poisson regression, and logistic regression, when the response vari-
able is continuous, count or categorical, respectively, for which the assumed 
conditional distributions given a set of explanatory variables (or predictors), 
are normal, Poisson and binomial respectively.

2.  Each of these models assumes that a transformation of the mean is a linear 
function of the explanatory variables. This transformation is called the link 
function. In multiple regression there is no transformation, and the link is thus 
the identity. In Poisson regression the link is the logarithm, and in logistic 
regression it is the logit function, or log-odds.

3.  To take into account nonlinearities, polynomial functions of the explanatory 
variables or fuzzy coding into several categories can be used. 
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4.  Generalized additive models (GAMs) are even more general than GLMs, al-
lowing considerable fl exibility in the form of the relationship of the response 
with the explanatory variables.

5.  Both GLM and GAM environments allow interaction effects to be included 
and tested.

6.  Classifi cation and regression trees are an alternative that specifi cally look at 
the interaction structure of the predictors and come up with combinations 
of intervals that predict either categorical or continuous responses with mini-
mum error.
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