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Sampling bias

Chapter 

Case Study 1: 
Temporal Trends and Spatial Patterns 

across a Large Ecological Data Set

The examples presented in previous chapters have generally been on small- to 
medium-sized data sets that are good for teaching and understanding the basic con-
cepts of the methodologies used. We conclude with two chapters detailing much 
larger studies that take full advantage of multivariate analysis to synthesize complex 
phenomena in a format that is easier to interpret and come to substantive conclu-
sions. The two chapters treat the same set of data, a large set of samples of fi sh 
species in the Barents Sea over a six-year period, where the spatial location of each 
sample is known as well as additional environmental variables such as depth and 
water temperature. In the present chapter we shall study the temporal trends and 
spatial patterns of the fi sh compositions and also try to account for these patterns 
in terms of the environmental variables. But before applying multivariate analysis to 
data across time and space, we have to consider carefully the areal sampling across 
the years and reweight the observations to eliminate sampling bias.
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In this chapter we shall be considering samples in different regions over time over 
an area of interest. An important consideration is whether data have been col-
lected in a balanced way over time in each region. This is important if one wants 
to summarize the data over the whole area and make temporal comparisons. If 
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Exhibit 19.1:
(a) Actual number of sample 

taken in three regions 
over a three-year period, 

with overall proportions of 
samples in each region over 

the whole period. 
(b) Expected number of 
samples if in each year 

sampling had taken place in 
accordance with the overall 
proportions. (c) The weights 

computed by dividing the 
values in table (b) by those 

in table (a) 

sampling is more intense in some regions in some years and less intense in other 
years, this can lead to what is called sampling bias. Consider in Exhibit 19.1(a) the 
hypothetical layout of numbers of samples taken over an area divided into three 
regions, for three consecutive years.

Let us assume for the moment that the total number of samples over the three 
years is representative of the sizes (or some measure of importance in the study) 
of the three regions surveyed, that is region 2 is the largest, followed by region 1 
and then region 3. Then, for the sampling to be balanced over the years the num-
bers of samples should follow the proportions 0.300, 0.433 and 0.267, as seen in 
the last line of Exhibit 19.1(a). Computing expected proportions for each year, in 
exactly the same way as one computes expected frequencies in a chi-square test, 
the table in Exhibit 19.1(b) is obtained. If this latter table of expected frequencies 
is now divided, cell by cell, by the former table of actual frequencies, a table of 
weights is obtained in Exhibit 19.1(c), refl ecting the imbalances.

In Exhibit 19.1(c) the column of ones for region 1 shows that the sampling was 
in perfect proportion to the expected number. In contrast, region 2 is under-

Region 1 Region 2 Region 3 Sum

Year 1 30  20 50 100

Year 2 15  30  5 50

Year 3 45  80 25 150

All years 90 130 80 300

Prop’n 0.30 0.433 0.267

Region 1 Region 2 Region 3 Sum

Year 1 30 43.3 26.7 100

Year 2 15 21.7 13.3 50

Year 3 45 65 25 150

All years 90 130 80 300

Prop’n 0.30 0.433 0.267

Region 1 Region 2 Region 3

Year 1 1 2.167 0.533

Year 2 1 0.722 2.667

Year 3 1 0.813 1.600

(a)

(b)

(c)
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CASE STUDY 1: TEMPORAL TRENDS AND SPATIAL PATTERNS ACROSS A LARGE ECOLOGICAL DATA SET

Data set “Barents fish 
trends”

Reweighting samples for 
fuzzy coded data

sampled in year 1 and over-sampled in years 2 and 3. In year 1 this region has 
only 20 samples whereas the expected proportion of 43.3% of 100 is 43.3. The 
weight of 2.167 is then used to scale up the abundances of observed species in 
this region. In year 2 the 30 actual samples represent an over-sampling com-
pared to the expected value of 21.7, and these 20 samples are thus down-scaled 
by a factor of 0.722, and so on. Each of the 300 samples thus receives a weight 
in Exhibit 19.1(c) according to its year and region, some up-weighted, others 
down-weighted – notice that the sum of the weights allocated to the 300 samples 
is equal to 300.

