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The functional 
trait matrix

Chapter 

Case Study 2: 
Functional Diversity of Fish in the Barents Sea

The ability of a marine ecosystem to withstand environmental changes depends on 
its adaptability. Biodiversity makes an ecosystem more adaptable and thereby less 
vulnerable to change since a high number of species can perform a wide range of 
ecosystem functions present in the community. Diversity can be measured at the 
taxonomic level, the phylogenetic level or the functional level, and it is the object of 
this case study to investigate the last option in the same data set studied in Chapter 
19. In order to measure functional diversity, species need to be coded in terms of 
their functional traits. There are then two alternative ways of proceeding: either cre-
ate groups of species with similar functional traits and then measure diversity of the 
functional groups, or use a diversity measure which depends on the particular mix 
of species present at a site, and how far apart they are in terms of their trait charac-
teristics. Both these approaches will be illustrated in this case study, as well as their 
relationships to environmental, spatial and temporal variables.
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The starting point for a study of functional diversity is the defi nition of a set of 
attributes, called functional traits, that defi ne the functioning of the species. These 
can be the type of feeding, movement and reproductive behaviour, for example. 

20

1 We are indebted to Magnus Wiedmann of the University of Tromsø for his agreement to use these data, which 
are part of his PhD thesis and an article in the journal Marine Ecology Progress Series (see Bibliographical Appendix).
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Exhibit 20.1:
Part of the trait matrix 

coding the various 
functional characteristics of 

Barents Sea fish species

Exhibit 20.1 shows a part of the trait1 matrix for the 62 Barents Sea fi sh species 
studied in Chapter 19. The total list of traits is as follows: 

Diet: three-category variable, multiple responses possible

Habitat: two-category variable

Average fecundity: continuous variable, highly positively skew

Offspring size: three-category variable

Offspring behaviour: three-category variable

Maximum size: continuous variable, highly positively skew

Shape: fi ve-category variable

Salinity range: three-category variable

Temperature range: three-category variable

 Depth range: three-category variable

Thus, there are 10 traits, 8 categorical and 2 continuous.

As can be seen in Exhibit 20.1, the categorical options are coded as zeros and ones, 
and the fi rst variable (diet) can have more than one option indicated as a trait (for 

Species Functional traits

Diet Habitat Fecundity Offspring

Name Abbrevn benthivorous ichthyivorous planktivorous demersal pelagic (mean) small medium large ···

Amblyraja 
hyperborea

Am_hy 1 1 0 1 0 30 0 0 1 ···

Amblyraja 
radiata

Am_ra 1 1 0 1 0 26.5 0 0 1 ···

Anarhichas 
denticulatus

An_de 1 1 1 1 0 46,500 0 1 0 ···

Anarhichas 
lupus

An_lu 1 0 0 1 0 12,740 0 1 0 ···

Anisarchus 
medius

An_me 1 0 0 1 0 700 1 0 0 ···

Anarhichas 
minor

An_mi 1 0 0 1 0 19,700 0 1 0 ···

Artediellus 
atlanticus

Ar_at 1 1 0 1 0 117.5 0 1 0 ···

···
···

···
···

···
···

···
···

···
···

···
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Distances between 
species based on 
the traits

Hierarchical 
clustering of fish using 
trait distances

example, the fi rst species is indicated as both benthivorous and ichthyi vorous for 
diet), whereas the others only allow one option; for example, offspring can only be 
in one category of small, medium or large). 

There are several approaches to defi ning a distance, or dissimilarity, between 
pairs of fi sh, based on mixed-scale data such as these. Our choice here will be 
to code each of the continuous variables into three fuzzy categories so that the 
whole trait matrix can be treated as a set of categorical data. Because the two con-
tinuous variables are highly skew, it is important to fi rst log-transform them before 
the fuzzy coding. Several distance functions are possible: simply computing the 
sum of absolute differences between the traits of pairs of fi sh, or applying a dis-
tance like the chi-square distance that will normalize the traits according to their 
average appearance in all the fi sh. We chose the former approach, so that the dis-
tance between fi sh would not depend on the particular sample of fi sh included in 
this study (the chi-square distance would depend on the marginal trait averages). 
Nevertheless, to get an idea of the relationship between this set of fi sh and the 
traits, CA using the chi-square distance is still of interest, as shown in Exhibit 20.2. 
In the upper right corner, for example, we fi nd fi sh that must have some of the 
following characteristics: small (ML1) and bottom dwelling (Demersal) benthivo-
rous species, with strange shapes (Shape_eellike or Shape_deep_short), having few 
(FM1), medium-sized (Medium_offspring), demersal eggs (Egg_dem) and moderate 
tolerance to variations in abiotic factors such as temperature and salinity.