This reweighting is not necessary if the regions are studied one by one, for ex-
ample average abundances or measures of diversity can be compared within a 
region using the original unweighted data. However, whenever the regions are 
put together to estimate a value over the whole area, the weighting will be nec-
essary. Consider, for example, if in region 3 a certain species where particularly 
abundant. Since this region is heavily sampled in year 1, almost twice as much 
compared to the expected proportion, the unweighted data in year 1 could show 
a difference with the other years which is due to this oversampling. Of course, we 
are assuming that the proportions in the last row of Exhibit 19.1(a) refl ect the 
“population” proportions, but these can be determined by an external criterion 
such as the area of each region.

In Chapter 11 the data set “Barents fi sh” was introduced, a relatively small data set 
of fi sh abundances of 30 species at 89 sites in the Barents Sea, during a sampling 
period in 1997 (Exhibit 11.2). The geographical location was handled in different 
ways, fi rst by defi ning a spatial grouping of the samples (Exhibit 11.1), second 
using latitude and longitude as continuous variables (Exhibits 11.5 and 11.6) 
and third by defi ning fuzzy positions with respect to eight compass points and a 
central category (Exhibits 11.8 and 11.9). In this case study we extend the data 
set to six consecutive years of data, from 1999 to 2004, called Barents fi sh trends, 
thus introducing a temporal component into the study. A total of 600 samples are 
included. We will implement a reweighting scheme in this application, explaining 
how the previous argument for “crisp” regions can be extended quite naturally to 
our fuzzy coding of the spatial positions.

We are going to use fuzzy coding again to code the geographical position of each 
sample, as described at the end of Chapter 11. If each of the 600 samples had 
been allocated “crisply” to one of 9, say, regions, then we would proceed as just 
explained by counting how many samples were in each region in each year to 
check if proportionally the same number of stations were sampled from year to 
year. The situation is hardly different for the fuzzy coding, thankfully, since we 
can sum the fuzzy values and not the zero-one dummy variables for the region 
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Exhibit 19.2:
Sums of fuzzy-coded 

regional categories for 
each year and for all years. 

Columns are the eight 
compass points and a 

central region (C) 

Exhibit 19.3:
Weights for data according 

to year and fuzzy region

categories. Exhibit 19.2 shows the sums for each year and for the whole period 
along with the overall proportions for each region. 

To balance the allocation to each region each should follow the overall propor-
tions, that is SW should have 2.5% of the 88 samples, i.e. 2.20 (so it is slightly 
over-represented, since the actual value is 2.33, W should have 15.5% of 88, i.e. 
13.64 (again under-represented, actual value is 11.71), and so on. If we continue 
computing the expected values and comparing them with the observed ones in 
Exhibit 19.2, the ratios expected/observed give a matrix of weighting factors in 
Exhibit 19.3.

So in category SW (south-west) 2000’s samples must be downweighted by a factor 
of 0.572, whereas 2001’s samples must be upweighted by 3.229.

Since the samples do not fall strictly into a region, how can these weights be ap-
plied? For example a particular sample in 2000 is coded spatially as follows:

 

SW W NW S C N SE E NE

0.125 0.862 0.000 0.002 0.011 0.000 0.000 0.000 0.000  (19.1)

SW W NW S C N SE E NE Sum

1999 2.33 11.71 1.16 10.12 31.25 12.57 3.57 11.29 4.00 88

2000 4.60 18.86 1.47 14.32 39.27 11.65 2.47 11.43 2.93 107

2001 0.64 11.14 1.15 6.60 31.93 12.73 3.06 12.18 4.57 84

2002 2.46 15.83 1.41 11.83 37.44 12.50 2.22 11.01 4.30 99

2003 2.02 16.44 1.36 14.93 38.55 6.63 6.28 12.04 1.75 100

2004 2.72 18.87 1.61 15.46 45.42 14.56 4.17 14.37 4.80 122

All years 14.76 92.85 8.17 73.24 223.85 70.64 21.79 72.33 22.36 600

Prop’n 0.025 0.155 0.014 0.122 0.373 0.118 0.036 0.121 0.037

SW W NW S C N SE E NE

1999 0.929 1.163 1.033 1.062 1.051 0.824 0.895 0.940 0.820

2000 0.572 0.878 0.991 0.912 1.017 1.081 1.573 1.128 1.361

2001 3.229 1.167 0.994 1.554 0.981 0.777 0.997 0.831 0.685

2002 0.990 0.968 0.956 1.022 0.987 0.932 1.619 1.084 0.858

2003 1.218 0.941 1.001 0.818 0.968 1.776 0.578 1.001 2.130

2004 1.104 1.001 1.032 0.963 1.002 0.987 1.062 1.023 0.947
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CASE STUDY 1: TEMPORAL TRENDS AND SPATIAL PATTERNS ACROSS A LARGE ECOLOGICAL DATA SET

Correspondence analysis 
of reweighted data

i.e., it is mostly in the western section, but a bit towards south-west, and quite far 
from the centre (remember that you can fi nd the exact position of this station from 
the fuzzy coding). Now each value that we observe in this sample, for example an 
abundance value of 19 for the species Sebastes mentella (Se_me, beaked redfi sh) is 
split between the fuzzy categories in the above proportions, after which the weights 
for the year 2000 in Exhibit 19.2 are applied. This means that we can compute a 
sample-specifi c weight as the weighted average of the weighting factors:1

 0.1250.5720.8620.8780.0020.9120.0111.0170.8413 (19.2)

Hence, all the abundance data for this sample are downscaled by the factor 
0.8413, e.g., for the Se_me value of 19, 0.84131915.99. Weights for all the 
samples are computed in the same way, and the sum of these sample weights is 
equal to the sample size, 600 in this case. The weights can be used to adjust the 
abundances as well as in computing regression relationships, using weighted 
regression, or in computing overall measures over the whole study area such 
as means and diversity measures, for example, which are then appropriately re-
weighted to compensate for sampling biases in different areas.

In most applications such as this one, where the sampling is not drastically out 
of proportion from year to year, it is not going to make a big difference to the 
results of a multivariate analysis whether one uses the original abundance matrix 
or the reweighted one – nevertheless, reweighting is an insurance against possible 
sampling bias. The negative side of this approach, however, is that in a severely 
under-sampled region such as the south-western region in 2001 (Exhibit 19.2) 
there might be some unusual samples that then become up-weighted and thus 
over-emphasize the species (or lack of species) in that region, so we should still 
have a certain minimum sample size in each area and each year to avoid estima-
tion bias. In what follows, we will consistently use the reweighted data set and can 
report in passing that the results are very similar when compared to those of the 
unweighted data.

Exhibit 19.4 shows the CA of the abundance matrix, fi rst the samples (gray circles) 
and species (brown abbreviated labels) and then an enlargement of the central 
area showing the centroids of the year points and all the fuzzy categorical variables. 
Six species contribute more than average to the axes, shown with bigger labels. The 
fi rst CA axis separates species dominating in cold Arctic waters from species found 

1 There are three different weights here: (1) the fuzzy coded values in (19.1) that add up to 1, which will be 
used as weights in the weighted averaging (only four of them are nonzero); (2) the fuzzy-region-specifi c weight-
ing factors in Exhibit 19.2; and (3) the fi nal value of 0.8413 which is a weight to apply to the abundances of 
this particular sample.
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Exhibit 19.4:
Correspondence analysis 
contribution biplot of the 

“Barents fish trends” 
data set. The upper plot 

shows the active data, 
the samples and species 

(high-contributing species 
are shown with bigger 
labels).The lower plot 

shows the centroids of 
all the categories, linking 

together categories of 
ordinal variables. 32.6% of 
the total inertia of 4.017 is 
explained by these two first 

dimensions
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CASE STUDY 1: TEMPORAL TRENDS AND SPATIAL PATTERNS ACROSS A LARGE ECOLOGICAL DATA SET

Canonical 
correspondence analysis 
of reweighted data

Some permutation tests

in warmer Atlantic waters, in other words a latitudinal effect. The second axis sepa-
rates species in shallower waters from those found in deeper waters.

The CA will show the main dimensions of the 600 samples in the abundance 
matrix without specifi c reference to the interannual differences and differences 
across temperature, depth, slope and in space. The CCA will look at the dimen-
sions of abundance that are in the space of the all these explanatory variables. 
Each set of dummy or fuzzy variables contributes one less than its number of cat-
egories to the dimensionality of the restricted space in which CCA operates: time 
(615), space (918) and depth, temperature and slope (413, each), 
totalling 22. This 22-dimensional restricted space contains 37.7% of the total iner-
tia of the data, in other words there is 62.3% of the inertia that is unrelated to the 
explanatory variables. Exhibit 19.5 shows the result in the same format as Exhibit 
19.4. If the scale of the lower centroid plot is compared to that of the centroid 
plot in Exhibit 19.4, it is clear that the categories are more spread out, which is 
the objective of the CCA to discriminate maximally between the categories. The 
high-contributing fi sh species have changed now, apart from Bo_sa which still 
maintains its important position on the fi rst dimension, separating year 1999. The 
cloud of samples in upper left are associated with species extending out in that 
direction of the ordination, found in warm water coming from the Atlantic in the 
south, while the cloud of samples at bottom left is associated with deep water spe-
cies found in the western area. The temporal trend is now clearer, with years 2003 
and 2004 tending even more towards the warmer area of the map.