Having defi ned a distance between the fi sh, the next step is to perform a cluster-
ing of the fi sh into groups that are relatively homogenous with respect to the 
traits. Again several choices are available: complete or average linkage or Ward 
clustering. To ensure a certain level of compactness of the clusters we chose 
complete linkage – see Exhibit 20.3. Notice that the distance measure has been 
rescaled so that 1 equals maximum distance. 

There are two approaches to defi ning functional diversity that we shall investigate 
here. The fi rst way involves defi ning functional groups, using the results of the 
hierarchical clustering. Using the permutation test for clustering described in 
Chapter 17, we obtain the following estimates of p -values for signifi cant cluster-
ing, from 2 to 12 groups:

2 groups: p0.989 6 groups: p0.021 10 groups: p0.048

3 groups: p0.975 7 groups: p0.177 11 groups: p0.082

4 groups: p0.354 8 groups: p0.001 12 groups: p0.019

5 groups: p0.821 9 groups: p0.006
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Exhibit 20.2:
CA of the trait matrix, part 

of which is shown in Exhibit 
20.1. Traits are shown in 

principal coordinates in (a)
 and the fish species in 

principal coordinates 
in (b). 27.4% of the 
inertia is displayed

CA of functional trait matrix: 62 species
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Exhibit 20.3:
Hierarchical clustering of 
fish based on distances 
between fish, showing boxes 
indicating eight clusters

Definition of functional 
diversity

We choose the eight-cluster solution, which is the most signifi cant (p0.001), 
indicated in Exhibit 20.3. A six-group solution (p0.021) is another possibility if 
fewer groups are required, but we preferred more groups that are internally more 
homogeneous. Notice in the dendrogram that the nine-group solution (p0.006) 
would split off one species on its own, which is not desirable. Hence, the decision 
about the number of groups is based on statistical signifi cance as a guideline, but 
also the nature of the dendrogram and substantive biological knowledge. 

Once functional groups have been defi ned another CA is possible, at the group 
level, to interpret these defi nitions. The trait values for each fi sh group are ag-
gregated, so we reduce the 62-row trait matrix in Exhibit 20.1 to a 8-row matrix 
– see Exhibit 20.4. As mentioned in Chapter 16, the CA of this aggregated matrix 
is a type of discriminant analysis between the fi sh groups, or alternatively a CCA 
of the original trait matrix with fi sh group as a constraining variable. In Ex-
hibit 20.4(b) we show the fi sh group centroids as well as the convex hulls around 
the fi sh species in each group. There is some overlap because not all of the inter-
group variance, contained in seven dimensions (one less than the number of 
groups), can be shown in the two-dimensional map.

Once the tree, or dendrogram, given in Exhibit 20.3 is established, there are 
two ways to defi ne functional diversity at a sampling site, one of which depends 
on having decided on the number of groups, as we have already done above, 
and the other which only needs the tree. The former is simple to understand: 
given a sample of fi sh at a site along with their abundance values, they are clas-
sifi ed into groups and their abundance values are aggregated. Then a standard 
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Exhibit 20.4:
CA of the trait matrix 

aggregated according to the 
fish groups (G1 to G8) that 

were defined in Exhibit 20.3. 
The solution optimizes the 

group differences, although 
the basic configuration is 

similar to that of Exhibit 
20.2 which optimized 

the fish differences. 
The  functional traits are 
displayed in contribution 

coordinates in (a). 52.4% 
of the inertia between fish 

groups is displayed
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diversity measure is computed, for example the Shannon-Weaver index, de-
noted by H:

Hg pg log(pg)

where pg is the proportional abundance of functional group g.