Each year points shows the centroid of all the samples for a particular year, group-
ing all the fuzzy regions. A trajectory for each region can be indicated as well, 
this time as supplementary points – that is, we fi x the CCA solution and compute 
centroids for regional subsets of samples over the years. Exhibit 19.6 shows the 
regional trajectories for the categories N, E, W and S as well as their overall spatial 
and time centroids that were shown in Exhibit 19.5. It can be seen now that, of 
these four regions shown, it is mainly the southern and eastern regions that con-
tinue moving towards the “warm” region of the map in 2003 and 2004, whereas 
in the northern and western regions the warming trend stops from 2003 to 2004. 
In this way one can interpret the interaction between space and time, seeing the 
difference in trends between regions, or equivalently the difference in spatial pat-
terns over time, while the six year points and nine region points show the average 
time trend and spatial pattern.

We can conduct various permutation tests to make conclusions about the 
statistical signifi cance of the CCA results. A fi rst test can be to confi rm, as we 
surely believe, that the association between the abundance data and all the 
environmental data is signifi cant. The environmental data set is kept fi xed 
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Exhibit 19.5:
Canonical correspondence 

analysis of the “Barents fish 
trends” data. The format 

is the same as Exhibit 
19.4, with the samples and 
species plotted in the upper 

biplot and an enlarged 
version of the category 

centroids in the lower plot. 
58.5% of the restricted 

inertia is explained by these 
two dimensions
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CASE STUDY 1: TEMPORAL TRENDS AND SPATIAL PATTERNS ACROSS A LARGE ECOLOGICAL DATA SET

Exhibit 19.6:
Temporal trajectories in 
regional categories north, 
east, south and west. Time 
and regional centroids are 
at (weighted) averages of 
the corresponding category 
points: for example, S is at 
the average of the six points 
making up the trajectory 
for south, while 2004 is at 
the average of all the 2004 
points (for all nine regions, 
only four shown here)

Exhibit 19.7:
In descending order, 
the proportion of inertia 
explained, R 2, and adjusted 
R 2, of the five categorical 
environmental variables; k is 
the number of categories

and the samples in the abundance data set are permuted many times. In 1,000 
permutations the highest inertia explained is by the original data, so the sig-
nifi cance is p0.001 at most. What is more interesting is to see the signifi cance 
of individual variables. Using them one at a time as constraining variables, 
the associated p -values are all highly signifi cant (p0.001) except for slope 
(p0.12). Ordering them by explained inertia, Exhibit 19.7 shows the per-
centage of variance explained, denoted by R 2 because it is the direct analogue 
of the coeffi cient of determination in regression, as well as an analogue of the 
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Isolating the spatial part 
of the explained inertia

Exhibit 19.8:
Scree plot of the inertias of 

successive dimensions in 
the constrained space of 

the CCA of the “Barents fish 
trends” data. The first three 

dimensions clearly stand 
out from the rest

adjusted R 2 which takes into account the number of categories (see Appendix 
A and B for details). The spatial position of the sample has by far the most ex-
planatory power. 

Another statistical aspect of the constrained ordination solution that requires 
investigation is the dimensionality of the solution. The scree plot of inertias on 
successive dimensions is shown in Exhibit 19.8, suggesting a three-dimensional 
solution. A permutation test for the percentages of constrained inertia, as de-
scribed in Chapter 18, but applied to the inertias on the constrained dimensions, 
confi rms without any doubt that there are actually three signifi cant dimensions in 
the constrained space. On the supporting website of this course there is a video 
of the three-dimensional ordination, which gives an idea of this additional dimen-
sion and the 19.6% additional inertia it accounts for.