The other way is to measure diversity by summing branches on the dendrogram 
according to the mix of fi sh species found in the sample – in this case only pres-
ences of fi sh are used and not their abundances, although an abundance-weight-
ed measure can be envisaged. First let us suppose that a sample contains all 62 
fi sh, which would give the maximum diversity possible. The measure of diversity 
is obtained by summing all the vertical branches in Exhibit 20.3: since each of 
the n2 nodes of the tree has two vertical branches below it, this is the sum of 
2(n1)122 values in this example, equal here to 20.31. This value is called the 
functional diversity of the species pool (henceforward, we use the abbreviation FD 
for functional diversity). 

Now for a general sample that contains only a subset of the fi sh species, the FD 
value is computed by summing all the branches linking this subset. Clearly, if the 
fi sh in a subset are “close” together in terms of trait distance, then the sum of 
the associated branches will be relatively low, while if there are fi sh species in the 
sample that are “far apart” with not so many common traits, then the sum of their 
linking branches will be relatively high. To normalize the FD measures, we shall 
express them relative to the maximum value of 20.31 for the species pool, so that 
FD will be between 0 and 1. 

Using the same data as in Chapter 19, the FD values for each of the 600 sampling 
sites were computed in the two different ways, fi rst as the diversity index H tak-
ing into account the aggregated abundances, and second as the normalized value 
lying between 0 and 1 that only uses presences of the fi sh. Exhibit 20.5 shows the 
histograms of FD for each alternative, as well as a scatterplot of their paired val-
ues. The fairly low rank correlation of 0.3 suggests that these two measures refl ect 
different information about the diversity.

Interestingly, it is feasible to make a permutation test on the species pool FD as 
an alternative test for overall clusteredness of the fi sh, different from testing for a 
particular number of groups. If the trait data are randomly permuted within each 
variable, e.g., within diet the three options are permuted together across the fi sh 
(and not separately), many alternative values of the species pool FD can be ob-
tained, under a null hypothesis of no relationship between the traits. Exhibit 20.6 
shows that the observed FD value is much lower than those obtained under the 
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Exhibit 20.5:
(a) Histogram of the 

group-based FDs defined as 
Shannon-Weaver diversities 

on the aggregated 
abundances in 600 samples 
for eight functional groups; 

(b) Histogram of the tree-
based FDs using presences 

only and summing the 
branches in the dendrogram 

for the subset of observed 
species, normalized with 
respect to the FD of the 

species pool; (c) Scatterplot 
of the two functional 

diversity indices (Spearman 
rho correlation0.300)
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Exhibit 20.6:
Permutation distribution 
of the species pool FD, 
under the null hypothesis 
of no relationship between 
the traits. The observed 
value of 20.31 is the 
smallest and the associated 
p-value, based on 1,000 
permutations, is thus 
p0.001

Relating functional 
diversity to species 
richness

null hypothesis, and the estimated p -value is p0.001, showing that there are 
signifi cant similarities between the fi sh across the traits.

Both measures of functional diversity will be used and compared in the remainder 
of this chapter, since they appear to contain different information and are defi ned 
in different ways, the common feature being the dendrogram based on the trait 
distances. Exhibit 20.7 shows their relationships with species richness (SR), that is 
the number of species in each sample. Since the tree-based FD only takes presences 
into account and would clearly increase with increasing number of species, as more 
branch lengths are summed, it is no surprise that it follows species richness very 
closely (Exhibit 20.7(a)). Both relationships are slightly nonlinear, with concave 
curves, and so we would use a quadratic function, for example, as a model for the 
conditional means, shown in Exhibit 20.7 (in both cases the explanatory terms SR 
and SR2 are highly signifi cant in the regressions). The deviations of the functional 
diversity values from that expected by their relationship with species richness are 
used as a measure of so-called functional dispersion. Higher functional dispersions 
at a site are associated with greater ecosystem adaptability because the number 
of functions displayed by the species at this site is higher than expected given the 
number of species present – they possess more “tools” and are thus expected to be 
better prepared for environmental change. On the other hand, the impact on the 
FD due to the loss of a species would be proportionally larger at this site since each 
species contributes more to the FD as compared to a site with the same SR but a 
lower FD (i.e., lower functional dispersion).
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Exhibit 20.7:
Scatterplots of the two FD 
measures versus species 

richness (SR, the number of 
species in sample), showing 

the modelled quadratic 
relationships. The horizontal 

axis is marked with the 
value of SR, and below the 

number of sites with the 
corresponding value)
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Relating functional 
diversity to space, time 
and environment