Because the spatial component is intimately related to the environmental vari-
ables, especially temperature, it is possible to use CCA to isolate which part of the 
constrained inertia is purely due to the spatial component and not confounded 
with the environmental variables. A partial CCA is used, which involves fi rst 
partialling out the effect of one set of variables, and then doing a CCA on the 
residuals using a different set of constraining variables. The steps in separating 
contributions to inertia of inter-correlated variables are as follows:

–  Perform the CCA with all constraining variables, in this case environmental, 
temporal and spatial: the inertia in the constrained space is 1.4746, i.e. 36.7% 
of the total inertia of the abundance data of 4.0170.
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CASE STUDY 1: TEMPORAL TRENDS AND SPATIAL PATTERNS ACROSS A LARGE ECOLOGICAL DATA SET

Exhibit 19.9:
Partitioning the total 
inertia in the abundance 
data into parts due to the 
spatial variables and other 
variables separately, and 
their part in common

–  Perform the CCA with the environmental and temporal variables constraining: 
the inertia in the constrained space is now 0.9761, i.e. 24.3% of the total.

–  Perform the CCA with the spatial variables constraining: the inertia in the con-
strained space is now 1.1044, i.e. 27.5% of the total. It is clear that there must 
be some confounding between the spatial variables and the others, because 
24.3%27.5% is much higher than 36.7%, that is the total constrained inertia 
including all variables in a CCA.

–  Perform the CCA with the environmental and temporal variables constraining 
after partialling out the spatial variation: the inertia in this constrained space is 
0.3703, i.e. 9.2% of the total. This 9.2% of the inertia is due to the environmen-
tal variables only in a space uncorrelated with the spatial variation.

–  Similarly, perform the CCA with the spatial variables constraining after partial-
ling out the other variables: the inertia in the constrained space is now 0.4982, 
i.e. 12.4% of the total.

–  From the last two calculations it must be that 36.7%9.2%12.4%15.1% is 
inertia due to that common effect of the spatial with the other environmental 
and temporal variables.

This set of inertia components can be depicted in compositional form as shown 
in Exhibit 19.9. This fi gure shows how much of the variation is unexplained and 
how the part that is explained is divided between the spatial and environmental 
predictors (where “environmental” includes the temporal trend in this case). 

63.3%

12.4%

15.1%

9.2%

Unexplained

Spatial, nonenvironmental

Spatial+environmental

Environmental, nonspatial



 MULTIVARIATE ANALYSIS OF ECOLOGICAL DATA

260

SUMMARY:
Case Study 1: Temporal 

trends and spatial trends 
across a large ecological 

data set

Remember that, of the 36.7% explained variance, the two-dimensional CCA 
ordination of Exhibits 19.5 and 19.6 only accounts for 58.5%, that is 21.5% of 
the total variation in the fi sh abundances. If we take into account the third di-
mension (see Exhibit 19.8), this brings the explained constrained inertia up to 
58.519.678.1%, which is 28.7% of the total inertia. Hence, in summary, using 
the available explanatory variables, depth, temperature, spatial position and year, 
we can give a statistically justifi able explanation of 28.7% of the variation in the 
species abundances.

1.  This case study involved a large data set of fi sh abundances from trawl samples 
taken in the Barents Sea, over a six-year period. In addition to the fi sh data, 
the environmental variables bottom depth, water temperature and slope of 
sea-bed were available for each sampling site, as well as latitude and longitude 
coordinates.

2.  In studies such as these that involve sampling across a region over time it can 
happen that there is unrepresentative sampling in certain areas at different 
time periods. Conclusions about temporal trends, for example, can become 
biased due to these sampling imbalances.

3.  Samples can be reweighted to be in line with some fi xed distribution. In this 
study we took the distribution over the whole six-year period as the target dis-
tribution and reweighted the samples in nine fuzzy regions to be in line with 
this distribution, thereby eliminating bias in the estimates.

4.  Sample weights can be used to reweight the abundance data, after which ordi-
nation by CA or CCA, for example, continues as before. In computing average 
temperatures or diversity measures across the whole region, weighted averages 
are used. 

5.  Permutation testing is useful for verifying that the relationship between the 
fi sh abundances, regarded as responses, have a statistically signifi cant rela-
tionship with the environmental variables and to confi rm temporal trends. 
Similarly, we can test how many dimensions in the solution are nonrandom.

6.  The overall variation in the abundance data can be partitioned into a part 
explained by the environmental and spatial variables. The environmental and 
spatial predictors are confounded, however, but we can quantify the parts of 
variation that are purely environmental, purely spatial and a confounding of 
environmental and spatial. 
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