Exhibit 20.8:
Scatterplots of the variables 
depth, slope, temperature, 
longitude and latitude 
with one another as well 
as with the two measures 
of functional diversity, 
based on the functional 
groups (FDgroup) and on 
the dendrogram (FDtree). 
Spearman rank correlations 
are shown in the upper 
triangle, with font size 
proportional to their 
absolute values.

As a fi rst bivariate view of associations between the two FD measures and the 
available covariates, Exhibit 20.8 shows the matrix of scatterplots, with Spearman 
rank correlations in the upper triangle and scatterplots and smooth relationhips 
in the lower triangle. Apart from the known features of the region, that depth is 
negatively correlated with longitude and temperature negatively correlated with 
latitude and longitude, the group-based FD is correlated with depth and the tree-
based FD negatively with temperature and positively with latitude and longitude, 
although these last correlations are less than 0.30 in absolute value. As already 
seen in Chapter 19, the variable slope does not appear to have any association 
with any other, so we drop it from further consideration. 

To show the spatial relationship latitude and longitude should be considered to-
gether along with their interaction. We can compare two ways of spatial modelling, 
by spatial fuzzy coding (Chapter 11) and by generalized additive modelling (GAM, 
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Exhibit 20.9:
Contour plots of the spatial 

component of functional 
diversity according to 

the two definitions (first 
row is the tree-based FD, 

second row is group-based 
FD) using two modelling 

methods (in columns, 
first column is using fuzzy 
spatial categories, second 

is using GAM modelling). 
The northern border of 

Norway with Russia and the 
southern tip of Svalbard 

situate the region of interest

Chapter 18). For both models we model each FD measure on latitude and longi-
tude interactively, and the results are shown in Exhibit 20.9 in the form of con-
tours of predicted FD values.

The results or the two types of FD are quite different, with the tree-based FD 
showing a west and south to north-east gradient, with higher FD in the north-east, 
whereas the group-based FD shows higher diversity in the central area, falling 
off to the west and the south-east. Remember that the group-based FD takes the 
abundance values into account and the water in the central areas is warm, and 
species from more southern areas (e.g., Norwegian Sea) migrate into these areas 
(often in schools), especially in warmer years, giving a more equal spread of rela-
tive abundance values in the functional groups. Concerning the tree-based FD, the 
GAM fi t shows a ridge in the diversity values from south to north while the fuzzy 
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Exhibit 20.10:
Plot of regression 
coefficients for each year 
showing average estimated 
year effects for the 
residuals of (tree-based) 
functional diversities 
from the spatial model, 
with p-values for testing 
differences compared to the 
zero mean of the residuals 
(dashed line)

fi t shows a wider ridge from south-west to north-east. For the group-based FD the 
results are similar between the two methodological approaches, but the fuzzy ap-
proach performs noticeably better according to AIC and the adjusted R 2. Another 
advantage of the approach using fuzzy-coded categories is that there is a p -value 
associated with every compass point’s difference with the central category. So we 
can get results that for the group-based FD several sectors are signifi cantly lower 
than the central (C) one: NW, E, SE and S (all with p0.001), NE (p0.002) and 
W (p0.04), whereas for the tree-based FD the following sectors are signifi cantly 
lower than the central one: NW (p0.001), SE (p0.002) and S (p005). 

Although the spatial variation is highly linked to the variation of environmental 
variables such as temperature and possibly also to temporal variation, we can study 
inter-year variation in the residuals from the above spatial models as well as any 
further relationships with the environmental variables temperature and depth. As 
an example, we consider the residuals of tree-based classifi cation from the fuzzy 
spatial model (top left example in Exhibit 20.9), and model the residuals on year 
as a categorical variable, and temperature and depth either as regular continuous 
variables, or the four-category fuzzy versions used in Chapter 19, or as smooth 
functions using GAM. Both temperature and depth are found to be nonsignifi cant 
predictors of the residuals, irrespective of the coding. There is signifi cant temporal 
variation, however, almost identical in all analyses, which can be plotted as in Ex-
hibit 20.10. Remembering that these are the residuals from the spatial model, we 
can say that in 1999 and 2001 there were lower functional diversities compared to 
the spatial model (as measured by the dendrogram-based approach) and higher 
in 2003 and 2004. All effects are different from 0 (the mean of the residuals) and 
highly signifi cant (p0.0001), apart from 2002 which is closer to 0 (p0.025).
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Exhibit 20.11:
GAM of tree-based FD 

as a smooth function of 
depth (p = 0.0001) and 

temperature (p < 0.0001). 
To model these effects 

parametrically depth would 
be modelled as a quadratic 

and temperature linear
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SUMMARY:
Functional diversity of 
fish in the Barents Sea

From the above it is clear that the effects of spatial position and of the environ-
mental variables temperature and depth are confounded and diffi cult to sepa-
rate. If FD is fi rst related to temperature and depth, ignoring the spatial compo-
nent, highly signifi cant relationships are found: for example, tree-based FD goes 
down with increasing temperature and we fi nd the same quadratic relationship 
with depth as in Chapter 18 where the response was species diversity – see Exhibit 
18.7 for the analysis of only 89 sites (where temperature was nonsignifi cant), 
and Exhibit 20.11 for the present example of 600 sites. More or less the same 
depth value, about 350 m, is found here for maximum FD as was found before in 
Exhibit 18.7 for maximum species diversity. Adding the year effects gives almost 
exactly the same pattern as in Exhibit 20.9, with 1999 and 2001 low and the other 
years high. Of the FD variance, 30.2% (adjusted R 2) is explained by depth, tem-
perature and years. Residuals from this environmental and temporal relationship, 
accounting for about 70% of the FD variance, can then be modelled spatially: 
using a GAM model as in Exhibit 20.8 there is still a signifi cant spatial component 
in the residuals, although the explained variance in these residuals is only 4.3%. 

In summary, temperature and depth, both of which are related to spatial position 
in the Barents Sea, are found to be strongly associated with functional diversity, 
and there are also signifi cant differences between the years. Residuals from a 
model of FD as a function of these environmental and temporal variables can be 
explained, although to a minor extent, by spatial position.

1.  Functional diversity measures diversity in the functional traits (feeding, mo-
tion, reproductive behaviour, habitat preferences, etc.) among species in an 
ecosystem.

2.  Functional groups are groups of species that share the same functional traits. 

3.  To measure functional diversity two approaches are considered here, both 
based on a dendrogram obtained by hierarchical clustering of the species 
according to their functional traits. They are thus both dependent on the dis-
tance/dissimilarity function used as well as the type of clustering.

4.  The fi rst way is to use the hierarchical clustering to decide on the number of clus-
ters that are suffi ciently homogeneous internally to be considered separate groups. 
Functional diversity (FD) at a site can then be measured by any of the usual diversity 
measures, for example the Shannon-Weaver diversity, which is a function of relative 
abundances (or biomasses) of the functional groups. We call this group-based FD.

5.  The second way is to add up the branches of the dendrogram of the particular 
mix of species at the site – this takes only presences of species into account, 
not their abundances. We call this tree-based FD.
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6.  These FD measures are found to have monotonically increasing, slightly con-
cave, relationships with species richness (SR). Tree-based FD is very closely 
related to SR because both take only species presences into account.

7.  Both FD measures can be related to spatial, temporal and environmental 
variables in the usual way using multiple regression. Spatial coordinates are 
interactively coded to explain the spatial relationship. Continuous explanatory 
variables can be coded in their original form, possibly transformed to account 
for nonlinear relationships, or coded as fuzzy variables. 

8.  An alternative modelling strategy is to use generalized additive modelling 
(GAM) which produces a smooth regression relationship with the two-dimen-
sional spatial position and the continuous variables.
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